kicad/3d-viewer/3d_rendering/3d_render_raytracing/cmaterial.cpp

351 lines
12 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2015-2020 Mario Luzeiro <mrluzeiro@ua.pt>
* Copyright (C) 1992-2020 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
/**
* @file cmaterial.cpp
* @brief
*/
#include "cmaterial.h"
#include <3d_math.h>
#include <wx/debug.h>
int CMATERIAL::m_default_nrsamples_refractions = 4;
int CMATERIAL::m_default_nrsamples_reflections = 3;
int CMATERIAL::m_default_refractions_recursive_levels = 2;
int CMATERIAL::m_default_reflections_recursive_levels = 3;
// This may be a good value if based on nr of lights
// that contribute to the illumination of that point
#define AMBIENT_FACTOR (1.0f / 6.0f)
#define SPECULAR_FACTOR 1.0f
CMATERIAL::CMATERIAL()
{
m_ambientColor = SFVEC3F( 0.2f, 0.2f, 0.2f );
m_emissiveColor = SFVEC3F( 0.0f, 0.0f, 0.0f );
m_specularColor = SFVEC3F( 1.0f, 1.0f, 1.0f );
m_shinness = 50.2f;
m_transparency = 0.0f; // completely opaque
m_cast_shadows = true;
m_reflection = 0.0f;
m_absorbance = 1.0f;
m_refraction_nr_samples = m_default_nrsamples_refractions;
m_reflections_nr_samples = m_default_nrsamples_reflections;
m_refractions_recursive_levels = m_default_refractions_recursive_levels;
m_reflections_recursive_levels = m_default_reflections_recursive_levels;
m_normal_perturbator = NULL;
}
CMATERIAL::CMATERIAL( const SFVEC3F &aAmbient,
const SFVEC3F &aEmissive,
const SFVEC3F &aSpecular,
float aShinness,
float aTransparency,
float aReflection )
{
wxASSERT( aReflection >= 0.0f );
wxASSERT( aReflection <= 1.0f );
wxASSERT( aTransparency >= 0.0f );
wxASSERT( aTransparency <= 1.0f );
wxASSERT( aShinness >= 0.0f );
wxASSERT( aShinness <= 180.0f );
m_ambientColor = aAmbient * SFVEC3F(AMBIENT_FACTOR);
m_emissiveColor = aEmissive;
m_specularColor = aSpecular;
m_shinness = aShinness;
m_transparency = glm::clamp( aTransparency, 0.0f, 1.0f );
m_absorbance = 1.0f;
m_reflection = aReflection;
m_cast_shadows = true;
m_refraction_nr_samples = m_default_nrsamples_refractions;
m_reflections_nr_samples = m_default_nrsamples_reflections;
m_refractions_recursive_levels = m_default_refractions_recursive_levels;
m_reflections_recursive_levels = m_default_reflections_recursive_levels;
m_normal_perturbator = NULL;
}
void CMATERIAL::PerturbeNormal( SFVEC3F &aNormal,
const RAY &aRay,
const HITINFO &aHitInfo ) const
{
if( m_normal_perturbator )
{
aNormal = aNormal + m_normal_perturbator->Generate( aRay, aHitInfo );
aNormal = glm::normalize( aNormal );
}
}
// https://en.wikipedia.org/wiki/Blinn%E2%80%93Phong_shading_model
SFVEC3F CBLINN_PHONG_MATERIAL::Shade( const RAY &aRay,
const HITINFO &aHitInfo,
float NdotL,
const SFVEC3F &aDiffuseObjColor,
const SFVEC3F &aDirToLight,
const SFVEC3F &aLightColor,
float aShadowAttenuationFactor ) const
{
wxASSERT( NdotL >= FLT_EPSILON );
// This is a hack to get some kind of fake ambient illumination
// There is no logic behind this, just pure artistic experimentation
//const float ambientFactor = glm::max( ( (1.0f - NdotL) /** (1.0f - NdotL)*/ ) *
// ( AMBIENT_FACTOR + AMBIENT_FACTOR ),
// AMBIENT_FACTOR );
if( aShadowAttenuationFactor > FLT_EPSILON )
{
// Calculate the diffuse light factoring in light color,
// power and the attenuation
const SFVEC3F diffuse = NdotL * aLightColor;
// Calculate the half vector between the light vector and the view vector.
