284 lines
7.5 KiB
C++
284 lines
7.5 KiB
C++
/*
|
|
* This program source code file is part of KiCad, a free EDA CAD application.
|
|
*
|
|
* Copyright (C) 2017 CERN
|
|
* @author Alejandro García Montoro <alejandro.garciamontoro@gmail.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, you may find one here:
|
|
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
|
|
* or you may search the http://www.gnu.org website for the version 2 license,
|
|
* or you may write to the Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
|
|
*/
|
|
|
|
#include <geometry/shape_poly_set.h>
|
|
#include <geometry/shape_line_chain.h>
|
|
|
|
#include <io_mgr.h>
|
|
#include <kicad_plugin.h>
|
|
|
|
#include <class_board.h>
|
|
#include <class_zone.h>
|
|
#include <profile.h>
|
|
|
|
#include <atomic>
|
|
#include <thread>
|
|
#include <unordered_set>
|
|
#include <utility>
|
|
|
|
|
|
void unfracture( SHAPE_POLY_SET::POLYGON* aPoly, SHAPE_POLY_SET::POLYGON* aResult )
|
|
{
|
|
assert( aPoly->size() == 1 );
|
|
|
|
struct EDGE
|
|
{
|
|
int m_index = 0;
|
|
SHAPE_LINE_CHAIN* m_poly = nullptr;
|
|
bool m_duplicate = false;
|
|
|
|
EDGE( SHAPE_LINE_CHAIN *aPolygon, int aIndex ) :
|
|
m_index(aIndex),
|
|
m_poly(aPolygon)
|
|
{}
|
|
|
|
bool compareSegs( const SEG& s1, const SEG& s2) const
|
|
{
|
|
return (s1.A == s2.A && s1.B == s2.B) || (s1.A == s2.B && s1.B == s2.A);
|
|
}
|
|
|
|
bool operator==( const EDGE& aOther ) const
|
|
{
|
|
return compareSegs( m_poly->CSegment(m_index), aOther.m_poly->CSegment(aOther.m_index) );
|
|
}
|
|
|
|
bool operator!=( const EDGE& aOther ) const
|
|
{
|
|
return ! compareSegs( m_poly->CSegment(m_index), aOther.m_poly->CSegment(aOther.m_index) );
|
|
}
|
|
|
|
struct HASH
|
|
{
|
|
std::size_t operator()( const EDGE& aEdge ) const
|
|
{
|
|
const auto& a = aEdge.m_poly->CSegment(aEdge.m_index);
|
|
return (std::size_t) ( a.A.x + a.B.x + a.A.y + a.B.y );
|
|
}
|
|
};
|
|
|
|
};
|
|
|
|
struct EDGE_LIST_ENTRY
|
|
{
|
|
int index;
|
|
EDGE_LIST_ENTRY *next;
|
|
};
|
|
|
|
std::unordered_set<EDGE, EDGE::HASH> uniqueEdges;
|
|
|
|
auto lc = (*aPoly)[0];
|
|
lc.Simplify();
|
|
|
|
auto edgeList = std::make_unique<EDGE_LIST_ENTRY []>( lc.SegmentCount() );
|
|
|
|
for(int i = 0; i < lc.SegmentCount(); i++)
|
|
{
|
|
edgeList[i].index = i;
|
|
edgeList[i].next = &edgeList[ (i != lc.SegmentCount() - 1) ? i + 1 : 0 ];
|
|
//printf("n %p\n", edgeList[i].next);
|
|
}
|
|
|
|
std::unordered_set<EDGE_LIST_ENTRY*> queue;
|
|
|
|
for(int i = 0; i < lc.SegmentCount(); i++)
|
|
{
|
|
EDGE e ( &lc, i );
|
|
uniqueEdges.insert( e );
|
|
}
|
|
|
|
for(int i = 0; i < lc.SegmentCount(); i++)
|
|
{
|
|
EDGE e ( &lc, i );
|
|
auto it = uniqueEdges.find(e);
|
|
if (it != uniqueEdges.end() && it->m_index != i )
|
|
{
|
|
int e1 = it->m_index;
|
|
int e2 = i;
|
|
if( e1 > e2 )
|
|
std::swap(e1, e2);
|
|
|
|
// printf("e1 %d e2 %d\n", e1, e2 ) ;
|
|
|
|
int e1_prev = e1 - 1;
|
|
if (e1_prev < 0)
|
|
e1_prev = lc.SegmentCount() - 1;
|
|
|
|
int e2_prev = e2 - 1;
|
|
if (e2_prev < 0)
|
|
e2_prev = lc.SegmentCount() - 1;
|
|
|
|
int e1_next = e1 + 1;
|
|
if (e1_next == lc.SegmentCount() )
|
|
e1_next = 0;
|
|
|
|
int e2_next = e2 + 1;
|
|
if (e2_next == lc.SegmentCount() )
|
|
e2_next = 0;
|
|
|
|
edgeList[e1_prev].next = &edgeList[ e2_next ];
