kicad/pcbnew/plugins/fabmaster/import_fabmaster.cpp

3067 lines
100 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2020 BeagleBoard Foundation
* Copyright (C) 2020-2022 KiCad Developers, see AUTHORS.txt for contributors.
* Author: Seth Hillbrand <hillbrand@kipro-pcb.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 3
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include "import_fabmaster.h"
#include <algorithm>
#include <array>
#include <iostream>
#include <fstream>
#include <map>
#include <memory>
#include <string>
#include <sstream>
#include <vector>
#include <utility>
#include <wx/log.h>
#include <board.h>
#include <board_design_settings.h>
#include <board_item.h>
#include <convert_to_biu.h>
#include <footprint.h>
#include <fp_shape.h>
#include <pad.h>
#include <pad_shapes.h>
#include <pcb_shape.h>
#include <pcb_text.h>
#include <pcb_track.h>
#include <zone.h>
#include <common.h>
#include <geometry/shape_arc.h>
#include <string_utils.h>
#include <progress_reporter.h>
#include <math/util.h>
#include <wx/filename.h>
void FABMASTER::checkpoint()
{
const unsigned PROGRESS_DELTA = 250;
if( m_progressReporter )
{
if( ++m_doneCount > m_lastProgressCount + PROGRESS_DELTA )
{
m_progressReporter->SetCurrentProgress( ( (double) m_doneCount )
/ std::max( 1U, m_totalCount ) );
if( !m_progressReporter->KeepRefreshing() )
THROW_IO_ERROR( _( "Open cancelled by user." ) );
m_lastProgressCount = m_doneCount;
}
}
}
double FABMASTER::readDouble( const std::string& aStr ) const
{
std::istringstream istr( aStr );
istr.imbue( std::locale::classic() );
double doubleValue;
istr >> doubleValue;
return doubleValue;
}
int FABMASTER::readInt( const std::string& aStr ) const
{
std::istringstream istr( aStr );
istr.imbue( std::locale::classic() );
int intValue;
istr >> intValue;
return intValue;
}
bool FABMASTER::Read( const std::string& aFile )
{
std::ifstream ifs( aFile, std::ios::in | std::ios::binary );
if( !ifs.is_open() )
return false;
m_filename = aFile;
// Read/ignore all bytes in the file to find the size and then go back to the beginning
ifs.ignore( std::numeric_limits<std::streamsize>::max() );
std::streamsize length = ifs.gcount();
ifs.clear();
ifs.seekg( 0, std::ios_base::beg );
std::string buffer( std::istreambuf_iterator<char>{ ifs }, {} );
std::vector < std::string > row;
// Reserve an estimate of the number of rows to prevent continual re-allocation
// crashing (Looking at you MSVC)
row.reserve( length / 100 );
std::string cell;
cell.reserve( 100 );
bool quoted = false;
for( auto ch : buffer )
{
switch( ch )
{
case '"':
if( cell.empty() || cell[0] == '"' )
quoted = !quoted;
cell += ch;
break;
case '!':
if( !quoted )
{
row.push_back( cell );
cell.clear();
}
else
cell += ch;
break;
case '\n':
/// Rows end with "!" and we don't want to keep the empty cell
if( !cell.empty() )
row.push_back( cell );
cell.clear();
rows.push_back( row );
row.clear();
quoted = false;
break;
case '\r':
break;
default:
cell += std::toupper( ch );
}
}
// Handle last line without linebreak
if( !cell.empty() || !row.empty() )
{
row.push_back( cell );
cell.clear();
rows.push_back( row );
row.clear();
}
return true;
}
FABMASTER::section_type FABMASTER::detectType( size_t aOffset )
{
single_row row;
try
{
row = rows.at( aOffset );
}
catch( std::out_of_range& )
{
return UNKNOWN_EXTRACT;
}
if( row.size() < 3 )
return UNKNOWN_EXTRACT;
if( row[0].back() != 'A' )
return UNKNOWN_EXTRACT;
std::string row1 = row[1];
std::string row2 = row[2];
std::string row3{};
/// We strip the underscores from all column names as some export variants use them and some do not
alg::delete_if( row1, []( char c ){ return c == '_'; } );
alg::delete_if( row2, []( char c ){ return c == '_'; } );
if( row.size() > 3 )
{
row3 = row[3];
alg::delete_if( row3, []( char c ){ return c == '_'; } );
}
if( row1 == "REFDES" && row2 == "COMPCLASS" )
return EXTRACT_REFDES;
if( row1 == "NETNAME" && row2 == "REFDES" )
return EXTRACT_NETS;
if( row1 == "CLASS" && row2 == "SUBCLASS" && row3.empty() )
return EXTRACT_BASIC_LAYERS;
if( row1 == "GRAPHICDATANAME" && row2 == "GRAPHICDATANUMBER" )
return EXTRACT_GRAPHICS;
if( row1 == "CLASS" && row2 == "SUBCLASS" && row3 == "GRAPHICDATANAME" )
return EXTRACT_TRACES;
if( row1 == "SYMNAME" && row2 == "PINNAME" )
return FABMASTER_EXTRACT_PINS;
if( row1 == "SYMNAME" && row2 == "SYMMIRROR" && row3 == "PINNAME" )
return EXTRACT_PINS;
if( row1 == "VIAX" && row2 == "VIAY" )
return EXTRACT_VIAS;
if( row1 == "SUBCLASS" && row2 == "PADSHAPENAME" )
return EXTRACT_PAD_SHAPES;
if( row1 == "PADNAME" )
return EXTRACT_PADSTACKS;
if( row1 == "LAYERSORT" )
return EXTRACT_FULL_LAYERS;
wxLogError( _( "Unknown FABMASTER section %s:%s at row %zu." ),
row1.c_str(),
row2.c_str(),
aOffset );
return UNKNOWN_EXTRACT;
}
double FABMASTER::processScaleFactor( size_t aRow )
{
double retval = 0.0;
if( aRow >= rows.size() )
return -1.0;
if( rows[aRow].size() < 11 )
{
wxLogError( _( "Invalid row size in J row %zu. Expecting 11 elements but found %zu." ),
aRow,
rows[aRow].size() );
return -1.0;
}
for( int i = 7; i < 10 && retval < 1.0; ++i )
{
std::string units = rows[aRow][i];
std::transform(units.begin(), units.end(),units.begin(), ::toupper);
if( units == "MILS" )
retval = IU_PER_MILS;
else if( units == "MILLIMETERS" )
retval = IU_PER_MM;
else if( units == "MICRONS" )
retval = IU_PER_MM * 10.0;
else if( units == "INCHES" )
retval = IU_PER_MILS * 1000.0;
}
if( retval < 1.0 )
{
wxLogError( _( "Could not find units value, defaulting to mils." ) );
retval = IU_PER_MILS;
}
return retval;
}
int FABMASTER::getColFromName( size_t aRow, const std::string& aStr )
{
if( aRow >= rows.size() )
return -1;
std::vector<std::string> header = rows[aRow];
for( size_t i = 0; i < header.size(); i++ )
{
/// Some Fabmaster headers include the underscores while others do not
/// so we strip them uniformly before comparing
alg::delete_if( header[i], []( const char c ) { return c == '_'; } );
if( header[i] == aStr )
return i;
}
THROW_IO_ERROR( wxString::Format( _( "Could not find column label %s." ), aStr.c_str() ) );
return -1;
}
PCB_LAYER_ID FABMASTER::getLayer( const std::string& aLayerName )
{
const auto& kicad_layer = layers.find( aLayerName);
if( kicad_layer == layers.end() )
return UNDEFINED_LAYER;
else
return static_cast<PCB_LAYER_ID>( kicad_layer->second.layerid );
}
size_t FABMASTER::processPadStackLayers( size_t aRow )
{
size_t rownum = aRow + 2;
if( rownum >= rows.size() )
return -1;
const single_row& header = rows[aRow];
int pad_name_col = getColFromName( aRow, "PADNAME" );
int pad_num_col = getColFromName( aRow, "RECNUMBER" );
int pad_lay_col = getColFromName( aRow, "LAYER" );
int pad_fix_col = getColFromName( aRow, "FIXFLAG" );
int pad_via_col = getColFromName( aRow, "VIAFLAG" );
int pad_shape_col = getColFromName( aRow, "PADSHAPE1" );
int pad_width_col = getColFromName( aRow, "PADWIDTH" );
int pad_height_col = getColFromName( aRow, "PADHGHT" );
int pad_xoff_col = getColFromName( aRow, "PADXOFF" );
int pad_yoff_col = getColFromName( aRow, "PADYOFF" );
int pad_flash_col = getColFromName( aRow, "PADFLASH" );
int pad_shape_name_col = getColFromName( aRow, "PADSHAPENAME" );
for( ; rownum < rows.size() && rows[rownum].size() > 0 && rows[rownum][0] == "S"; ++rownum )
{
const single_row& row = rows[rownum];
if( row.size() != header.size() )
{
wxLogError( _( "Invalid row size in row %zu. Expecting %zu elements but found %zu." ),
rownum,
header.size(),
row.size() );
continue;
}
auto pad_name = row[pad_name_col];
auto pad_num = row[pad_num_col];
auto pad_layer = row[pad_lay_col];
auto pad_is_fixed = row[pad_fix_col];
auto pad_is_via = row[pad_via_col];
auto pad_shape = row[pad_shape_col];
auto pad_width = row[pad_width_col];
auto pad_height = row[pad_height_col];
auto pad_xoff = row[pad_xoff_col];
auto pad_yoff = row[pad_yoff_col];
auto pad_flash = row[pad_flash_col];
auto pad_shapename = row[pad_shape_name_col];
// This layer setting seems to be unused
if( pad_layer == "INTERNAL_PAD_DEF" || pad_layer == "internal_pad_def" )
continue;
// Skip the technical layers
if( pad_layer[0] == '~' )
break;
auto result = layers.emplace( pad_layer, FABMASTER_LAYER{} );
FABMASTER_LAYER& layer = result.first->second;
/// If the layer ids have not yet been assigned
if( layer.id == 0 )
{
layer.name = pad_layer;
layer.id = readInt( pad_num );
layer.conductive = true;
}
}
return 0;
}
/**
* A!PADNAME!RECNUMBER!LAYER!FIXFLAG!VIAFLAG!PADSHAPE1!PADWIDTH!PADHGHT!
* PADXOFF!PADYOFF!PADFLASH!PADSHAPENAME!TRELSHAPE1!TRELWIDTH!TRELHGHT!
* TRELXOFF!TRELYOFF!TRELFLASH!TRELSHAPENAME!APADSHAPE1!APADWIDTH!APADHGHT!
* APADXOFF!APADYOFF!APADFLASH!APADSHAPENAME!