const SFVEC3F H = glm::normalize( aDirToLight - aRay.m_Dir );
//Intensity of the specular light
const float NdotH = glm::dot( H, aHitInfo.m_HitNormal );
const float intensitySpecular = glm::pow( glm::max( NdotH, 0.0f ),
m_shinness );
return m_ambientColor +
aShadowAttenuationFactor * ( diffuse * aDiffuseObjColor +
SPECULAR_FACTOR *
aLightColor *
intensitySpecular *
m_specularColor );
}
return m_ambientColor;
}
CPROCEDURALGENERATOR::CPROCEDURALGENERATOR()
{
}
static PerlinNoise s_perlinNoise = PerlinNoise( 0 );
CBOARDNORMAL::CBOARDNORMAL( float aScale ) : CPROCEDURALGENERATOR()
{
m_scale = (2.0f * glm::pi<float>()) / aScale;
}
SFVEC3F CBOARDNORMAL::Generate( const RAY &aRay, const HITINFO &aHitInfo ) const
{
const SFVEC3F hitPos = aHitInfo.m_HitPoint * m_scale;
// http://www.fooplot.com/#W3sidHlwZSI6MCwiZXEiOiJzaW4oc2luKHNpbih4KSoxLjkpKjEuNSkiLCJjb2xvciI6IiMwMDAwMDAifSx7InR5cGUiOjEwMDAsIndpbmRvdyI6WyItMC45NjIxMDU3MDgwNzg1MjYyIiwiNy45NzE0MjYyNjc2MDE0MyIsIi0yLjUxNzYyMDM1MTQ4MjQ0OSIsIjIuOTc5OTM3Nzg3Mzk3NTMwMyJdLCJzaXplIjpbNjQ2LDM5Nl19XQ--
// Implement a texture as the "measling crazing blistering" method of FR4
const float x = glm::sin( glm::sin( hitPos.x ) * 1.5f ) * 0.06f;
const float y = glm::sin( glm::sin( hitPos.y ) * 1.5f ) * 0.03f;
const float z = -(x + y) + glm::sin( hitPos.z ) * 0.06f;
const float noise1 = s_perlinNoise.noise( hitPos.x * 1.0f, hitPos.y * 0.7f ) - 0.5f;
const float noise2 = s_perlinNoise.noise( hitPos.x * 0.7f, hitPos.y * 1.0f ) - 0.5f;
const float noise3 = s_perlinNoise.noise( hitPos.x * 0.3f, hitPos.z * 1.0f ) - 0.5f;
return ( SFVEC3F( noise1, noise2, -( noise3 ) ) * 0.3f + SFVEC3F( x, y, z ) );
}
CCOPPERNORMAL::CCOPPERNORMAL( float aScale, const CPROCEDURALGENERATOR *aBoardNormalGenerator )
{
m_board_normal_generator = aBoardNormalGenerator;
m_scale = 1.0f / aScale;
}
SFVEC3F CCOPPERNORMAL::Generate( const RAY &aRay, const HITINFO &aHitInfo ) const
{
if( m_board_normal_generator )
{
const SFVEC3F boardNormal = m_board_normal_generator->Generate( aRay, aHitInfo );
SFVEC3F hitPos = aHitInfo.m_HitPoint * m_scale;
const float noise = (s_perlinNoise.noise( hitPos.x + boardNormal.y + aRay.m_Origin.x * 0.2f,
hitPos.y + boardNormal.x ) - 0.5f) * 2.0f;
float scratchPattern = (s_perlinNoise.noise( noise + hitPos.x / 100.0f, hitPos.y * 100.0f ) - 0.5f);
const float x = scratchPattern * 0.14f;
const float y = (noise + noise * scratchPattern) * 0.14f;
return SFVEC3F( x, y, - ( x + y ) ) + boardNormal * 0.25f;
}
else
return SFVEC3F(0.0f);
}
CSOLDERMASKNORMAL::CSOLDERMASKNORMAL( const CPROCEDURALGENERATOR *aCopperNormalGenerator )
{
m_copper_normal_generator = aCopperNormalGenerator;
}
SFVEC3F CSOLDERMASKNORMAL::Generate( const RAY &aRay, const HITINFO &aHitInfo ) const
{
if( m_copper_normal_generator )
{
const SFVEC3F copperNormal = m_copper_normal_generator->Generate( aRay, aHitInfo );
return copperNormal * 0.05f;