|
|
edgeList[e2_prev].next = &edgeList[ e1_next ];
|
|
edgeList[i].next = nullptr;
|
|
edgeList[it->m_index].next = nullptr;
|
|
}
|
|
}
|
|
|
|
for(int i = 0; i < lc.SegmentCount(); i++)
|
|
{
|
|
if ( edgeList[i].next )
|
|
queue.insert ( &edgeList[i] );
|
|
//else
|
|
//printf("Skip %d\n", i);
|
|
}
|
|
|
|
auto edgeBuf = std::make_unique<EDGE_LIST_ENTRY* []>( lc.SegmentCount() );
|
|
|
|
int n = 0;
|
|
int outline = -1;
|
|
aResult->clear();
|
|
while (queue.size())
|
|
{
|
|
auto e_first = (*queue.begin());
|
|
auto e = e_first;
|
|
int cnt=0;
|
|
do {
|
|
// printf("e %p cnt %d IDX %d\n", e, cnt, e->index);
|
|
edgeBuf[cnt++] = e;
|
|
e = e->next;
|
|
} while( e != e_first );
|
|
|
|
SHAPE_LINE_CHAIN outl;
|
|
|
|
for(int i = 0; i < cnt ;i++)
|
|
{
|
|
auto p = lc.CPoint(edgeBuf[i]->index);
|
|
// printf("append %d %d\n", p.x, p.y);
|
|
outl.Append( p );
|
|
queue.erase( edgeBuf[i] );
|
|
}
|
|
|
|
// auto p_last = lc.CPoint( edgeBuf[cnt-1]->index + 1 );
|
|
//printf("appendl %d %d\n", p_last.x, p_last.y);
|
|
// outl.Append( p_last );
|
|
|
|
outl.SetClosed(true);
|
|
|
|
bool cw = outl.Area() > 0.0;
|
|
|
|
if(cw)
|
|
outline = n;
|
|
|
|
aResult->push_back(outl);
|
|
n++;
|
|
}
|
|
|
|
assert(outline >= 0);
|
|
|
|
if(outline !=0 )
|
|
std::swap( (*aResult) [0], (*aResult)[outline] );
|
|
}
|
|
|
|
BOARD* loadBoard( const std::string& filename )
|
|
{
|
|
PLUGIN::RELEASER pi( new PCB_IO );
|
|
BOARD* brd = nullptr;
|
|
|
|
try
|
|
{
|
|
brd = pi->Load( wxString( filename.c_str() ), NULL, NULL );
|
|
}
|
|
catch( const IO_ERROR& ioe )
|
|
{
|
|
wxString msg = wxString::Format( _( "Error loading board.\n%s" ),
|
|
ioe.Problem() );
|
|
|
|
printf( "%s\n", (const char*) msg.mb_str() );
|
|
return nullptr;
|
|
}
|
|
|
|
return brd;
|
|
}
|
|
|
|
int main( int argc, char *argv[] )
|
|
{
|
|
auto brd = loadBoard( argc > 1 ? argv[1] : "../../../../tests/dp.kicad_pcb" );
|
|
|
|
if( !brd )
|
|
return -1;
|
|
|
|
|
|
PROF_COUNTER cnt( "allBoard" );
|
|
|
|
|
|
std::atomic<size_t> zonesToTriangulate( 0 );
|
|
std::atomic<size_t> threadsFinished( 0 );
|
|
|
|
size_t parallelThreadCount = std::max<size_t>( std::thread::hardware_concurrency(), 2 );
|
|
for( size_t ii = 0; ii < parallelThreadCount; ++ii )
|
|
{
|
|
std::thread t = std::thread( [brd, &zonesToTriangulate, &threadsFinished] ()
|
|
{
|
|
for( size_t areaId = zonesToTriangulate.fetch_add( 1 );
|
|
areaId < static_cast<size_t>( brd->GetAreaCount() );
|
|
areaId = zonesToTriangulate.fetch_add( 1 ) )
|
|
{
|
|
auto zone = brd->GetArea( areaId );
|
|
SHAPE_POLY_SET poly = zone->GetFilledPolysList();
|
|
|
|
poly.CacheTriangulation();
|
|
|
|
(void) poly;
|
|
printf("zone %zu/%d\n", ( areaId + 1 ), brd->GetAreaCount() );
|
|
#if 0
|
|
PROF_COUNTER unfrac("unfrac");
|
|
poly.Unfracture( SHAPE_POLY_SET::PM_FAST );
|
|
unfrac.Show();
|
|
|
|
PROF_COUNTER triangulate("triangulate");
|
|
|
|
for(int i =0; i< poly.OutlineCount(); i++)
|
|
{
|
|
poly.triangulatePoly( &poly.Polygon(i) );
|
|
}
|
|
triangulate.Show();
|
|
#endif
|
|
}
|
|
|
|
threadsFinished++;
|
|
} );
|
|
|
|
t.detach();
|
|
}
|
|
|
|
while( threadsFinished < parallelThreadCount )
|
|
std::this_thread::sleep_for( std::chrono::milliseconds( 10 ) );
|
|
|
|
|
|
cnt.Show();
|
|
|
|
delete brd;
|
|
|
|
return 0;
|
|
|
|
}
|