*/
size_t FABMASTER::processPadStacks( size_t aRow )
{
size_t rownum = aRow + 2;
if( rownum >= rows.size() )
return -1;
const single_row& header = rows[aRow];
double scale_factor = processScaleFactor( aRow + 1 );
if( scale_factor <= 0.0 )
return -1;
int pad_name_col = getColFromName( aRow, "PADNAME" );
int pad_num_col = getColFromName( aRow, "RECNUMBER" );
int pad_lay_col = getColFromName( aRow, "LAYER" );
int pad_fix_col = getColFromName( aRow, "FIXFLAG" );
int pad_via_col = getColFromName( aRow, "VIAFLAG" );
int pad_shape_col = getColFromName( aRow, "PADSHAPE1" );
int pad_width_col = getColFromName( aRow, "PADWIDTH" );
int pad_height_col = getColFromName( aRow, "PADHGHT" );
int pad_xoff_col = getColFromName( aRow, "PADXOFF" );
int pad_yoff_col = getColFromName( aRow, "PADYOFF" );
int pad_flash_col = getColFromName( aRow, "PADFLASH" );
int pad_shape_name_col = getColFromName( aRow, "PADSHAPENAME" );
for( ; rownum < rows.size() && rows[rownum].size() > 0 && rows[rownum][0] == "S"; ++rownum )
{
const single_row& row = rows[rownum];
FM_PAD* pad;
if( row.size() != header.size() )
{
wxLogError( _( "Invalid row size in row %zu. Expecting %zu elements but found %zu." ),
rownum,
header.size(),
row.size() );
continue;
}
auto pad_name = row[pad_name_col];
auto pad_num = row[pad_num_col];
auto pad_layer = row[pad_lay_col];
auto pad_is_fixed = row[pad_fix_col];
auto pad_is_via = row[pad_via_col];
auto pad_shape = row[pad_shape_col];
auto pad_width = row[pad_width_col];
auto pad_height = row[pad_height_col];
auto pad_xoff = row[pad_xoff_col];
auto pad_yoff = row[pad_yoff_col];
auto pad_flash = row[pad_flash_col];
auto pad_shapename = row[pad_shape_name_col];
// This layer setting seems to be unused
if( pad_layer == "INTERNAL_PAD_DEF" || pad_layer == "internal_pad_def" )
continue;
int recnum = KiROUND( readDouble( pad_num ) );
auto new_pad = pads.find( pad_name );
if( new_pad != pads.end() )
pad = &new_pad->second;
else
{
pads[pad_name] = FM_PAD();
pad = &pads[pad_name];
pad->name = pad_name;
}
/// Handle the drill layer
if( pad_layer == "~DRILL" )
{
int drill_hit;
int drill_x;
int drill_y;
try
{
drill_hit = KiROUND( std::fabs( readDouble( pad_shape ) * scale_factor ) );
drill_x = KiROUND( std::fabs( readDouble( pad_width ) * scale_factor ) );
drill_y = KiROUND( std::fabs( readDouble( pad_height ) * scale_factor ) );
}
catch( ... )
{
wxLogError( _( "Expecting drill size value but found %s!%s!%s in row %zu." ),
pad_shape.c_str(),
pad_width.c_str(),
pad_height.c_str(),
rownum );
continue;
}
if( drill_hit == 0 )
{
pad->drill = false;
continue;
}
pad->drill = true;
/// This is to account for broken fabmaster outputs where circle drill hits don't actually get the
/// drill hit value.
if( drill_x == drill_y )
{
pad->drill_size_x = drill_hit;
pad->drill_size_y = drill_hit;
}
else
{
pad->drill_size_x = drill_x;
pad->drill_size_y = drill_y;
}
if( !pad_shapename.empty() && pad_shapename[0] == 'P' )
pad->plated = true;
continue;
}
if( pad_shape.empty() )
continue;
double w;
double h;
try
{
w = readDouble( pad_width ) * scale_factor;
h = readDouble( pad_height ) * scale_factor;
}
catch( ... )
{
wxLogError( _( "Expecting pad size values but found %s : %s in row %zu." ),
pad_width.c_str(),
pad_height.c_str(),
rownum );
continue;
}
if( w <= 0.0 )
continue;
auto layer = layers.find( pad_layer );
if( layer != layers.end() )
{
if( layer->second.layerid == F_Cu )
pad->top = true;
else if( layer->second.layerid == B_Cu )
pad->bottom = true;
}
if( w > std::numeric_limits<int>::max() || h > std::numeric_limits<int>::max() )
{
wxLogError( _( "Invalid pad size in row %zu." ), rownum );
continue;
}
if( pad_layer == "~TSM" || pad_layer == "~BSM" )
{
if( w > 0.0 && h > 0.0 )
{
pad->mask_width = KiROUND( w );
pad->mask_height = KiROUND( h );
}
continue;
}
if( pad_layer == "~TSP" || pad_layer == "~BSP" )
{
if( w > 0.0 && h > 0.0 )
{
pad->paste_width = KiROUND( w );
pad->paste_height = KiROUND( h );
}
continue;
}
/// All remaining technical layers are not handled
if( pad_layer[0] == '~' )
continue;
try
{
pad->x_offset = KiROUND( readDouble( pad_xoff ) * scale_factor );
pad->y_offset = -KiROUND( readDouble( pad_yoff ) * scale_factor );
}
catch( ... )
{
wxLogError( _( "Expecting pad offset values but found %s:%s in row %zu." ),
pad_xoff.c_str(),
pad_yoff.c_str(),
rownum );
continue;
}
if( w > 0.0 && h > 0.0 && recnum == 1 )
{
pad->width = KiROUND( w );
pad->height = KiROUND( h );
pad->via = ( std::toupper( pad_is_via[0] ) != 'V' );
if( pad_shape == "CIRCLE" )
{
pad->height = pad->width;
pad->shape = PAD_SHAPE::CIRCLE;
}
else if( pad_shape == "RECTANGLE" )
{
pad->shape = PAD_SHAPE::RECT;
}
else if( pad_shape == "ROUNDED_RECT" )
{
pad->shape = PAD_SHAPE::ROUNDRECT;
}
else if( pad_shape == "SQUARE" )
{
pad->shape = PAD_SHAPE::RECT;
pad->height = pad->width;
}
else if( pad_shape == "OBLONG" || pad_shape == "OBLONG_X" || pad_shape == "OBLONG_Y" )
pad->shape = PAD_SHAPE::OVAL;
else if( pad_shape == "OCTAGON" )
{
pad->shape = PAD_SHAPE::RECT;
pad->is_octogon = true;
}
else if( pad_shape == "SHAPE" )
{
pad->shape = PAD_SHAPE::CUSTOM;
pad->custom_name = pad_shapename;
}
else
{
wxLogError( _( "Unknown pad shape name '%s' on layer '%s' in row %zu." ),
pad_shape.c_str(),
pad_layer.c_str(),
rownum );
continue;
}
}
}
return rownum - aRow;
}
size_t FABMASTER::processSimpleLayers( size_t aRow )
{
size_t rownum = aRow + 2;
if( rownum >= rows.size() )
return -1;
auto header = rows[aRow];
double scale_factor = processScaleFactor( aRow + 1 );
if( scale_factor <= 0.0 )
return -1;
int layer_class_col = getColFromName( aRow, "CLASS" );
int layer_subclass_col = getColFromName( aRow, "SUBCLASS" );
if( layer_class_col < 0 || layer_subclass_col < 0 )
return -1;
for( ; rownum < rows.size() && rows[rownum].size() > 0 && rows[rownum][0] == "S"; ++rownum )
{
const single_row& row = rows[rownum];
if( row.size() != header.size() )
{
wxLogError( _( "Invalid row size in row %zu. Expecting %zu elements but found %zu." ),
rownum,
header.size(),
row.size() );
continue;
}
auto result = layers.emplace( row[layer_subclass_col], FABMASTER_LAYER{} );
FABMASTER_LAYER& layer = result.first->second;
layer.name = row[layer_subclass_col];
layer.positive = true;
layer.conductive = false;
if( row[layer_class_col] == "ANTI ETCH" )
{
layer.positive = false;
layer.conductive = true;
}
else if( row[layer_class_col] == "ETCH" )
{
layer.conductive = true;
}
}
return rownum - aRow;
}
bool FABMASTER::assignLayers()
{
bool has_l1 = false;
int max_layer = 0;
std::string max_layer_name;
std::vector<std::pair<std::string, int>> extra_layers
{
{ "ASSEMBLY_TOP", F_Fab },
{ "ASSEMBLY_BOTTOM", B_Fab },
{ "PLACE_BOUND_TOP", F_CrtYd },
{ "PLACE_BOUND_BOTTOM", B_CrtYd },
};
std::vector<FABMASTER_LAYER*> layer_order;
for( auto& el : layers )
{
FABMASTER_LAYER& layer = el.second;
layer.layerid = UNSELECTED_LAYER;
if( layer.conductive )
{
layer_order.push_back( &layer );
}
else if( layer.name.find( "SILK" ) != std::string::npos &&
layer.name.find( "AUTOSILK" ) == std::string::npos ) // Skip the autosilk layer
{
if( layer.name.find( "B" ) != std::string::npos )
layer.layerid = B_SilkS;
else
layer.layerid = F_SilkS;
}
else if( layer.name.find( "MASK" ) != std::string::npos ||
layer.name.find( "MSK" ) != std::string::npos )
{
if( layer.name.find( "B" ) != std::string::npos )
layer.layerid = B_Mask;
else
layer.layerid = F_Mask;
}
else if( layer.name.find( "PAST" ) != std::string::npos )
{
if( layer.name.find( "B" ) != std::string::npos )
layer.layerid = B_Paste;
else
layer.layerid = F_Paste;
}
else if( layer.name.find( "NCLEGEND" ) != std::string::npos )
layer.layerid = Dwgs_User;
else
layer.disable = true;
}
std::sort( layer_order.begin(), layer_order.end(), FABMASTER_LAYER::BY_ID() );
int layernum = 0;
for( auto layer : layer_order )
layer->layerid = layernum++;
/// Back copper has a special id number, so assign that to the last copper layer
/// in the stackup
layer_order.back()->layerid = B_Cu;
for( auto& new_pair : extra_layers )
{
FABMASTER_LAYER new_layer;
new_layer.name = new_pair.first;
new_layer.layerid = new_pair.second;
new_layer.conductive = false;
auto result = layers.emplace( new_pair.first, new_layer );
if( !result.second )
{
result.first->second.layerid = new_pair.second;
result.first->second.disable = false;
}
}
return true;
}
/**
* A!LAYER_SORT!LAYER_SUBCLASS!LAYER_ARTWORK!LAYER_USE!LAYER_CONDUCTOR!LAYER_DIELECTRIC_CONSTANT!
* LAYER_ELECTRICAL_CONDUCTIVITY!LAYER_MATERIAL!LAYER_SHIELD_LAYER!LAYER_THERMAL_CONDUCTIVITY!
* LAYER_THICKNESS!
*/
size_t FABMASTER::processLayers( size_t aRow )
{
size_t rownum = aRow + 2;
if( rownum >= rows.size() )
return -1;
auto header = rows[aRow];
double scale_factor = processScaleFactor( aRow + 1 );
if( scale_factor <= 0.0 )
return -1;
int layer_sort_col = getColFromName( aRow, "LAYERSORT" );
int layer_subclass_col = getColFromName( aRow, "LAYERSUBCLASS" );
int layer_art_col = getColFromName( aRow, "LAYERARTWORK" );
int layer_use_col = getColFromName( aRow, "LAYERUSE" );
int layer_cond_col = getColFromName( aRow, "LAYERCONDUCTOR" );
int layer_er_col = getColFromName( aRow, "LAYERDIELECTRICCONSTANT" );
int layer_rho_col = getColFromName( aRow, "LAYERELECTRICALCONDUCTIVITY" );
int layer_mat_col = getColFromName( aRow, "LAYERMATERIAL" );
if( layer_sort_col < 0 || layer_subclass_col < 0 || layer_art_col < 0 || layer_use_col < 0
|| layer_cond_col < 0 || layer_er_col < 0 || layer_rho_col < 0 || layer_mat_col < 0 )
return -1;
for( ; rownum < rows.size() && rows[rownum].size() > 0 && rows[rownum][0] == "S"; ++rownum )
{
const single_row& row = rows[rownum];
if( row.size() != header.size() )
{
wxLogError( _( "Invalid row size in row %zu. Expecting %zu elements but found %zu." ),
rownum,
header.size(),
row.size() );
continue;
}
auto layer_sort = row[layer_sort_col];
auto layer_subclass = row[layer_subclass_col];
auto layer_art = row[layer_art_col];
auto layer_use = row[layer_use_col];
auto layer_cond = row[layer_cond_col];
auto layer_er = row[layer_er_col];
auto layer_rho = row[layer_rho_col];
auto layer_mat = row[layer_mat_col];
if( layer_mat == "AIR" )
continue;
FABMASTER_LAYER layer;
if( layer_subclass.empty() )
{
if( layer_cond != "NO" )
layer.name = "In.Cu" + layer_sort;
else
layer.name = "Dielectric" + layer_sort;
}
layer.positive = ( layer_art != "NEGATIVE" );
layers.emplace( layer.name, layer );
}
return rownum - aRow;
}
/**
* A!SUBCLASS!PAD_SHAPE_NAME!GRAPHIC_DATA_NAME!GRAPHIC_DATA_NUMBER!RECORD_TAG!GRAPHIC_DATA_1!
* GRAPHIC_DATA_2!GRAPHIC_DATA_3!GRAPHIC_DATA_4!GRAPHIC_DATA_5!GRAPHIC_DATA_6!GRAPHIC_DATA_7!
