kicad/pcbnew/zones_convert_brd_items_to_...

1350 lines
54 KiB
C++

/*******************************************/
/* zones_convert_brd_items_to_polygons.cpp */
/*******************************************/
/* Functions to convert some board items to polygons
* (pads, tracks ..)
* This is used to calculate filled areas in copper zones.
* Filled areas are areas remainder of the full zone area after removed all polygons
* calculated from these items shapes and the clearance area
*
* Important note:
* Because filled areas must have a minimum thickness to match with Design rule, they are draw in 2 step:
* 1 - filled polygons are drawn
* 2 - polygon outlines are drawn with a "minimum thickness width" ( or with a minimum thickness pen )
* So outlines of filled polygons are calculated with the constraint they match with clearance,
* taking in account outlines have thickness
* This ensures:
* - areas meet the minimum thickness requirement.
* - shapes are smoothed.
*/
using namespace std;
#include <math.h>
#include <vector>
#include "fctsys.h"
#include "common.h"
#include "pcbnew.h"
#include "trigo.h"
#include "zones.h"
#include "PolyLine.h"
extern void Test_For_Copper_Island_And_Remove( BOARD* aPcb, ZONE_CONTAINER* aZone_container );
// Local Functions:
void AddTrackWithClearancePolygon( Bool_Engine* aBooleng,
TRACK& aTrack, int aClearanceValue );
void AddPadWithClearancePolygon( Bool_Engine* aBooleng, D_PAD& aPad, int aClearanceValue );
void AddThermalReliefPadPolygon( Bool_Engine* aBooleng,
D_PAD& aPad,
int aThermalGap,
int aCopperThickness, int aMinThicknessValue );
void AddRoundedEndsSegmentPolygon( Bool_Engine* aBooleng,
wxPoint aStart, wxPoint aEnd,
int aWidth );
void AddTextBoxWithClearancePolygon( Bool_Engine* aBooleng,
TEXTE_PCB* aText, int aClearanceValue );
static void AddRingPolygon( Bool_Engine* aBooleng,
wxPoint aCentre,
wxPoint aStart,
int aArcAngle,
int aWidth );
// Local Variables:
/* how many segments are used to create a polygon from a circle: */
static int s_CircleToSegmentsCount = 16; /* default value. the real value will be changed to 32
* if g_Zone_Arc_Approximation == 1
*/
double s_Correction; /* mult coeff used to enlarge rounded and oval pads (and vias)
* because the segment approximation for arcs and circles
* create a smaller gap than a true circle
*/
/** function AddClearanceAreasPolygonsToPolysList
* Supports a min thickness area constraint.
* Add non copper areas polygons (pads and tracks with clearence)
* to the filled copper area found
* in BuildFilledPolysListData after calculating filled areas in a zone
* Non filled copper areas are pads and track and their clearance areas
* The filled copper area must be computed just before.
* BuildFilledPolysListData() call this function just after creating the
* filled copper area polygon (without clearence areas
* to do that this function:
* 1 - creates a Bool_Engine,with option: holes are linked to outer contours by double overlapping segments
* this means the created polygons have no holes (hole are linked to outer outline by double overlapped segments
* and are therefore compatible with draw functions (DC draw polygons and Gerber or PS outputs)
* 2 - Add the main outline (zone outline) in group A
* 3 - Creates a correction using BOOL_CORRECTION operation to shrink the resulting area
* with m_ZoneMinThickness/2 value.
* The result is areas with a margin of m_ZoneMinThickness/2
* When drawing outline with segments having a thickness of m_ZoneMinThickness, the outlines will
* match exactly the initial outlines
* 4 - recreates the same Bool_Engine, with no correction
* 5 - Add the main modified outline (zone outline) in group A
* 6 - Add all non filled areas (pads, tracks) in group B with a clearance of m_Clearance + m_ZoneMinThickness/2
* 7 - calculates the polygon A - B
* 8 - put resulting list of polygons (filled areas) in m_FilledPolysList
* This zone contains pads with the same net.
* 9 - Remove insulated copper islands
* 10 - If Thermal shapes are wanted, remove copper around pads in zone, in order to create thes thermal shapes
* a - Creates a bool engine and add the last copper areas in group A
* b - Add thermal shapes (non copper ares in group B
* c - Calculates the polygon A - B
* 11 - Remove new insulated copper islands
*/
/* Important note:
* One can add thermal areas in the step 6, with others items to substract.
