274 lines
10 KiB
C++
274 lines
10 KiB
C++
/**
|
|
* @file zone_filling_algorithm.cpp:
|
|
* Algorithms used to fill a zone defined by a polygon and a filling starting point.
|
|
*/
|
|
/*
|
|
* This program source code file is part of KiCad, a free EDA CAD application.
|
|
*
|
|
* Copyright (C) 2012 Jean-Pierre Charras, jean-pierre.charras@ujf-grenoble.fr
|
|
* Copyright (C) 1992-2012 KiCad Developers, see AUTHORS.txt for contributors.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, you may find one here:
|
|
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
|
|
* or you may search the http://www.gnu.org website for the version 2 license,
|
|
* or you may write to the Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
|
|
*/
|
|
|
|
|
|
#include <algorithm> // sort
|
|
|
|
#include <fctsys.h>
|
|
#include <trigo.h>
|
|
#include <wxPcbStruct.h>
|
|
|
|
#include <class_zone.h>
|
|
|
|
#include <pcbnew.h>
|
|
#include <zones.h>
|
|
|
|
/* Build the filled solid areas data from real outlines (stored in m_Poly)
|
|
* The solid areas can be more than one on copper layers, and do not have holes
|
|
( holes are linked by overlapping segments to the main outline)
|
|
* aPcb: the current board (can be NULL for non copper zones)
|
|
* aCornerBuffer: A reference to a buffer to store polygon corners, or NULL
|
|
* if NULL:
|
|
* - m_FilledPolysList is used to store solid areas polygons.
|
|
* - on copper layers, tracks and other items shapes of other nets are
|
|
* removed from solid areas
|
|
* if not null:
|
|
* Only the zone outline (with holes, if any) are stored in aCornerBuffer
|
|
* with holes linked. Therfore only one polygon is created
|
|
* This function calls AddClearanceAreasPolygonsToPolysList()
|
|
* to add holes for pads and tracks and other items not in net.
|
|
*/
|
|
|
|
bool ZONE_CONTAINER::BuildFilledSolidAreasPolygons( BOARD* aPcb,
|
|
std::vector <CPolyPt>* aCornerBuffer )
|
|
{
|
|
if( aCornerBuffer == NULL )
|
|
m_FilledPolysList.clear();
|
|
|
|
/* convert outlines + holes to outlines without holes (adding extra segments if necessary)
|
|
* m_Poly data is expected normalized, i.e. NormalizeAreaOutlines was used after building
|
|
* this zone
|
|
*/
|
|
|
|
if( GetNumCorners() <= 2 ) // malformed zone. polygon calculations do not like it ...
|
|
return 0;
|
|
|
|
// Make a smoothed polygon out of the user-drawn polygon if required
|
|
if( m_smoothedPoly )
|
|
{
|
|
delete m_smoothedPoly;
|
|
m_smoothedPoly = NULL;
|
|
}
|
|
|
|
switch( m_cornerSmoothingType )
|
|
{
|
|
case ZONE_SETTINGS::SMOOTHING_CHAMFER:
|
|
m_smoothedPoly = m_Poly->Chamfer( m_cornerRadius );
|
|
break;
|
|
case ZONE_SETTINGS::SMOOTHING_FILLET:
|
|
m_smoothedPoly = m_Poly->Fillet( m_cornerRadius, m_ArcToSegmentsCount );
|
|
break;
|
|
default:
|
|
m_smoothedPoly = new CPolyLine;
|
|
m_smoothedPoly->Copy( m_Poly );
|
|
break;
|
|
}
|
|
|
|
if( aCornerBuffer )
|
|
ConvertPolysListWithHolesToOnePolygon( m_smoothedPoly->m_CornersList,
|
|
*aCornerBuffer );
|
|
else
|
|
ConvertPolysListWithHolesToOnePolygon( m_smoothedPoly->m_CornersList,
|
|
m_FilledPolysList );
|
|
|
|
/* For copper layers, we now must add holes in the Polygon list.