* GRAPHIC_DATA_8!GRAPHIC_DATA_9!PAD_STACK_NAME!REFDES!PIN_NUMBER!
*/
size_t FABMASTER::processCustomPads( size_t aRow )
{
size_t rownum = aRow + 2;
if( rownum >= rows.size() )
return -1;
auto header = rows[aRow];
double scale_factor = processScaleFactor( aRow + 1 );
if( scale_factor <= 0.0 )
return -1;
int pad_subclass_col = getColFromName( aRow, "SUBCLASS" );
int pad_shape_name_col = getColFromName( aRow, "PADSHAPENAME" );
int pad_grdata_name_col = getColFromName( aRow, "GRAPHICDATANAME" );
int pad_grdata_num_col = getColFromName( aRow, "GRAPHICDATANUMBER" );
int pad_record_tag_col = getColFromName( aRow, "RECORDTAG" );
int pad_grdata1_col = getColFromName( aRow, "GRAPHICDATA1" );
int pad_grdata2_col = getColFromName( aRow, "GRAPHICDATA2" );
int pad_grdata3_col = getColFromName( aRow, "GRAPHICDATA3" );
int pad_grdata4_col = getColFromName( aRow, "GRAPHICDATA4" );
int pad_grdata5_col = getColFromName( aRow, "GRAPHICDATA5" );
int pad_grdata6_col = getColFromName( aRow, "GRAPHICDATA6" );
int pad_grdata7_col = getColFromName( aRow, "GRAPHICDATA7" );
int pad_grdata8_col = getColFromName( aRow, "GRAPHICDATA8" );
int pad_grdata9_col = getColFromName( aRow, "GRAPHICDATA9" );
int pad_stack_name_col = getColFromName( aRow, "PADSTACKNAME" );
int pad_refdes_col = getColFromName( aRow, "REFDES" );
int pad_pin_num_col = getColFromName( aRow, "PINNUMBER" );
if( pad_subclass_col < 0 || pad_shape_name_col < 0 || pad_grdata1_col < 0 || pad_grdata2_col < 0
|| pad_grdata3_col < 0 || pad_grdata4_col < 0 || pad_grdata5_col < 0
|| pad_grdata6_col < 0 || pad_grdata7_col < 0 || pad_grdata8_col < 0
|| pad_grdata9_col < 0 || pad_stack_name_col < 0 || pad_refdes_col < 0
|| pad_pin_num_col < 0 )
return -1;
for( ; rownum < rows.size() && rows[rownum].size() > 0 && rows[rownum][0] == "S"; ++rownum )
{
const single_row& row = rows[rownum];
if( row.size() != header.size() )
{
wxLogError( _( "Invalid row size in row %zu. Expecting %zu elements but found %zu." ),
rownum,
header.size(),
row.size() );
continue;
}
auto pad_layer = row[pad_subclass_col];
auto pad_shape_name = row[pad_shape_name_col];
auto pad_record_tag = row[pad_record_tag_col];
GRAPHIC_DATA gr_data;
gr_data.graphic_dataname = row[pad_grdata_name_col];
gr_data.graphic_datanum = row[pad_grdata_num_col];
gr_data.graphic_data1 = row[pad_grdata1_col];
gr_data.graphic_data2 = row[pad_grdata2_col];
gr_data.graphic_data3 = row[pad_grdata3_col];
gr_data.graphic_data4 = row[pad_grdata4_col];
gr_data.graphic_data5 = row[pad_grdata5_col];
gr_data.graphic_data6 = row[pad_grdata6_col];
gr_data.graphic_data7 = row[pad_grdata7_col];
gr_data.graphic_data8 = row[pad_grdata8_col];
gr_data.graphic_data9 = row[pad_grdata9_col];
auto pad_stack_name = row[pad_stack_name_col];
auto pad_refdes = row[pad_refdes_col];
auto pad_pin_num = row[pad_pin_num_col];
// N.B. We get the FIGSHAPE records as "FIG_SHAPE name". We only want "name"
// and we don't process other pad shape records
std::string prefix( "FIG_SHAPE " );
if( pad_shape_name.length() <= prefix.length()
|| !std::equal( prefix.begin(), prefix.end(), pad_shape_name.begin() ) )
{
continue;
}
// Custom pads are a series of records with the same record ID but incrementing
// Sequence numbers.
int id = -1;
int seq = -1;
if( std::sscanf( pad_record_tag.c_str(), "%d %d", &id, &seq ) != 2 )
{
wxLogError( _( "Invalid format for id string '%s' in custom pad row %zu." ),
pad_record_tag.c_str(),
rownum );
continue;
}
auto name = pad_shape_name.substr( prefix.length() );
name += "_" + pad_refdes + "_" + pad_pin_num;
auto ret = pad_shapes.emplace( name, FABMASTER_PAD_SHAPE{} );
auto& custom_pad = ret.first->second;
// If we were able to insert the pad name, then we need to initialize the
// record
if( ret.second )
{
custom_pad.name = name;
custom_pad.padstack = pad_stack_name;
custom_pad.pinnum = pad_pin_num;
custom_pad.refdes = pad_refdes;
}
// At this point we extract the individual graphical elements for processing the complex pad. The
// coordinates are in board origin format, so we'll need to fix the offset later when we assign them
// to the modules.
auto gr_item = std::unique_ptr<GRAPHIC_ITEM>( processGraphic( gr_data, scale_factor ) );
if( gr_item )
{
gr_item->layer = pad_layer;
gr_item->refdes = pad_refdes;
gr_item->seq = seq;
gr_item->subseq = 0;
/// emplace may fail here, in which case, it returns the correct position to use for the existing map
auto pad_it = custom_pad.elements.emplace( id, graphic_element{} );
auto retval = pad_it.first->second.insert( std::move(gr_item ) );
if( !retval.second )
{
wxLogError( _( "Could not insert graphical item %d into padstack '%s'." ),
seq,
pad_stack_name.c_str() );
}
}
else
{
wxLogError( _( "Unrecognized pad shape primitive '%s' in row %zu." ),
gr_data.graphic_dataname,
rownum );
}
}
return rownum - aRow;
}
FABMASTER::GRAPHIC_LINE* FABMASTER::processLine( const FABMASTER::GRAPHIC_DATA& aData, double aScale )
{
GRAPHIC_LINE* new_line = new GRAPHIC_LINE ;
new_line->shape = GR_SHAPE_LINE;
new_line->start_x = KiROUND( readDouble( aData.graphic_data1 ) * aScale );
new_line->start_y = -KiROUND( readDouble( aData.graphic_data2 ) * aScale );
new_line->end_x = KiROUND( readDouble( aData.graphic_data3 ) * aScale );
new_line->end_y = -KiROUND( readDouble( aData.graphic_data4 ) * aScale );
new_line->width = KiROUND( readDouble( aData.graphic_data5 ) * aScale );
return new_line;
}
FABMASTER::GRAPHIC_ARC* FABMASTER::processArc( const FABMASTER::GRAPHIC_DATA& aData, double aScale )
{
GRAPHIC_ARC* new_arc = new GRAPHIC_ARC ;
new_arc->shape = GR_SHAPE_ARC;
new_arc->start_x = KiROUND( readDouble( aData.graphic_data1 ) * aScale );
new_arc->start_y = -KiROUND( readDouble( aData.graphic_data2 ) * aScale );
new_arc->end_x = KiROUND( readDouble( aData.graphic_data3 ) * aScale );
new_arc->end_y = -KiROUND( readDouble( aData.graphic_data4 ) * aScale );
new_arc->center_x = KiROUND( readDouble( aData.graphic_data5 ) * aScale );
new_arc->center_y = -KiROUND( readDouble( aData.graphic_data6 ) * aScale );
new_arc->radius = KiROUND( readDouble( aData.graphic_data7 ) * aScale );
new_arc->width = KiROUND( readDouble( aData.graphic_data8 ) * aScale );
new_arc->clockwise = ( aData.graphic_data9 != "COUNTERCLOCKWISE" );
EDA_ANGLE startangle( VECTOR2I( new_arc->start_x, new_arc->start_y )
- VECTOR2I( new_arc->center_x, new_arc->center_y ) );
EDA_ANGLE endangle( VECTOR2I( new_arc->end_x, new_arc->end_y )
- VECTOR2I( new_arc->center_x, new_arc->center_y ) );
EDA_ANGLE angle;
startangle.Normalize();
endangle.Normalize();
VECTOR2I center( new_arc->center_x, new_arc->center_y );
VECTOR2I start( new_arc->start_x, new_arc->start_y );
VECTOR2I mid( new_arc->start_x, new_arc->start_y );
VECTOR2I end( new_arc->end_x, new_arc->end_y );
angle = endangle - startangle;
if( new_arc->clockwise && angle < ANGLE_0 )
angle += ANGLE_360;
if( !new_arc->clockwise && angle > ANGLE_0 )
angle -= ANGLE_360;
if( start == end )
angle = -ANGLE_360;
RotatePoint( mid, center, -angle / 2.0 );
if( start == end )
new_arc->shape = GR_SHAPE_CIRCLE;
new_arc->result = SHAPE_ARC( start, mid, end, 0 );
return new_arc;
}
FABMASTER::GRAPHIC_RECTANGLE* FABMASTER::processRectangle( const FABMASTER::GRAPHIC_DATA& aData, double aScale )
{
GRAPHIC_RECTANGLE* new_rect = new GRAPHIC_RECTANGLE;
new_rect->shape = GR_SHAPE_RECTANGLE;
new_rect->start_x = KiROUND( readDouble( aData.graphic_data1 ) * aScale );
new_rect->start_y = -KiROUND( readDouble( aData.graphic_data2 ) * aScale );
new_rect->end_x = KiROUND( readDouble( aData.graphic_data3 ) * aScale );
new_rect->end_y = -KiROUND( readDouble( aData.graphic_data4 ) * aScale );
new_rect->fill = aData.graphic_data5 == "1";
new_rect->width = 0;
return new_rect;
}
FABMASTER::GRAPHIC_TEXT* FABMASTER::processText( const FABMASTER::GRAPHIC_DATA& aData, double aScale )
{
GRAPHIC_TEXT* new_text = new GRAPHIC_TEXT;
new_text->shape = GR_SHAPE_TEXT;
new_text->start_x = KiROUND( readDouble( aData.graphic_data1 ) * aScale );
new_text->start_y = -KiROUND( readDouble( aData.graphic_data2 ) * aScale );
new_text->rotation = KiROUND( readDouble( aData.graphic_data3 ) );
new_text->mirror = ( aData.graphic_data4 == "YES" );
if( aData.graphic_data5 == "RIGHT" )
new_text->orient = GR_TEXT_H_ALIGN_RIGHT;
else if( aData.graphic_data5 == "CENTER" )
new_text->orient = GR_TEXT_H_ALIGN_CENTER;
else
new_text->orient = GR_TEXT_H_ALIGN_LEFT;
std::vector<std::string> toks = split( aData.graphic_data6, " \t" );
if( toks.size() < 8 )
{
// We log the error here but continue in the case of too few tokens
wxLogError( _( "Invalid token count. Expected 8 but found %zu." ), toks.size() );
new_text->height = 0;
new_text->width = 0;
new_text->ital = false;
new_text->thickness = 0;
}
else
{
// 0 = size
// 1 = font
new_text->height = KiROUND( readDouble( toks[2] ) * aScale );
new_text->width = KiROUND( readDouble( toks[3] ) * aScale );
new_text->ital = readDouble( toks[4] ) != 0.0;
// 5 = character spacing
// 6 = line spacing
new_text->thickness = KiROUND( readDouble( toks[7] ) * aScale );
}
new_text->text = aData.graphic_data7;
return new_text;
}
FABMASTER::GRAPHIC_ITEM* FABMASTER::processGraphic( const GRAPHIC_DATA& aData, double aScale )
{
GRAPHIC_ITEM* retval = nullptr;
if( aData.graphic_dataname == "LINE" )
retval = processLine( aData, aScale );
else if( aData.graphic_dataname == "ARC" )
retval = processArc( aData, aScale );
else if( aData.graphic_dataname == "RECTANGLE" )
retval = processRectangle( aData, aScale );
else if( aData.graphic_dataname == "TEXT" )
retval = processText( aData, aScale );
if( retval && !aData.graphic_data10.empty() )
{
if( aData.graphic_data10 == "CONNECT" )
retval->type = GR_TYPE_CONNECT;
else if( aData.graphic_data10 == "NOTCONNECT" )
retval->type = GR_TYPE_NOTCONNECT;
else if( aData.graphic_data10 == "SHAPE" )
retval->type = GR_TYPE_NOTCONNECT;
else if( aData.graphic_data10 == "VOID" )
retval->type = GR_TYPE_NOTCONNECT;
else if( aData.graphic_data10 == "POLYGON" )
retval->type = GR_TYPE_NOTCONNECT;
else
retval->type = GR_TYPE_NONE;
}
return retval;
}
/**
* A!GRAPHIC_DATA_NAME!GRAPHIC_DATA_NUMBER!RECORD_TAG!GRAPHIC_DATA_1!GRAPHIC_DATA_2!GRAPHIC_DATA_3!
