kicad/pcb_calculator/transline/stripline.cpp

199 lines
5.3 KiB
C++

/*
* stripline.cpp - stripline class definition
*
* Copyright (C) 2011 Michael Margraf <michael.margraf@alumni.tu-berlin.de>
* Modifications 2011 for Kicad: Jean-Pierre Charras
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this package; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor,
* Boston, MA 02110-1301, USA.
*
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <cmath>
#include <units.h>
#include <transline.h>
#include <stripline.h>
STRIPLINE::STRIPLINE() : TRANSLINE()
{
m_name = "StripLine";
}
// -------------------------------------------------------------------
void STRIPLINE::getProperties()
{
f = getProperty( FREQUENCY_PRM );
w = getProperty( PHYS_WIDTH_PRM );
len = getProperty( PHYS_LEN_PRM );
h = getProperty( H_PRM);
a = getProperty( STRIPLINE_A_PRM );
t = getProperty( T_PRM );
er = getProperty( EPSILONR_PRM );
murC = getProperty( MURC_PRM );
tand = getProperty( TAND_PRM );
sigma = 1.0 / getProperty( RHO_PRM );
Z0 = getProperty( Z0_PRM );
ang_l = getProperty( ANG_L_PRM );
}
// -------------------------------------------------------------------
// calculate characteristic impedance and conductor loss
double STRIPLINE::lineImpedance( double height, double& ac )
{
double ZL;
double hmt = height - t;
ac = sqrt( f / sigma / 17.2 );
if( w / hmt >= 0.35 )
{
ZL = w +
( 2.0 * height *
log( (2.0 * height - t) / hmt ) - t * log( height * height / hmt / hmt - 1.0 ) ) / M_PI;
ZL = ZF0 * hmt / sqrt( er ) / 4.0 / ZL;
ac *= 2.02e-6 * er * ZL / hmt;
ac *= 1.0 + 2.0 * w / hmt + (height + t) / hmt / M_PI* log( 2.0 * height / t - 1.0 );
}
else
{
double tdw = t / w;
if( t / w > 1.0 )
tdw = w / t;
double de = 1.0 + tdw / M_PI * ( 1.0 + log( 4.0 * M_PI / tdw ) ) + 0.236 * pow( tdw, 1.65 );
if( t / w > 1.0 )
de *= t / 2.0;
else
de *= w / 2.0;
ZL = ZF0 / 2.0 / M_PI / sqrt( er ) * log( 4.0 * height / M_PI / de );
ac *= 0.01141 / ZL / de;
ac *= de / height + 0.5 + tdw / 2.0 / M_PI + 0.5 / M_PI* log( 4.0 * M_PI / tdw )
+ 0.1947 * pow( tdw, 0.65 ) - 0.0767 * pow( tdw, 1.65 );
}
return ZL;
}
// -------------------------------------------------------------------
void STRIPLINE::calc()
{
skindepth = skin_depth();
er_eff = er; // no dispersion
double ac1, ac2;
Z0 = 2.0 /
( 1.0 / lineImpedance( 2.0 * a + t, ac1 ) + 1.0 / lineImpedance( 2.0 * (h - a) - t, ac2 ) );
atten_cond = len * 0.5 * (ac1 + ac2);
atten_dielectric = 20.0 / log( 10.0 ) * len * (M_PI / C0) * f * sqrt( er ) * tand;
ang_l = 2.0* M_PI* len* sqrt( er ) * f / C0; // in radians
}
// -------------------------------------------------------------------
void STRIPLINE::show_results()
{
setProperty( Z0_PRM, Z0 );
setProperty( ANG_L_PRM, ang_l );
setResult( 0, er_eff, "" );
setResult( 1, atten_cond, "dB" );
setResult( 2, atten_dielectric, "dB" );
setResult( 3, skindepth / UNIT_MICRON, "µm" );
}
// -------------------------------------------------------------------
void STRIPLINE::analyze()
{
getProperties();
calc();
show_results();
}
#define MAX_ERROR 0.000001
// -------------------------------------------------------------------
void STRIPLINE::synthesize()
{
double Z0_dest, Z0_current, Z0_result, increment, slope, error;
int iteration;
getProperties();
/* required value of Z0 */
Z0_dest = Z0;
/* Newton's method */
iteration = 0;
/* compute parameters */
calc();
Z0_current = Z0;
error = fabs( Z0_dest - Z0_current );
while( error > MAX_ERROR )
{
iteration++;
increment = w / 100.0;
w += increment;
/* compute parameters */
calc();
Z0_result = Z0;
/* f(w(n)) = Z0 - Z0(w(n)) */
/* f'(w(n)) = -f'(Z0(w(n))) */
/* f'(Z0(w(n))) = (Z0(w(n)) - Z0(w(n+delw))/delw */
/* w(n+1) = w(n) - f(w(n))/f'(w(n)) */
slope = (Z0_result - Z0_current) / increment;
slope = (Z0_dest - Z0_current) / slope - increment;
w += slope;
if( w <= 0.0 )
w = increment;
/* find new error */
/* compute parameters */
calc();
Z0_current = Z0;
error = fabs( Z0_dest - Z0_current );
if( iteration > 100 )
break;
}
setProperty( PHYS_WIDTH_PRM, w );
/* calculate physical length */
ang_l = getProperty( ANG_L_PRM );
len = C0 / f / sqrt( er_eff ) * ang_l / 2.0 / M_PI; /* in m */
setProperty( PHYS_LEN_PRM, len );
/* compute parameters */
calc();
/* print results in the subwindow */
show_results();
}