kicad/common/font/glyph.cpp

139 lines
3.6 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2021 Ola Rinta-Koski <gitlab@rinta-koski.net>
* Copyright (C) 2021-2022 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <vector>
#include <font/glyph.h>
#include <trigo.h>
using namespace KIFONT;
STROKE_GLYPH::STROKE_GLYPH( const STROKE_GLYPH& aGlyph )
{
for( const std::vector<VECTOR2D>& pointList : aGlyph )
push_back( pointList );
m_boundingBox = aGlyph.m_boundingBox;
}
void STROKE_GLYPH::AddPoint( const VECTOR2D& aPoint )
{
if( !m_penIsDown )
{
emplace_back();
back().reserve( 16 ); // This handles all but 359 strokes (out of over 328,000)
m_penIsDown = true;
}
back().push_back( aPoint );
}
void STROKE_GLYPH::RaisePen()
{
#if 0
if( m_penIsDown )
back().shrink_to_fit();
#endif
m_penIsDown = false;
}
void STROKE_GLYPH::Finalize()
{
// Shrinking the strokes saves a bit less than 512K of memory. It's not worth it for the
// performance hit of doing more than 328,000 reallocs.
#if 0
if( !empty() && !back().empty() )
back().shrink_to_fit();
#endif
}
std::unique_ptr<GLYPH> STROKE_GLYPH::Transform( const VECTOR2D& aGlyphSize, const VECTOR2I& aOffset,
double aTilt, const EDA_ANGLE& aAngle, bool aMirror,
const VECTOR2I& aOrigin )
{
std::unique_ptr<STROKE_GLYPH> glyph = std::make_unique<STROKE_GLYPH>( *this );
VECTOR2D end = glyph->m_boundingBox.GetEnd();
end.x *= aGlyphSize.x;
end.y *= aGlyphSize.y;
if( aTilt )
end.x -= end.y * aTilt;
glyph->m_boundingBox.SetEnd( end );
glyph->m_boundingBox.Offset( aOffset );
for( std::vector<VECTOR2D>& pointList : *glyph.get() )
{
for( VECTOR2D& point : pointList )
{
point *= aGlyphSize;
if( aTilt )
point.x -= point.y * aTilt;
point += aOffset;
if( aMirror )
point.x = aOrigin.x - ( point.x - aOrigin.x );
if( !aAngle.IsZero() )
RotatePoint( point, aOrigin, aAngle );
}
}
return glyph;
}
BOX2D OUTLINE_GLYPH::BoundingBox()
{
BOX2I bbox = BBox();
return BOX2D( bbox.GetOrigin(), bbox.GetSize() );
}
void OUTLINE_GLYPH::Triangulate( std::function<void( const VECTOR2I& aPt1,
const VECTOR2I& aPt2,
const VECTOR2I& aPt3 )> aCallback ) const
{
const_cast<OUTLINE_GLYPH*>( this )->CacheTriangulation( false );
for( unsigned int i = 0; i < TriangulatedPolyCount(); i++ )
{
const SHAPE_POLY_SET::TRIANGULATED_POLYGON* polygon = TriangulatedPolygon( i );
for ( size_t j = 0; j < polygon->GetTriangleCount(); j++ )
{
VECTOR2I a, b, c;
polygon->GetTriangle( j, a, b, c );
aCallback( a, b, c );
}
}
}