* GRAPHIC_DATA_4!GRAPHIC_DATA_5!GRAPHIC_DATA_6!GRAPHIC_DATA_7!GRAPHIC_DATA_8!GRAPHIC_DATA_9!
* SUBCLASS!SYM_NAME!REFDES!
*/
size_t FABMASTER::processGeometry( size_t aRow )
{
size_t rownum = aRow + 2;
if( rownum >= rows.size() )
return -1;
const single_row& header = rows[aRow];
double scale_factor = processScaleFactor( aRow + 1 );
if( scale_factor <= 0.0 )
return -1;
int geo_name_col = getColFromName( aRow, "GRAPHICDATANAME" );
int geo_num_col = getColFromName( aRow, "GRAPHICDATANUMBER" );
int geo_tag_col = getColFromName( aRow, "RECORDTAG" );
int geo_grdata1_col = getColFromName( aRow, "GRAPHICDATA1" );
int geo_grdata2_col = getColFromName( aRow, "GRAPHICDATA2" );
int geo_grdata3_col = getColFromName( aRow, "GRAPHICDATA3" );
int geo_grdata4_col = getColFromName( aRow, "GRAPHICDATA4" );
int geo_grdata5_col = getColFromName( aRow, "GRAPHICDATA5" );
int geo_grdata6_col = getColFromName( aRow, "GRAPHICDATA6" );
int geo_grdata7_col = getColFromName( aRow, "GRAPHICDATA7" );
int geo_grdata8_col = getColFromName( aRow, "GRAPHICDATA8" );
int geo_grdata9_col = getColFromName( aRow, "GRAPHICDATA9" );
int geo_subclass_col = getColFromName( aRow, "SUBCLASS" );
int geo_sym_name_col = getColFromName( aRow, "SYMNAME" );
int geo_refdes_col = getColFromName( aRow, "REFDES" );
if( geo_name_col < 0 || geo_num_col < 0 || geo_grdata1_col < 0 || geo_grdata2_col < 0
|| geo_grdata3_col < 0 || geo_grdata4_col < 0 || geo_grdata5_col < 0
|| geo_grdata6_col < 0 || geo_grdata7_col < 0 || geo_grdata8_col < 0
|| geo_grdata9_col < 0 || geo_subclass_col < 0 || geo_sym_name_col < 0
|| geo_refdes_col < 0 )
return -1;
for( ; rownum < rows.size() && rows[rownum].size() > 0 && rows[rownum][0] == "S"; ++rownum )
{
const single_row& row = rows[rownum];
if( row.size() != header.size() )
{
wxLogError( _( "Invalid row size in row %zu. Expecting %zu elements but found %zu." ),
rownum,
header.size(),
row.size() );
continue;
}
auto geo_tag = row[geo_tag_col];
GRAPHIC_DATA gr_data;
gr_data.graphic_dataname = row[geo_name_col];
gr_data.graphic_datanum = row[geo_num_col];
gr_data.graphic_data1 = row[geo_grdata1_col];
gr_data.graphic_data2 = row[geo_grdata2_col];
gr_data.graphic_data3 = row[geo_grdata3_col];
gr_data.graphic_data4 = row[geo_grdata4_col];
gr_data.graphic_data5 = row[geo_grdata5_col];
gr_data.graphic_data6 = row[geo_grdata6_col];
gr_data.graphic_data7 = row[geo_grdata7_col];
gr_data.graphic_data8 = row[geo_grdata8_col];
gr_data.graphic_data9 = row[geo_grdata9_col];
auto geo_refdes = row[geo_refdes_col];
// Grouped graphics are a series of records with the same record ID but incrementing
// Sequence numbers.
int id = -1;
int seq = -1;
int subseq = 0;
if( std::sscanf( geo_tag.c_str(), "%d %d %d", &id, &seq, &subseq ) < 2 )
{
wxLogError( _( "Invalid format for record_tag string '%s' in row %zu." ),
geo_tag.c_str(),
rownum );
continue;
}
auto gr_item = std::unique_ptr<GRAPHIC_ITEM>( processGraphic( gr_data, scale_factor ) );
if( !gr_item )
{
wxLogDebug( wxT( "Unhandled graphic item '%s' in row %zu." ),
gr_data.graphic_dataname.c_str(),
geo_tag.c_str(),
rownum );
continue;
}
gr_item->layer = row[geo_subclass_col];
gr_item->seq = seq;
gr_item->subseq = subseq;
if( geo_refdes.empty() )
{
if( board_graphics.empty() || board_graphics.back().id != id )
{
GEOM_GRAPHIC new_gr;
new_gr.subclass = row[geo_subclass_col];
new_gr.refdes = row[geo_refdes_col];
new_gr.name = row[geo_sym_name_col];
new_gr.id = id;
new_gr.elements = std::make_unique<graphic_element>();
board_graphics.push_back( std::move( new_gr ) );
}
GEOM_GRAPHIC& graphic = board_graphics.back();
graphic.elements->emplace( std::move( gr_item ) );
}
else
{
auto sym_gr_it = comp_graphics.emplace( geo_refdes,
std::map<int, GEOM_GRAPHIC>{} );
auto map_it = sym_gr_it.first->second.emplace( id, GEOM_GRAPHIC{} );
auto& gr = map_it.first;
if( map_it.second )
{
gr->second.subclass = row[geo_subclass_col];
gr->second.refdes = row[geo_refdes_col];
gr->second.name = row[geo_sym_name_col];
gr->second.id = id;
gr->second.elements = std::make_unique<graphic_element>();
}
auto result = gr->second.elements->emplace( std::move( gr_item ) );
}
}
return rownum - aRow;
}
/**
* A!VIA_X!VIA_Y!PAD_STACK_NAME!NET_NAME!TEST_POINT!
*/
size_t FABMASTER::processVias( size_t aRow )
{
size_t rownum = aRow + 2;
if( rownum >= rows.size() )
return -1;
const single_row& header = rows[aRow];
double scale_factor = processScaleFactor( aRow + 1 );
if( scale_factor <= 0.0 )
return -1;
int viax_col = getColFromName( aRow, "VIAX" );
int viay_col = getColFromName( aRow, "VIAY" );
int padstack_name_col = getColFromName( aRow, "PADSTACKNAME" );
int net_name_col = getColFromName( aRow, "NETNAME" );
int test_point_col = getColFromName( aRow, "TESTPOINT" );
if( viax_col < 0 || viay_col < 0 || padstack_name_col < 0 || net_name_col < 0
|| test_point_col < 0 )
return -1;
for( ; rownum < rows.size() && rows[rownum].size() > 0 && rows[rownum][0] == "S"; ++rownum )
{
const single_row& row = rows[rownum];
if( row.size() != header.size() )
{
wxLogError( _( "Invalid row size in row %zu. Expecting %zu elements but found %zu." ),
rownum,
header.size(),
row.size() );
continue;
}
vias.emplace_back( std::make_unique<FM_VIA>() );
auto& via = vias.back();
via->x = KiROUND( readDouble( row[viax_col] ) * scale_factor );
via->y = -KiROUND( readDouble( row[viay_col] ) * scale_factor );
via->padstack = row[padstack_name_col];
via->net = row[net_name_col];
via->test_point = ( row[test_point_col] == "YES" );
}
return rownum - aRow;
}
/**
* A!CLASS!SUBCLASS!GRAPHIC_DATA_NAME!GRAPHIC_DATA_NUMBER!RECORD_TAG!GRAPHIC_DATA_1!GRAPHIC_DATA_2!
* GRAPHIC_DATA_3!GRAPHIC_DATA_4!GRAPHIC_DATA_5!GRAPHIC_DATA_6!GRAPHIC_DATA_7!GRAPHIC_DATA_8!
* GRAPHIC_DATA_9!NET_NAME!
*/
size_t FABMASTER::processTraces( size_t aRow )
{
size_t rownum = aRow + 2;
if( rownum >= rows.size() )
return -1;
const single_row& header = rows[aRow];
double scale_factor = processScaleFactor( aRow + 1 );
if( scale_factor <= 0.0 )
return -1;
int class_col = getColFromName( aRow, "CLASS" );
int layer_col = getColFromName( aRow, "SUBCLASS" );
int grdata_name_col = getColFromName( aRow, "GRAPHICDATANAME" );
int grdata_num_col = getColFromName( aRow, "GRAPHICDATANUMBER" );
int tag_col = getColFromName( aRow, "RECORDTAG" );
int grdata1_col = getColFromName( aRow, "GRAPHICDATA1" );
int grdata2_col = getColFromName( aRow, "GRAPHICDATA2" );
int grdata3_col = getColFromName( aRow, "GRAPHICDATA3" );
int grdata4_col = getColFromName( aRow, "GRAPHICDATA4" );
int grdata5_col = getColFromName( aRow, "GRAPHICDATA5" );
int grdata6_col = getColFromName( aRow, "GRAPHICDATA6" );
int grdata7_col = getColFromName( aRow, "GRAPHICDATA7" );
int grdata8_col = getColFromName( aRow, "GRAPHICDATA8" );
int grdata9_col = getColFromName( aRow, "GRAPHICDATA9" );
int netname_col = getColFromName( aRow, "NETNAME" );
if( class_col < 0 || layer_col < 0 || grdata_name_col < 0 || grdata_num_col < 0
|| tag_col < 0 || grdata1_col < 0 || grdata2_col < 0 || grdata3_col < 0
|| grdata4_col < 0 || grdata5_col < 0 || grdata6_col < 0 || grdata7_col < 0
|| grdata8_col < 0 || grdata9_col < 0 || netname_col < 0 )
return -1;
for( ; rownum < rows.size() && rows[rownum].size() > 0 && rows[rownum][0] == "S"; ++rownum )
{
const single_row& row = rows[rownum];
if( row.size() != header.size() )
{
wxLogError( _( "Invalid row size in row %zu. Expecting %zu elements but found %zu." ),
rownum,
header.size(),
row.size() );
continue;
}
GRAPHIC_DATA gr_data;
gr_data.graphic_dataname = row[grdata_name_col];
gr_data.graphic_datanum = row[grdata_num_col];
gr_data.graphic_data1 = row[grdata1_col];
gr_data.graphic_data2 = row[grdata2_col];
gr_data.graphic_data3 = row[grdata3_col];
gr_data.graphic_data4 = row[grdata4_col];
gr_data.graphic_data5 = row[grdata5_col];
gr_data.graphic_data6 = row[grdata6_col];
gr_data.graphic_data7 = row[grdata7_col];
gr_data.graphic_data8 = row[grdata8_col];
gr_data.graphic_data9 = row[grdata9_col];
const std::string& geo_tag = row[tag_col];
// Grouped graphics are a series of records with the same record ID but incrementing
// Sequence numbers.