}
else
return SFVEC3F(0.0f);
}
SFVEC3F CPLATEDCOPPERNORMAL::Generate( const RAY &aRay, const HITINFO &aHitInfo ) const
{
SFVEC3F hitPos = aHitInfo.m_HitPoint * m_scale;
const float noise1 = ( s_perlinNoise.noise( hitPos.x, hitPos.y ) - 0.5f );
const float noise2 = ( s_perlinNoise.noise( hitPos.y, hitPos.x ) - 0.5f );
return SFVEC3F( noise1, noise2, -( noise1 + noise2 ) ) * 0.02f;
}
CPLASTICNORMAL::CPLASTICNORMAL( float aScale )
{
m_scale = 1.0f / aScale;
}
SFVEC3F CPLASTICNORMAL::Generate( const RAY &aRay, const HITINFO &aHitInfo ) const
{
const SFVEC3F hitPos = aHitInfo.m_HitPoint * m_scale;
const float noise1 = s_perlinNoise.noise( hitPos.x * 1.0f,
hitPos.y * 1.1f,
hitPos.z * 1.2f ) - 0.5f;
const float noise2 = s_perlinNoise.noise( hitPos.x * 1.3f,
hitPos.y * 1.0f,
hitPos.z * 1.5f ) - 0.5f;
const float noise3 = s_perlinNoise.noise( hitPos.x * 1.0f,
hitPos.y * 1.0f,
hitPos.z * 1.8f ) - 0.5f;
const float distanceReduction = 1.0f / ( aHitInfo.m_tHit + 0.5f );
return SFVEC3F( noise1, noise2, noise3 ) * SFVEC3F( distanceReduction );
}
CPLASTICSHINENORMAL::CPLASTICSHINENORMAL( float aScale )
{
m_scale = 1.0f / aScale;
}
SFVEC3F CPLASTICSHINENORMAL::Generate( const RAY &aRay, const HITINFO &aHitInfo ) const
{
const SFVEC3F hitPos = aHitInfo.m_HitPoint * m_scale;
const float noise1 = s_perlinNoise.noise( hitPos.x * 0.01f,
hitPos.y * 0.01f,
hitPos.z * 0.01f ) - 0.5f;
const float noise2 = s_perlinNoise.noise( hitPos.x * 1.0f,
hitPos.y * 1.0f,
hitPos.z * 1.6f ) - 0.5f;
float noise3 = s_perlinNoise.noise( hitPos.x * 1.5f,
hitPos.y * 1.5f,
hitPos.z * 1.0f ) - 0.5f;
noise3 = noise3 * noise3 * noise3;
return SFVEC3F( noise1, noise2, noise3 ) * SFVEC3F( 0.1f, 0.2f, 1.0f );
}
CMETALBRUSHEDNORMAL::CMETALBRUSHEDNORMAL( float aScale )
{
m_scale = 1.0f / aScale;
}
SFVEC3F CMETALBRUSHEDNORMAL::Generate( const RAY &aRay, const HITINFO &aHitInfo ) const
{
const SFVEC3F hitPos = aHitInfo.m_HitPoint * m_scale;
const float noise1 = s_perlinNoise.noise( hitPos.x * 1.0f,
hitPos.y * 1.1f,
hitPos.z * 1.2f ) - 0.5f;
const float noise2 = s_perlinNoise.noise( hitPos.x * 1.3f,
hitPos.y * 1.4f,
hitPos.z * 1.5f ) - 0.5f;
const float noise3 = s_perlinNoise.noise( hitPos.x * 0.1f,
hitPos.y * 0.1f,
hitPos.z * 1.0f ) - 0.5f;
return SFVEC3F( noise1 * 0.15f + noise3 * 0.35f,
noise2 * 0.25f,
noise1 * noise2 * noise3 );
}
CSILKSCREENNORMAL::CSILKSCREENNORMAL( float aScale )
{
m_scale = 1.0f / aScale;
}
SFVEC3F CSILKSCREENNORMAL::Generate( const RAY &aRay, const HITINFO &aHitInfo ) const
{
const SFVEC3F hitPos = aHitInfo.m_HitPoint * m_scale;
const float noise1 = s_perlinNoise.noise( hitPos.x * 2.7f,
hitPos.y * 2.6f,
hitPos.z );
const float noise2 = s_perlinNoise.noise( hitPos.x * 1.1f,
hitPos.y * 1.2f,
hitPos.z );
SFVEC3F t = glm::abs( ( 1.8f / ( SFVEC3F( noise1, noise2, hitPos.z ) + 0.4f ) ) - 1.5f ) - 0.25f;
t = t * t * t * 0.1f;
return t;
}