|
|
* holes are pads and tracks with their clearance area
|
|
* for non copper layers just recalculate the m_FilledPolysList
|
|
* with m_ZoneMinThickness taken in account
|
|
*/
|
|
if( ! aCornerBuffer )
|
|
{
|
|
if( IsOnCopperLayer() )
|
|
AddClearanceAreasPolygonsToPolysList( aPcb );
|
|
else
|
|
{
|
|
// This KI_POLYGON_SET is the area(s) to fill, with m_ZoneMinThickness/2
|
|
KI_POLYGON_SET polyset_zone_solid_areas;
|
|
int margin = m_ZoneMinThickness / 2;
|
|
|
|
/* First, creates the main polygon (i.e. the filled area using only one outline)
|
|
* to reserve a m_ZoneMinThickness/2 margin around the outlines and holes
|
|
* this margin is the room to redraw outlines with segments having a width set to
|
|
* m_ZoneMinThickness
|
|
* so m_ZoneMinThickness is the min thickness of the filled zones areas
|
|
* the polygon is stored in polyset_zone_solid_areas
|
|
*/
|
|
CopyPolygonsFromFilledPolysListToKiPolygonList( polyset_zone_solid_areas );
|
|
polyset_zone_solid_areas -= margin;
|
|
// put solid area in m_FilledPolysList:
|
|
m_FilledPolysList.clear();
|
|
CopyPolygonsFromKiPolygonListToFilledPolysList( polyset_zone_solid_areas );
|
|
}
|
|
if ( m_FillMode ) // if fill mode uses segments, create them:
|
|
FillZoneAreasWithSegments( );
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
|
|
// Sort function to build filled zones
|
|
static bool SortByXValues( const int& a, const int &b)
|
|
{
|
|
return a < b;
|
|
}
|
|
|
|
|
|
int ZONE_CONTAINER::FillZoneAreasWithSegments()
|
|
{
|
|
int ics, ice;
|
|
int count = 0;
|
|
std::vector <int> x_coordinates;
|
|
bool error = false;
|
|
|
|
int istart, iend; // index of the starting and the endif corner of one filled area in m_FilledPolysList
|
|
|
|
int margin = m_ZoneMinThickness * 2 / 10;
|
|
int minwidth = Mils2iu( 2 );
|
|
margin = std::max ( minwidth, margin );
|
|
int step = m_ZoneMinThickness - margin;
|
|
step = std::max( step, minwidth );
|
|
|
|
// Read all filled areas in m_FilledPolysList
|
|
m_FillSegmList.clear();
|
|
istart = 0;
|
|
int end_list = m_FilledPolysList.size()-1;
|
|
|
|
for( int ic = 0; ic <= end_list; ic++ )
|
|
{
|
|
CPolyPt* corner = &m_FilledPolysList[ic];
|
|
if ( corner->end_contour || (ic == end_list) )
|
|
{
|
|
iend = ic;
|
|
EDA_RECT rect = CalculateSubAreaBoundaryBox( istart, iend );
|
|
|
|
// Calculate the y limits of the zone
|
|
int refy = rect.GetY();
|
|
int endy = rect.GetBottom();
|
|
|
|
for( ; refy < endy; refy += step )
|
|
{
|
|
// find all intersection points of an infinite line with polyline sides
|
|
x_coordinates.clear();
|
|
|
|
for( ics = istart, ice = iend; ics <= iend; ice = ics, ics++ )
|
|
{
|
|
if ( m_FilledPolysList[ice].m_utility )
|
|
continue;
|
|
|
|
int seg_startX = m_FilledPolysList[ics].x;
|
|
int seg_startY = m_FilledPolysList[ics].y;
|
|
int seg_endX = m_FilledPolysList[ice].x;
|
|
int seg_endY = m_FilledPolysList[ice].y;
|
|
|
|
|
|
/* Trivial cases: skip if ref above or below the segment to test */
|
|
if( ( seg_startY > refy ) && (seg_endY > refy ) )
|
|
continue;
|
|
|
|
// segment below ref point, or its Y end pos on Y coordinate ref point: skip
|
|
if( ( seg_startY <= refy ) && (seg_endY <= refy ) )
|
|
continue;
|
|
|
|
/* at this point refy is between seg_startY and seg_endY
|
|
* see if an horizontal line at Y = refy is intersecting this segment
|
|
*/
|
|
// calculate the x position of the intersection of this segment and the
|
|
// infinite line this is more easier if we move the X,Y axis origin to
|
|
// the segment start point:
|
|
seg_endX -= seg_startX;
|
|
seg_endY -= seg_startY;
|
|
double newrefy = (double) (refy - seg_startY);
|
|
double intersec_x;
|
|
|
|
if ( seg_endY == 0 ) // horizontal segment on the same line: skip
|
|
continue;
|
|
|
|
// Now calculate the x intersection coordinate of the horizontal line at
|
|
// y = newrefy and the segment from (0,0) to (seg_endX,seg_endY) with the
|
|
// horizontal line at the new refy position the line slope is:
|
|
// slope = seg_endY/seg_endX; and inv_slope = seg_endX/seg_endY
|
|
// and the x pos relative to the new origin is:
|
|
// intersec_x = refy/slope = refy * inv_slope
|
|
// Note: because horizontal segments are already tested and skipped, slope
|
|
// exists (seg_end_y not O)
|
|
double inv_slope = (double)seg_endX / seg_endY;
|
|
intersec_x = newrefy * inv_slope;
|
|
x_coordinates.push_back((int) intersec_x + seg_startX);
|
|
}
|
|
|
|
// A line scan is finished: build list of segments
|
|
|
|
// Sort intersection points by increasing x value:
|
|
// So 2 consecutive points are the ends of a segment
|
|
sort( x_coordinates.begin(), x_coordinates.end(), SortByXValues );
|
|
|
|
// Create segments
|
|
|
|
if ( !error && ( x_coordinates.size() & 1 ) != 0 )
|
|
{ // An even number of coordinates is expected, because a segment has 2 ends.
|
|
// An if this algorithm always works, it must always find an even count.
|
|
wxString msg = wxT("Fill Zone: odd number of points at y = ");
|
|
msg << refy;
|
|
wxMessageBox(msg );
|
|
error = true;
|
|
}
|
|
|
|
if ( error )
|
|
break;
|
|
|
|
int iimax = x_coordinates.size()-1;
|
|
|
|
for (int ii = 0; ii < iimax; ii +=2 )
|
|
{
|
|
wxPoint seg_start, seg_end;
|
|
count++;
|
|
seg_start.x = x_coordinates[ii];
|
|
seg_start.y = refy;
|
|
seg_end.x = x_coordinates[ii+1];
|
|
seg_end.y = refy;
|
|
SEGMENT segment( seg_start, seg_end );
|
|
m_FillSegmList.push_back( segment );
|
|
}
|
|
} //End examine segments in one area
|
|
|
|
if ( error )
|
|
break;
|
|
|
|
istart = iend + 1; // istart points the first corner of the next area
|
|
} // End find one end of outline
|
|
|
|
if ( error )
|
|
break;
|
|
} // End examine all areas
|
|
|
|
return count;
|
|
}
|
|
|
|
|