int id = -1;
int seq = -1;
int subseq = 0;
if( std::sscanf( geo_tag.c_str(), "%d %d %d", &id, &seq, &subseq ) < 2 )
{
wxLogError( _( "Invalid format for record_tag string '%s' in row %zu." ),
geo_tag.c_str(),
rownum );
continue;
}
auto gr_item = std::unique_ptr<GRAPHIC_ITEM>( processGraphic( gr_data, scale_factor ) );
if( !gr_item )
{
wxLogDebug( _( "Unhandled graphic item '%s' in row %zu." ),
gr_data.graphic_dataname.c_str(),
rownum );
continue;
}
auto new_trace = std::make_unique<TRACE>();
new_trace->id = id;
new_trace->layer = row[layer_col];
new_trace->netname = row[netname_col];
new_trace->lclass = row[class_col];
gr_item->layer = row[layer_col];
gr_item->seq = seq;
gr_item->subseq = subseq;
// Collect the reference designator positions for the footprints later
if( new_trace->lclass == "REF DES" )
{
auto result = refdes.emplace( std::move( new_trace ) );
auto& ref = *result.first;
ref->segment.emplace( std::move( gr_item ) );
}
else if( gr_item->width == 0 )
{
auto result = zones.emplace( std::move( new_trace ) );
auto& zone = *result.first;
auto gr_result = zone->segment.emplace( std::move( gr_item ) );
if( !gr_result.second )
{
wxLogError( _( "Duplicate item for ID %d and sequence %d in row %zu." ),
id,
seq,
rownum );
}
}
else
{
auto result = traces.emplace( std::move( new_trace ) );
auto& trace = *result.first;
auto gr_result = trace->segment.emplace( std::move( gr_item ) );
if( !gr_result.second )
{
wxLogError( _( "Duplicate item for ID %d and sequence %d in row %zu." ),
id,
seq,
rownum );
}
}
}
return rownum - aRow;
}
FABMASTER::SYMTYPE FABMASTER::parseSymType( const std::string& aSymType )
{
if( aSymType == "PACKAGE" )
return SYMTYPE_PACKAGE;
else if( aSymType == "DRAFTING")
return SYMTYPE_DRAFTING;
else if( aSymType == "MECHANICAL" )
return SYMTYPE_MECH;
else if( aSymType == "FORMAT" )
return SYMTYPE_FORMAT;
return SYMTYPE_NONE;
}
FABMASTER::COMPCLASS FABMASTER::parseCompClass( const std::string& aCmpClass )
{
if( aCmpClass == "IO" )
return COMPCLASS_IO;
else if( aCmpClass == "IC" )
return COMPCLASS_IC;
else if( aCmpClass == "DISCRETE" )
return COMPCLASS_DISCRETE;
return COMPCLASS_NONE;
}
/**
* A!REFDES!COMP_CLASS!COMP_PART_NUMBER!COMP_HEIGHT!COMP_DEVICE_LABEL!COMP_INSERTION_CODE!SYM_TYPE!
* SYM_NAME!SYM_MIRROR!SYM_ROTATE!SYM_X!SYM_Y!COMP_VALUE!COMP_TOL!COMP_VOLTAGE!
*/
size_t FABMASTER::processFootprints( size_t aRow )
{
size_t rownum = aRow + 2;
if( rownum >= rows.size() )
return -1;
const single_row& header = rows[aRow];
double scale_factor = processScaleFactor( aRow + 1 );
if( scale_factor <= 0.0 )
return -1;
int refdes_col = getColFromName( aRow, "REFDES" );
int compclass_col = getColFromName( aRow, "COMPCLASS" );
int comppartnum_col = getColFromName( aRow, "COMPPARTNUMBER" );
int compheight_col = getColFromName( aRow, "COMPHEIGHT" );
int compdevlabelcol = getColFromName( aRow, "COMPDEVICELABEL" );
int compinscode_col = getColFromName( aRow, "COMPINSERTIONCODE" );
int symtype_col = getColFromName( aRow, "SYMTYPE" );
int symname_col = getColFromName( aRow, "SYMNAME" );
int symmirror_col = getColFromName( aRow, "SYMMIRROR" );
int symrotate_col = getColFromName( aRow, "SYMROTATE" );
int symx_col = getColFromName( aRow, "SYMX" );
int symy_col = getColFromName( aRow, "SYMY" );
int compvalue_col = getColFromName( aRow, "COMPVALUE" );
int comptol_col = getColFromName( aRow, "COMPTOL" );
int compvolt_col = getColFromName( aRow, "COMPVOLTAGE" );
if( refdes_col < 0 || compclass_col < 0 || comppartnum_col < 0 || compheight_col < 0
|| compdevlabelcol < 0 || compinscode_col < 0 || symtype_col < 0 || symname_col < 0
|| symmirror_col < 0 || symrotate_col < 0 || symx_col < 0 || symy_col < 0
|| compvalue_col < 0 || comptol_col < 0 || compvolt_col < 0 )
return -1;
for( ; rownum < rows.size() && rows[rownum].size() > 0 && rows[rownum][0] == "S"; ++rownum )
{
const single_row& row = rows[rownum];
if( row.size() != header.size() )
{
wxLogError( _( "Invalid row size in row %zu. Expecting %zu elements but found %zu." ),
rownum,
header.size(),
row.size() );
continue;
}
auto cmp = std::make_unique<COMPONENT>();
cmp->refdes = row[refdes_col];
cmp->cclass = parseCompClass( row[compclass_col] );
cmp->pn = row[comppartnum_col];
cmp->height = row[compheight_col];
cmp->dev_label = row[compdevlabelcol];
cmp->insert_code = row[compinscode_col];
cmp->type = parseSymType( row[symtype_col] );
cmp->name = row[symname_col];
cmp->mirror = ( row[symmirror_col] == "YES" );
cmp->rotate = readDouble( row[symrotate_col] );
cmp->x = KiROUND( readDouble( row[symx_col] ) * scale_factor );
cmp->y = -KiROUND( readDouble( row[symy_col] ) * scale_factor );
cmp->value = row[compvalue_col];
cmp->tol = row[comptol_col];
cmp->voltage = row[compvolt_col];
auto vec = components.find( cmp->refdes );
if( vec == components.end() )
{
auto retval = components.insert( std::make_pair( cmp->refdes, std::vector<std::unique_ptr<COMPONENT>>{} ) );
vec = retval.first;
}
vec->second.push_back( std::move( cmp ) );
}
return rownum - aRow;
}
/**
* A!SYM_NAME!SYM_MIRROR!PIN_NAME!PIN_NUMBER!PIN_X!PIN_Y!PAD_STACK_NAME!REFDES!PIN_ROTATION!TEST_POINT!
*/
size_t FABMASTER::processPins( size_t aRow )
{
size_t rownum = aRow + 2;
if( rownum >= rows.size() )
return -1;
const single_row& header = rows[aRow];
double scale_factor = processScaleFactor( aRow + 1 );
if( scale_factor <= 0.0 )
return -1;
int symname_col = getColFromName( aRow, "SYMNAME" );
int symmirror_col = getColFromName( aRow, "SYMMIRROR" );
int pinname_col = getColFromName( aRow, "PINNAME" );
int pinnum_col = getColFromName( aRow, "PINNUMBER" );
int pinx_col = getColFromName( aRow, "PINX" );
int piny_col = getColFromName( aRow, "PINY" );
int padstack_col = getColFromName( aRow, "PADSTACKNAME" );
int refdes_col = getColFromName( aRow, "REFDES" );
int pinrot_col = getColFromName( aRow, "PINROTATION" );
int testpoint_col = getColFromName( aRow, "TESTPOINT" );
if( symname_col < 0 ||symmirror_col < 0 || pinname_col < 0 || pinnum_col < 0 || pinx_col < 0
|| piny_col < 0 || padstack_col < 0 || refdes_col < 0 || pinrot_col < 0
|| testpoint_col < 0 )
return -1;
for( ; rownum < rows.size() && rows[rownum].size() > 0 && rows[rownum][0] == "S"; ++rownum )
{
const single_row& row = rows[rownum];
if( row.size() != header.size() )
{
wxLogError( _( "Invalid row size in row %zu. Expecting %zu elements but found %zu." ),
rownum,
header.size(),
row.size() );
continue;
}
auto pin = std::make_unique<PIN>();
pin->name = row[symname_col];
pin->mirror = ( row[symmirror_col] == "YES" );
pin->pin_name = row[pinname_col];
pin->pin_number = row[pinnum_col];
pin->pin_x = KiROUND( readDouble( row[pinx_col] ) * scale_factor );
pin->pin_y = -KiROUND( readDouble( row[piny_col] ) * scale_factor );
pin->padstack = row[padstack_col];
pin->refdes = row[refdes_col];
pin->rotation = readDouble( row[pinrot_col] );
auto map_it = pins.find( pin->refdes );
if( map_it == pins.end() )
{
auto retval = pins.insert( std::make_pair( pin->refdes, std::set<std::unique_ptr<PIN>, PIN::BY_NUM>{} ) );
map_it = retval.first;
}
map_it->second.insert( std::move( pin ) );
}
return rownum - aRow;
}
/**
* A!NET_NAME!REFDES!PIN_NUMBER!PIN_NAME!PIN_GROUND!PIN_POWER!
*/
size_t FABMASTER::processNets( size_t aRow )
{
size_t rownum = aRow + 2;
if( rownum >= rows.size() )
return -1;
const single_row& header = rows[aRow];
double scale_factor = processScaleFactor( aRow + 1 );
if( scale_factor <= 0.0 )
return -1;
int netname_col = getColFromName( aRow, "NETNAME" );
int refdes_col = getColFromName( aRow, "REFDES" );
int pinnum_col = getColFromName( aRow, "PINNUMBER" );
int pinname_col = getColFromName( aRow, "PINNAME" );
int pingnd_col = getColFromName( aRow, "PINGROUND" );
int pinpwr_col = getColFromName( aRow, "PINPOWER" );
if( netname_col < 0 || refdes_col < 0 || pinnum_col < 0 || pinname_col < 0 || pingnd_col < 0
|| pinpwr_col < 0 )
return -1;
for( ; rownum < rows.size() && rows[rownum].size() > 0 && rows[rownum][0] == "S"; ++rownum )
{
const single_row& row = rows[rownum];
if( row.size() != header.size() )
{
wxLogError( _( "Invalid row size in row %zu. Expecting %zu elements but found %zu." ),
rownum,
header.size(),
row.size() );
continue;
}
NETNAME new_net;
new_net.name = row[netname_col];
new_net.refdes = row[refdes_col];
new_net.pin_num = row[pinnum_col];
new_net.pin_name = row[pinname_col];
new_net.pin_gnd = ( row[pingnd_col] == "YES" );
new_net.pin_pwr = ( row[pinpwr_col] == "YES" );
pin_nets.emplace( std::make_pair( new_net.refdes, new_net.pin_num ), new_net );
netnames.insert( row[netname_col] );
}
return rownum - aRow;
}
bool FABMASTER::Process()
{
for( size_t i = 0; i < rows.size(); )
{
auto type = detectType( i );
switch( type )
{
case EXTRACT_PADSTACKS:
{
/// We extract the basic layers from the padstacks first as this is the only place
/// the stackup is kept in the basic fabmaster export
processPadStackLayers( i );
assignLayers();
int retval = processPadStacks( i );
i += std::max( retval, 1 );
break;
}
case EXTRACT_FULL_LAYERS:
{
int retval = processLayers( i );
i += std::max( retval, 1 );
break;
}
case EXTRACT_BASIC_LAYERS:
{
int retval = processSimpleLayers( i );
i += std::max( retval, 1 );
break;
}
case EXTRACT_VIAS:
{
int retval = processVias( i );
i += std::max( retval, 1 );
break;
}
case EXTRACT_TRACES:
{
int retval = processTraces( i );
i += std::max( retval, 1 );
break;
}
case EXTRACT_REFDES:
{
int retval = processFootprints( i );
i += std::max( retval, 1 );
break;
}
case EXTRACT_NETS:
{
int retval = processNets( i );
i += std::max( retval, 1 );
break;
}
case EXTRACT_GRAPHICS:
{
int retval = processGeometry( i );
i += std::max( retval, 1 );
break;
}
case EXTRACT_PINS:
{
int retval = processPins( i );
i += std::max( retval, 1 );
break;
}
case EXTRACT_PAD_SHAPES:
{
int retval = processCustomPads( i );
i += std::max( retval, 1 );
break;
}
default:
++i;
break;
}
}
return true;
}
bool FABMASTER::loadZones( BOARD* aBoard )
{
for( auto& zone : zones )
{
checkpoint();
if( IsCopperLayer( getLayer( zone->layer ) ) || zone->layer == "ALL" )
{
loadZone( aBoard, zone );
}
else
{
if( zone->layer == "OUTLINE" || zone->layer == "DESIGN_OUTLINE" )
{
loadOutline( aBoard, zone );
}
else
{
loadPolygon( aBoard, zone );
}
}
}
/**
* Zones in FABMASTER come in two varieties:
* - Outlines with no net code attached
* - Filled areas with net code attached
*
* In pcbnew, we want the outline with net code attached. To determine which
* outline should have which netcode, we look for overlapping areas. Each unnetted zone
* outline will be assigned the netcode that with the most hits on the edge of their
* outline.
*/
std::set<ZONE*> zones_to_delete;
for( auto zone : aBoard->Zones() )
{
/// Remove the filled areas in favor of the outlines
if( zone->GetNetCode() > 0 )
{
zones_to_delete.insert( zone );
}
}
for( auto zone1 : aBoard->Zones() )
{
/// Zone1 will be the destination zone for the new net
if( zone1->GetNetCode() > 0 )
continue;
SHAPE_LINE_CHAIN& outline1 = zone1->Outline()->Outline( 0 );
std::vector<size_t> overlaps( aBoard->GetNetInfo().GetNetCount() + 1, 0 );
std::vector<std::vector<ZONE*>> possible_deletions( overlaps.size() );
for( auto zone2 : aBoard->Zones() )
{
if( zone2->GetNetCode() <= 0 )
continue;
SHAPE_LINE_CHAIN& outline2 = zone2->Outline()->Outline( 0 );
if( zone1->GetLayer() != zone2->GetLayer() )
continue;
if( !outline1.BBox().Intersects( outline2.BBox() ) )
continue;
for( auto& pt1 : outline1.CPoints() )
{
/// We're looking for the netcode with the most overlaps to the un-netted zone
if( outline2.PointOnEdge( pt1, 1 ) )
overlaps[ zone2->GetNetCode() ]++;
}
for( auto& pt2 : outline2.CPoints() )
{
/// The overlap between outline1 and outline2 isn't perfect, so look for overlaps
/// in both directions
if( outline1.PointOnEdge( pt2, 1 ) )
overlaps[ zone2->GetNetCode() ]++;
}
}
size_t max_net = 0;
size_t max_net_id = 0;
for( size_t el = 1; el < overlaps.size(); ++el )
{
if( overlaps[el] > max_net )
{
max_net = overlaps[el];
max_net_id = el;
}
}
if( max_net > 0 )
zone1->SetNetCode( max_net_id );
}
for( auto zone : zones_to_delete )
{
aBoard->Remove( zone );
delete zone;
}
return true;
}
bool FABMASTER::loadFootprints( BOARD* aBoard )
{
const NETNAMES_MAP& netinfo = aBoard->GetNetInfo().NetsByName();
const auto& ds = aBoard->GetDesignSettings();
for( auto& mod : components )
{
checkpoint();
bool has_multiple = mod.second.size() > 1;
for( int i = 0; i < mod.second.size(); ++i )
{
auto& src = mod.second[i];
FOOTPRINT* fp = new FOOTPRINT( aBoard );
wxString mod_ref = src->name;
wxString lib_ref = m_filename.GetName();
if( has_multiple )
mod_ref.Append( wxString::Format( wxT( "_%d" ), i ) );
ReplaceIllegalFileNameChars( lib_ref, '_' );
ReplaceIllegalFileNameChars( mod_ref, '_' );
wxString key = !lib_ref.empty() ? lib_ref + wxT( ":" ) + mod_ref : mod_ref;
LIB_ID fpID;
fpID.Parse( key, true );
fp->SetFPID( fpID );
fp->SetPosition( wxPoint( src->x, src->y ) );
fp->SetOrientationDegrees( -src->rotate );
// KiCad netlisting requires parts to have non-digit + digit annotation.
// If the reference begins with a number, we prepend 'UNK' (unknown) for the source designator
wxString reference = src->refdes;
if( !std::isalpha( src->refdes[0] ) )
reference.Prepend( "UNK" );
fp->SetReference( reference );
fp->SetValue( src->value );
fp->Value().SetLayer( F_Fab );
fp->Value().SetVisible( false );
for( auto& ref : refdes )
{
const GRAPHIC_TEXT *lsrc =
static_cast<const GRAPHIC_TEXT*>( ( *( ref->segment.begin() ) ).get() );
if( lsrc->text == src->refdes )
{
FP_TEXT* txt = nullptr;
PCB_LAYER_ID layer = getLayer( ref->layer );
if( !IsPcbLayer( layer ) )
{
printf("The layer %s is not mapped?\n", ref->layer.c_str() );
continue;
}
if( layer == F_SilkS || layer == B_SilkS )
txt = &( fp->Reference() );
else
txt = new FP_TEXT( fp );
if( src->mirror )
{
txt->SetLayer( FlipLayer( layer ) );
txt->SetTextPos( wxPoint( lsrc->start_x, 2 * src->y - ( lsrc->start_y - lsrc->height / 2 ) ) );
}
else
{
txt->SetLayer( layer );
txt->SetTextPos( wxPoint( lsrc->start_x, lsrc->start_y - lsrc->height / 2 ) );
}
txt->SetText( lsrc->text );
txt->SetItalic( lsrc->ital );
txt->SetTextThickness( lsrc->thickness );
txt->SetTextHeight( lsrc->height );
txt->SetTextWidth( lsrc->width );
txt->SetHorizJustify( lsrc->orient );
txt->SetLocalCoord();
if( txt != &fp->Reference() )
fp->Add( txt, ADD_MODE::APPEND );
}
}
/// Always set the module to the top and flip later if needed
/// When flipping later, we get the full coordinate transform for free
fp->SetLayer( F_Cu );
auto gr_it = comp_graphics.find( src->refdes );
if( gr_it == comp_graphics.end() )
{
continue;
//TODO: Error
}
for( auto& gr_ref : gr_it->second )
{
auto& graphic = gr_ref.second;
for( auto& seg : *graphic.elements )
{
PCB_LAYER_ID layer = Dwgs_User;
if( IsPcbLayer( getLayer( seg->layer ) ) )
layer = getLayer( seg->layer );
STROKE_PARAMS defaultStroke( ds.GetLineThickness( layer ) );
switch( seg->shape )
{
case GR_SHAPE_LINE:
{
const GRAPHIC_LINE* lsrc = static_cast<const GRAPHIC_LINE*>( seg.get() );
FP_SHAPE* line = new FP_SHAPE( fp, SHAPE_T::SEGMENT );
if( src->mirror )
{
line->SetLayer( FlipLayer( layer ) );
line->SetStart( wxPoint( lsrc->start_x, 2 * src->y - lsrc->start_y ) );
line->SetEnd( wxPoint( lsrc->end_x, 2 * src->y - lsrc->end_y ) );
}
else
{
line->SetLayer( layer );
line->SetStart( wxPoint( lsrc->start_x, lsrc->start_y ) );
line->SetEnd( wxPoint( lsrc->end_x, lsrc->end_y ) );
}
line->SetStroke( STROKE_PARAMS( lsrc->width, PLOT_DASH_TYPE::SOLID ) );
line->SetLocalCoord();
if( lsrc->width == 0 )
line->SetStroke( defaultStroke );
fp->Add( line, ADD_MODE::APPEND );
break;
}
case GR_SHAPE_CIRCLE:
{
const GRAPHIC_ARC* lsrc = static_cast<const GRAPHIC_ARC*>( seg.get() );
FP_SHAPE* circle = new FP_SHAPE( fp, SHAPE_T::CIRCLE );
circle->SetLayer( layer );
circle->SetCenter( wxPoint( lsrc->center_x, lsrc->center_y ) );
circle->SetEnd( wxPoint( lsrc->end_x, lsrc->end_y ) );
circle->SetWidth( lsrc->width );
circle->SetLocalCoord();
if( lsrc->width == 0 )
circle->SetWidth( ds.GetLineThickness( circle->GetLayer() ) );
if( src->mirror )
circle->Flip( circle->GetCenter(), false );
fp->Add( circle, ADD_MODE::APPEND );
break;
}
case GR_SHAPE_ARC:
{
const GRAPHIC_ARC* lsrc = static_cast<const GRAPHIC_ARC*>( seg.get() );
FP_SHAPE* arc = new FP_SHAPE( fp, SHAPE_T::ARC );
arc->SetLayer( layer );
arc->SetArcGeometry( lsrc->result.GetP0(),
lsrc->result.GetArcMid(),
lsrc->result.GetP1() );
arc->SetStroke( STROKE_PARAMS( lsrc->width, PLOT_DASH_TYPE::SOLID ) );
arc->SetLocalCoord();
if( lsrc->width == 0 )
arc->SetStroke( defaultStroke );
if( src->mirror )
arc->Flip( arc->GetCenter(), false );
fp->Add( arc, ADD_MODE::APPEND );
break;
}
case GR_SHAPE_RECTANGLE:
{
const GRAPHIC_RECTANGLE *lsrc =
static_cast<const GRAPHIC_RECTANGLE*>( seg.get() );
FP_SHAPE* rect = new FP_SHAPE( fp, SHAPE_T::RECT );
if( src->mirror )
{
rect->SetLayer( FlipLayer( layer ) );
rect->SetStart( wxPoint( lsrc->start_x, 2 * src->y - lsrc->start_y ) );
rect->SetEnd( wxPoint( lsrc->end_x, 2 * src->y - lsrc->end_y ) );
}
else
{
rect->SetLayer( layer );
rect->SetStart( wxPoint( lsrc->start_x, lsrc->start_y ) );
rect->SetEnd( wxPoint( lsrc->end_x, lsrc->end_y ) );
}
rect->SetStroke( defaultStroke );
rect->SetLocalCoord();
fp->Add( rect, ADD_MODE::APPEND );
break;
}
case GR_SHAPE_TEXT:
{
const GRAPHIC_TEXT *lsrc =
static_cast<const GRAPHIC_TEXT*>( seg.get() );
FP_TEXT* txt = new FP_TEXT( fp );
if( src->mirror )
{
txt->SetLayer( FlipLayer( layer ) );
txt->SetTextPos( wxPoint( lsrc->start_x, 2 * src->y - ( lsrc->start_y - lsrc->height / 2 ) ) );
}
else
{
txt->SetLayer( layer );
txt->SetTextPos( wxPoint( lsrc->start_x, lsrc->start_y - lsrc->height / 2 ) );
}
txt->SetText( lsrc->text );
txt->SetItalic( lsrc->ital );
txt->SetTextThickness( lsrc->thickness );
txt->SetTextHeight( lsrc->height );
txt->SetTextWidth( lsrc->width );
txt->SetHorizJustify( lsrc->orient );
txt->SetLocalCoord();
// FABMASTER doesn't have visibility flags but layers that are not silk should be hidden
// by default to prevent clutter.
if( txt->GetLayer() != F_SilkS && txt->GetLayer() != B_SilkS )
txt->SetVisible( false );
fp->Add( txt, ADD_MODE::APPEND );
break;
}
default:
continue;
}
}
}
auto pin_it = pins.find( src->refdes );
if( pin_it != pins.end() )
{
for( auto& pin : pin_it->second )
{
auto pin_net_it = pin_nets.find( std::make_pair( pin->refdes, pin->pin_number ) );
auto padstack = pads.find( pin->padstack );
std::string netname = "";
if( pin_net_it != pin_nets.end() )
netname = pin_net_it->second.name;
auto net_it = netinfo.find( netname );
PAD* newpad = new PAD( fp );
if( net_it != netinfo.end() )
newpad->SetNet( net_it->second );
else
newpad->SetNetCode( 0 );
newpad->SetX( pin->pin_x );
if( src->mirror )
newpad->SetY( 2 * src->y - pin->pin_y );
else
newpad->SetY( pin->pin_y );
newpad->SetNumber( pin->pin_number );
if( padstack == pads.end() )
{
///TODO:Warning
delete newpad;
continue;
}
else
{
auto& pad = padstack->second;
newpad->SetShape( pad.shape );
if( pad.shape == PAD_SHAPE::CUSTOM )
{
// Choose the smaller dimension to ensure the base pad
// is fully hidden by the custom pad
int pad_size = std::min( pad.width, pad.height );
newpad->SetSize( wxSize( pad_size / 2, pad_size / 2 ) );
std::string custom_name = pad.custom_name + "_" + pin->refdes + "_" + pin->pin_number;
auto custom_it = pad_shapes.find( custom_name );
if( custom_it != pad_shapes.end() )
{
SHAPE_POLY_SET poly_outline;
int last_subseq = 0;
int hole_idx = -1;
poly_outline.NewOutline();
// Custom pad shapes have a group of elements
// that are a list of graphical polygons
for( const auto& el : (*custom_it).second.elements )
{
// For now, we are only processing the custom pad for the top layer
// TODO: Use full padstacks when implementing in KiCad
PCB_LAYER_ID primary_layer = src->mirror ? B_Cu : F_Cu;
if( getLayer( ( *( el.second.begin() ) )->layer ) != primary_layer )
continue;
for( const auto& seg : el.second )
{
if( seg->subseq > 0 || seg->subseq != last_subseq )
{
poly_outline.Polygon(0).back().SetClosed( true );
hole_idx = poly_outline.AddHole( SHAPE_LINE_CHAIN{} );
}
if( seg->shape == GR_SHAPE_LINE )
{
const GRAPHIC_LINE* src = static_cast<const GRAPHIC_LINE*>( seg.get() );
if( poly_outline.VertexCount( 0, hole_idx ) == 0 )
poly_outline.Append( src->start_x, src->start_y, 0, hole_idx );
poly_outline.Append( src->end_x, src->end_y, 0, hole_idx );
}
else if( seg->shape == GR_SHAPE_ARC )
{
const GRAPHIC_ARC* src = static_cast<const GRAPHIC_ARC*>( seg.get() );
SHAPE_LINE_CHAIN& chain = poly_outline.Hole( 0, hole_idx );
chain.Append( src->result );
}
}
}
if( poly_outline.OutlineCount() < 1
|| poly_outline.Outline( 0 ).PointCount() < 3 )
{
wxLogError( _( "Invalid custom pad '%s'. Replacing with "
"circular pad." ),
custom_name.c_str() );
newpad->SetShape( PAD_SHAPE::CIRCLE );
}
else
{
poly_outline.Fracture( SHAPE_POLY_SET::POLYGON_MODE::PM_FAST );
poly_outline.Move( -newpad->GetPosition() );
if( src->mirror )
{
poly_outline.Mirror( false, true, VECTOR2I( 0, ( pin->pin_y - src->y ) ) );
poly_outline.Rotate( EDA_ANGLE( src->rotate - pin->rotation, DEGREES_T ) );
}
else
{
poly_outline.Rotate( EDA_ANGLE( -src->rotate + pin->rotation, DEGREES_T ) );
}
newpad->AddPrimitivePoly( poly_outline, 0, true );
}
SHAPE_POLY_SET mergedPolygon;
newpad->MergePrimitivesAsPolygon( &mergedPolygon );
if( mergedPolygon.OutlineCount() > 1 )
{
wxLogError( _( "Invalid custom pad '%s'. Replacing with "
"circular pad." ),
custom_name.c_str() );
newpad->SetShape( PAD_SHAPE::CIRCLE );
}
}
else
{
wxLogError( _( "Could not find custom pad '%s'." ),
custom_name.c_str() );
}
}
else
newpad->SetSize( wxSize( pad.width, pad.height ) );
if( pad.drill )
{
if( pad.plated )
{
newpad->SetAttribute( PAD_ATTRIB::PTH );
newpad->SetLayerSet( PAD::PTHMask() );
}
else
{
newpad->SetAttribute( PAD_ATTRIB::NPTH );
newpad->SetLayerSet( PAD::UnplatedHoleMask() );
}
if( pad.drill_size_x == pad.drill_size_y )
newpad->SetDrillShape( PAD_DRILL_SHAPE_CIRCLE );
else
newpad->SetDrillShape( PAD_DRILL_SHAPE_OBLONG );
newpad->SetDrillSize( wxSize( pad.drill_size_x, pad.drill_size_y ) );
}
else
{
newpad->SetAttribute( PAD_ATTRIB::SMD );
if( pad.top )
newpad->SetLayerSet( PAD::SMDMask() );
else if( pad.bottom )
newpad->SetLayerSet( FlipLayerMask( PAD::SMDMask() ) );
}
}
newpad->SetLocalCoord();
if( src->mirror )
newpad->SetOrientation( EDA_ANGLE( -src->rotate + pin->rotation, DEGREES_T ) );
else
newpad->SetOrientation( EDA_ANGLE( src->rotate - pin->rotation, DEGREES_T ) );
fp->Add( newpad, ADD_MODE::APPEND );
}
}
if( src->mirror )
{
fp->SetOrientationDegrees( 180.0 - src->rotate );
fp->Flip( fp->GetPosition(), true );
}
aBoard->Add( fp, ADD_MODE::APPEND );
}
}
return true;
}
bool FABMASTER::loadLayers( BOARD* aBoard )
{
LSET layer_set;
/// The basic layers that get enabled for normal boards
layer_set |= LSET::AllTechMask() | LSET::UserMask();
for( auto& layer : layers )
{
checkpoint();
if( layer.second.layerid >= PCBNEW_LAYER_ID_START )
layer_set.set( layer.second.layerid );
}
aBoard->SetEnabledLayers( layer_set );
for( auto& layer : layers )
{
if( layer.second.conductive )
{
aBoard->SetLayerName( static_cast<PCB_LAYER_ID>( layer.second.layerid ),
layer.second.name );
}
}
return true;
}
bool FABMASTER::loadVias( BOARD* aBoard )
{
const NETNAMES_MAP& netinfo = aBoard->GetNetInfo().NetsByName();
const auto& ds = aBoard->GetDesignSettings();
for( auto& via : vias )
{
checkpoint();
auto net_it = netinfo.find( via->net );
auto padstack = pads.find( via->padstack );
PCB_VIA* new_via = new PCB_VIA( aBoard );
new_via->SetPosition( wxPoint( via->x, via->y ) );
if( net_it != netinfo.end() )
new_via->SetNet( net_it->second );
if( padstack == pads.end() )
{
new_via->SetDrillDefault();
if( !ds.m_ViasDimensionsList.empty() )
{
new_via->SetWidth( ds.m_ViasDimensionsList[0].m_Diameter );
new_via->SetDrill( ds.m_ViasDimensionsList[0].m_Drill );
}
else
{
new_via->SetDrillDefault();
new_via->SetWidth( ds.m_ViasMinSize );
}
}
else
{
new_via->SetDrill( padstack->second.drill_size_x );
new_via->SetWidth( padstack->second.width );
}
aBoard->Add( new_via, ADD_MODE::APPEND );
}
return true;
}
bool FABMASTER::loadNets( BOARD* aBoard )
{
for( auto& net : netnames )
{
checkpoint();
NETINFO_ITEM *newnet = new NETINFO_ITEM( aBoard, net );
aBoard->Add( newnet, ADD_MODE::APPEND );
}
return true;
}
bool FABMASTER::loadEtch( BOARD* aBoard, const std::unique_ptr<FABMASTER::TRACE>& aLine)
{
const NETNAMES_MAP& netinfo = aBoard->GetNetInfo().NetsByName();
auto net_it = netinfo.find( aLine->netname );
int last_subseq = 0;
ZONE* new_zone = nullptr;
for( const auto& seg : aLine->segment )
{
PCB_LAYER_ID layer = getLayer( seg->layer );
if( IsCopperLayer( layer ) )
{
if( seg->shape == GR_SHAPE_LINE )
{
const GRAPHIC_LINE* src = static_cast<const GRAPHIC_LINE*>( seg.get() );
PCB_TRACK* trk = new PCB_TRACK( aBoard );
trk->SetLayer( layer );
trk->SetStart( wxPoint( src->start_x, src->start_y ) );
trk->SetEnd( wxPoint( src->end_x, src->end_y ) );
trk->SetWidth( src->width );
if( net_it != netinfo.end() )
trk->SetNet( net_it->second );
aBoard->Add( trk, ADD_MODE::APPEND );
}
else if( seg->shape == GR_SHAPE_ARC )
{
const GRAPHIC_ARC* src = static_cast<const GRAPHIC_ARC*>( seg.get() );
PCB_ARC* trk = new PCB_ARC( aBoard, &src->result );
trk->SetLayer( layer );
trk->SetWidth( src->width );
if( net_it != netinfo.end() )
trk->SetNet( net_it->second );
aBoard->Add( trk, ADD_MODE::APPEND );
}
}
else
{
wxLogError( _( "Expecting etch data to be on copper layer. Row found on layer '%s'" ),
seg->layer.c_str() );
}
}
return true;
}
SHAPE_POLY_SET FABMASTER::loadShapePolySet( const graphic_element& aElement )
{
SHAPE_POLY_SET poly_outline;
int last_subseq = 0;
int hole_idx = -1;
poly_outline.NewOutline();
for( const auto& seg : aElement )
{
if( seg->subseq > 0 || seg->subseq != last_subseq )
hole_idx = poly_outline.AddHole( SHAPE_LINE_CHAIN{} );
if( seg->shape == GR_SHAPE_LINE )
{
const GRAPHIC_LINE* src = static_cast<const GRAPHIC_LINE*>( seg.get() );
if( poly_outline.VertexCount( 0, hole_idx ) == 0 )
poly_outline.Append( src->start_x, src->start_y, 0, hole_idx );
poly_outline.Append( src->end_x, src->end_y, 0, hole_idx );
}
else if( seg->shape == GR_SHAPE_ARC )
{
const GRAPHIC_ARC* src = static_cast<const GRAPHIC_ARC*>( seg.get() );
SHAPE_LINE_CHAIN& chain = poly_outline.Hole( 0, hole_idx );
chain.Append( src->result );
}
}
poly_outline.Fracture( SHAPE_POLY_SET::POLYGON_MODE::PM_FAST );
return poly_outline;
}
bool FABMASTER::loadPolygon( BOARD* aBoard, const std::unique_ptr<FABMASTER::TRACE>& aLine)
{
if( aLine->segment.size() < 3 )
return false;
PCB_LAYER_ID layer = Cmts_User;
auto new_layer = getLayer( aLine->layer );
if( IsPcbLayer( new_layer ) )
layer = new_layer;
SHAPE_POLY_SET poly_outline = loadShapePolySet( aLine->segment );
if( poly_outline.OutlineCount() < 1 || poly_outline.COutline( 0 ).PointCount() < 3 )
return false;
STROKE_PARAMS defaultStroke( aBoard->GetDesignSettings().GetLineThickness( layer ) );
PCB_SHAPE* new_poly = new PCB_SHAPE( aBoard );
new_poly->SetShape( SHAPE_T::POLY );
new_poly->SetLayer( layer );
// Polygons on the silk layer are filled but other layers are not/fill doesn't make sense
if( layer == F_SilkS || layer == B_SilkS )
{
new_poly->SetFilled( true );
new_poly->SetStroke( STROKE_PARAMS( 0 ) );
}
else
{
new_poly->SetStroke( STROKE_PARAMS( ( *( aLine->segment.begin() ) )->width,
PLOT_DASH_TYPE::SOLID ) );
if( new_poly->GetWidth() == 0 )
new_poly->SetStroke( defaultStroke );
}
new_poly->SetPolyShape( poly_outline );
aBoard->Add( new_poly, ADD_MODE::APPEND );
return true;
}
bool FABMASTER::loadZone( BOARD* aBoard, const std::unique_ptr<FABMASTER::TRACE>& aLine)
{
if( aLine->segment.size() < 3 )
return false;
int last_subseq = 0;
int hole_idx = -1;
SHAPE_POLY_SET* zone_outline = nullptr;
ZONE* zone = nullptr;
const NETNAMES_MAP& netinfo = aBoard->GetNetInfo().NetsByName();
auto net_it = netinfo.find( aLine->netname );
PCB_LAYER_ID layer = Cmts_User;
auto new_layer = getLayer( aLine->layer );
if( IsPcbLayer( new_layer ) )
layer = new_layer;
zone = new ZONE( aBoard );
zone_outline = new SHAPE_POLY_SET;
if( net_it != netinfo.end() )
zone->SetNet( net_it->second );
if( aLine->layer == "ALL" )
zone->SetLayerSet( aBoard->GetLayerSet() & LSET::AllCuMask() );
else
zone->SetLayer( layer );
zone->SetIsRuleArea( false );
zone->SetDoNotAllowTracks( false );
zone->SetDoNotAllowVias( false );
zone->SetDoNotAllowPads( false );
zone->SetDoNotAllowFootprints( false );
zone->SetDoNotAllowCopperPour( false );
if( aLine->lclass == "ROUTE KEEPOUT")
{
zone->SetIsRuleArea( true );
zone->SetDoNotAllowTracks( true );
}
else if( aLine->lclass == "VIA KEEPOUT")
{
zone->SetIsRuleArea( true );
zone->SetDoNotAllowVias( true );
}
else
{
zone->SetAssignedPriority( 50 );
}
zone->SetLocalClearance( 0 );
zone->SetPadConnection( ZONE_CONNECTION::FULL );
zone_outline->NewOutline();
for( const auto& seg : aLine->segment )
{
if( seg->subseq > 0 && seg->subseq != last_subseq )
{
/// Don't knock holes in the BOUNDARY systems. These are the outer layers for zone fills.
if( aLine->lclass == "BOUNDARY" )
break;
hole_idx = zone_outline->AddHole( SHAPE_LINE_CHAIN{} );
last_subseq = seg->subseq;
last_subseq = seg->subseq;
}
if( seg->shape == GR_SHAPE_LINE )
{
const GRAPHIC_LINE* src = static_cast<const GRAPHIC_LINE*>( seg.get() );
if( zone_outline->VertexCount( 0, hole_idx ) == 0 )
zone_outline->Append( src->start_x, src->start_y, 0, hole_idx );
zone_outline->Append( src->end_x, src->end_y, 0, hole_idx );
}
else if( seg->shape == GR_SHAPE_ARC )
{
const GRAPHIC_ARC* src = static_cast<const GRAPHIC_ARC*>( seg.get() );
zone_outline->Hole( 0, hole_idx ).Append( src->result );
}
}
if( zone_outline->Outline( 0 ).PointCount() >= 3 )
{
zone->SetOutline( zone_outline );
aBoard->Add( zone, ADD_MODE::APPEND );
}
else
{
delete( zone_outline );
delete( zone );
}
return true;
}
bool FABMASTER::loadOutline( BOARD* aBoard, const std::unique_ptr<FABMASTER::TRACE>& aLine)
{
PCB_LAYER_ID layer;
if( aLine->lclass == "BOARD GEOMETRY" )
layer = Edge_Cuts;
else if( aLine->lclass == "DRAWING FORMAT" )
layer = Dwgs_User;
else
layer = Cmts_User;
STROKE_PARAMS defaultStroke( aBoard->GetDesignSettings().GetLineThickness( layer ) );
for( auto& seg : aLine->segment )
{
switch( seg->shape )
{
case GR_SHAPE_LINE:
{
const GRAPHIC_LINE* src = static_cast<const GRAPHIC_LINE*>( seg.get() );
PCB_SHAPE* line = new PCB_SHAPE( aBoard, SHAPE_T::SEGMENT );
line->SetLayer( layer );
line->SetStart( wxPoint( src->start_x, src->start_y ) );
line->SetEnd( wxPoint( src->end_x, src->end_y ) );
line->SetStroke( STROKE_PARAMS( src->width, PLOT_DASH_TYPE::SOLID ) );
if( line->GetWidth() == 0 )
line->SetStroke( defaultStroke );
aBoard->Add( line, ADD_MODE::APPEND );
break;
}
case GR_SHAPE_CIRCLE:
{
const GRAPHIC_ARC* lsrc = static_cast<const GRAPHIC_ARC*>( seg.get() );
PCB_SHAPE* circle = new PCB_SHAPE( aBoard, SHAPE_T::CIRCLE );
circle->SetLayer( layer );
circle->SetCenter( wxPoint( lsrc->center_x, lsrc->center_y ) );
circle->SetEnd( wxPoint( lsrc->end_x, lsrc->end_y ) );
circle->SetWidth( lsrc->width );
if( lsrc->width == 0 )
circle->SetWidth( aBoard->GetDesignSettings().GetLineThickness( circle->GetLayer() ) );
aBoard->Add( circle, ADD_MODE::APPEND );
break;
}
case GR_SHAPE_ARC:
{
const GRAPHIC_ARC* src = static_cast<const GRAPHIC_ARC*>( seg.get() );
PCB_SHAPE* arc = new PCB_SHAPE( aBoard, SHAPE_T::ARC );
arc->SetLayer( layer );
arc->SetArcGeometry( src->result.GetP0(),
src->result.GetArcMid(),
src->result.GetP1() );
arc->SetStroke( STROKE_PARAMS( src->width, PLOT_DASH_TYPE::SOLID ) );
if( arc->GetWidth() == 0 )
arc->SetStroke( defaultStroke );
aBoard->Add( arc, ADD_MODE::APPEND );
break;
}
case GR_SHAPE_RECTANGLE:
{
const GRAPHIC_RECTANGLE *src =
static_cast<const GRAPHIC_RECTANGLE*>( seg.get() );
PCB_SHAPE* rect = new PCB_SHAPE( aBoard, SHAPE_T::RECT );
rect->SetLayer( layer );
rect->SetStart( wxPoint( src->start_x, src->start_y ) );
rect->SetEnd( wxPoint( src->end_x, src->end_y ) );
rect->SetStroke( defaultStroke );
aBoard->Add( rect, ADD_MODE::APPEND );
break;
}
case GR_SHAPE_TEXT:
{
const GRAPHIC_TEXT *src = static_cast<const GRAPHIC_TEXT*>( seg.get() );
PCB_TEXT* txt = new PCB_TEXT( aBoard );
txt->SetLayer( layer );
txt->SetTextPos( wxPoint( src->start_x, src->start_y - src->height / 2 ) );
txt->SetText( src->text );
txt->SetItalic( src->ital );
txt->SetTextThickness( src->thickness );
txt->SetTextHeight( src->height );
txt->SetTextWidth( src->width );
txt->SetHorizJustify( src->orient );
aBoard->Add( txt, ADD_MODE::APPEND );
break;
}
default:
return false;
}
}
return true;
}
bool FABMASTER::loadGraphics( BOARD* aBoard )
{
for( auto& geom : board_graphics )
{
checkpoint();
PCB_LAYER_ID layer;
// The pin numbers are not useful for us outside of the footprints
if( geom.subclass == "PIN_NUMBER" )
continue;
layer = getLayer( geom.subclass );
if( !IsPcbLayer( layer ) )
layer = Cmts_User;
if( !geom.elements->empty() )
{
/// Zero-width segments/arcs are polygon outlines
if( ( *( geom.elements->begin() ) )->width == 0 )
{
SHAPE_POLY_SET poly_outline = loadShapePolySet( *( geom.elements ) );
if( poly_outline.OutlineCount() < 1 || poly_outline.COutline( 0 ).PointCount() < 3 )
continue;
PCB_SHAPE* new_poly = new PCB_SHAPE( aBoard, SHAPE_T::POLY );
new_poly->SetLayer( layer );
new_poly->SetPolyShape( poly_outline );
new_poly->SetStroke( STROKE_PARAMS( 0 ) );
if( layer == F_SilkS || layer == B_SilkS )
new_poly->SetFilled( true );
aBoard->Add( new_poly, ADD_MODE::APPEND );
}
}
for( auto& seg : *geom.elements )
{
switch( seg->shape )
{
case GR_SHAPE_LINE:
{
const GRAPHIC_LINE* src = static_cast<const GRAPHIC_LINE*>( seg.get() );
PCB_SHAPE* line = new PCB_SHAPE( aBoard, SHAPE_T::SEGMENT );
line->SetLayer( layer );
line->SetStart( wxPoint( src->start_x, src->start_y ) );
line->SetEnd( wxPoint( src->end_x, src->end_y ) );
line->SetStroke( STROKE_PARAMS( src->width, PLOT_DASH_TYPE::SOLID ) );
aBoard->Add( line, ADD_MODE::APPEND );
break;
}
case GR_SHAPE_CIRCLE:
{
const GRAPHIC_ARC* src = static_cast<const GRAPHIC_ARC*>( seg.get() );
PCB_SHAPE* circle = new PCB_SHAPE( aBoard, SHAPE_T::CIRCLE );
circle->SetLayer( layer );
circle->SetCenter( wxPoint( src->center_x, src->center_y ) );
circle->SetEnd( wxPoint( src->end_x, src->end_y ) );
circle->SetWidth( src->width );
aBoard->Add( circle, ADD_MODE::APPEND );
break;
}
case GR_SHAPE_ARC:
{
const GRAPHIC_ARC* src = static_cast<const GRAPHIC_ARC*>( seg.get() );
PCB_SHAPE* arc = new PCB_SHAPE( aBoard, SHAPE_T::ARC );
arc->SetLayer( layer );
arc->SetArcGeometry( src->result.GetP0(),
src->result.GetArcMid(),
src->result.GetP1() );
arc->SetStroke( STROKE_PARAMS( src->width, PLOT_DASH_TYPE::SOLID ) );
aBoard->Add( arc, ADD_MODE::APPEND );
break;
}
case GR_SHAPE_RECTANGLE:
{
const GRAPHIC_RECTANGLE *src =
static_cast<const GRAPHIC_RECTANGLE*>( seg.get() );
PCB_SHAPE* rect = new PCB_SHAPE( aBoard, SHAPE_T::RECT );
rect->SetLayer( layer );
rect->SetStart( wxPoint( src->start_x, src->start_y ) );
rect->SetEnd( wxPoint( src->end_x, src->end_y ) );
rect->SetStroke( STROKE_PARAMS( 0 ) );
rect->SetFilled( true );
aBoard->Add( rect, ADD_MODE::APPEND );
break;
}
case GR_SHAPE_TEXT:
{
const GRAPHIC_TEXT *src =
static_cast<const GRAPHIC_TEXT*>( seg.get() );
PCB_TEXT* txt = new PCB_TEXT( aBoard );
txt->SetLayer( layer );
txt->SetTextPos( wxPoint( src->start_x, src->start_y - src->height / 2 ) );
txt->SetText( src->text );
txt->SetItalic( src->ital );
txt->SetTextThickness( src->thickness );
txt->SetTextHeight( src->height );
txt->SetTextWidth( src->width );
txt->SetHorizJustify( src->orient );
aBoard->Add( txt, ADD_MODE::APPEND );
break;
}
default:
return false;
}
}
}
return true;
}
bool FABMASTER::orderZones( BOARD* aBoard )
{
std::sort( aBoard->Zones().begin(), aBoard->Zones().end(),
[&]( const ZONE* a, const ZONE* b )
{
if( a->GetLayer() == b->GetLayer() )
return a->GetBoundingBox().GetArea() > b->GetBoundingBox().GetArea();
return a->GetLayer() < b->GetLayer();
} );
PCB_LAYER_ID layer = UNDEFINED_LAYER;
unsigned int priority = 0;
for( ZONE* zone : aBoard->Zones() )
{
/// Rule areas do not have priorities
if( zone->GetIsRuleArea() )
continue;
if( zone->GetLayer() != layer )
{
layer = zone->GetLayer();
priority = 0;
}
zone->SetAssignedPriority( priority );
priority += 10;
}
return true;
}
bool FABMASTER::LoadBoard( BOARD* aBoard, PROGRESS_REPORTER* aProgressReporter )
{
aBoard->SetFileName( m_filename.GetFullPath() );
m_progressReporter = aProgressReporter;
m_totalCount = netnames.size()
+ layers.size()
+ vias.size()
+ components.size()
+ zones.size()
+ board_graphics.size()
+ traces.size();
m_doneCount = 0;
loadNets( aBoard );
loadLayers( aBoard );
loadVias( aBoard );
loadFootprints( aBoard );
loadZones( aBoard );
loadGraphics( aBoard );
for( auto& track : traces )
{
checkpoint();
if( track->lclass == "ETCH" )
loadEtch( aBoard, track);
else if( track->layer == "OUTLINE" )
loadOutline( aBoard, track );
}
orderZones( aBoard );
return true;
}