* It is faster.
* But :
* kbool fails sometimes in this case (see comments in AddThermalReliefPadPolygon )
* The separate step to make thermal shapes allows a more sophisticated algorith (todo)
* like remove thermal copper bridges in thermal shapes that are not connected to an area
*/
void ZONE_CONTAINER::AddClearanceAreasPolygonsToPolysList( BOARD* aPcb )
{
bool have_poly_to_substract = false;
// Set the number of segments in arc approximations
if( m_ArcToSegmentsCount == 32 )
s_CircleToSegmentsCount = 32;
else
s_CircleToSegmentsCount = 16;
/* calculates the coeff to compensate radius reduction of holes clearance
* due to the segment approx.
* For a circle the min radius is radius * cos( 2PI / s_CircleToSegmentsCount / 2)
* s_Correction is 1 /cos( PI/s_CircleToSegmentsCount )
*/
s_Correction = 1.0 / cos( 3.14159265 / s_CircleToSegmentsCount );
/* Uses a kbool engine to add holes in the m_FilledPolysList polygon.
* Because this function is called just after creating the m_FilledPolysList,
* only one polygon is in list.
* (initial holes in zones are linked into outer contours by double overlapping segments).
* because after adding holes, many polygons could be exist in this list.
*/
Bool_Engine* booleng = new Bool_Engine();
ArmBoolEng( booleng, true );
/* First, Add the main polygon (i.e. the filled area using only one outline)
* in GroupA in Bool_Engine to do a BOOL_CORRECTION operation
* to reserve a m_ZoneMinThickness/2 margind around the outlines and holes
* the margin will be filled when redraw outilnes with segments having a width set to
* m_ZoneMinThickness
* so m_ZoneMinThickness is the min thickness of the filled zones areas
*/
CopyPolygonsFromFilledPolysListToBoolengine( booleng, GROUP_A );
booleng->SetCorrectionFactor( (double) -m_ZoneMinThickness / 2 );
booleng->Do_Operation( BOOL_CORRECTION );
/* Now copy the new outline in m_FilledPolysList */
m_FilledPolysList.clear();
CopyPolygonsFromBoolengineToFilledPolysList( booleng );
delete booleng;
if( m_FilledPolysList.size() == 0 )
return;
/* Second, Add the main (corrected) polygon (i.e. the filled area using only one outline)
* in GroupA in Bool_Engine to do a BOOL_A_SUB_B operation
* All areas to remove will be put in GroupB in Bool_Engine
*/
booleng = new Bool_Engine();
ArmBoolEng( booleng, true );
/* Add the main corrected polygon (i.e. the filled area using only one outline)
* in GroupA in Bool_Engine
*/
CopyPolygonsFromFilledPolysListToBoolengine( booleng, GROUP_A );
// Calculates the clearance value that meet DRC requirements
int clearance = max( m_ZoneClearance, g_DesignSettings.m_TrackClearence );
clearance += m_ZoneMinThickness / 2;
/* Add holes (i.e. tracks and pads areas as polygons outlines)
* in GroupB in Bool_Engine
*/
/* items ouside the zone bounding box are skipped */
EDA_Rect item_boundingbox;
EDA_Rect zone_boundingbox = GetBoundingBox();
zone_boundingbox.Inflate( m_ZoneClearance, clearance );
/*
* First : Add pads. Note: pads having the same net as zone are left in zone.
* Thermal shapes will be created later if necessary
*/
have_poly_to_substract = false;
for( MODULE* module = aPcb->m_Modules; module; module = module->Next() )
{
for( D_PAD* pad = module->m_Pads; pad != NULL; pad = pad->Next() )
{
if( !pad->IsOnLayer( GetLayer() ) )
continue;
if( pad->GetNet() != GetNet() )
{
item_boundingbox = pad->GetBoundingBox();
if( item_boundingbox.Intersects( zone_boundingbox ) )
{
AddPadWithClearancePolygon( booleng, *pad, clearance );
have_poly_to_substract = true;
}
continue;
}
if( (m_PadOption == PAD_NOT_IN_ZONE)
|| (GetNet() == 0) || pad->m_PadShape == PAD_TRAPEZOID )
// PAD_TRAPEZOID shapes are *never* in zones becuase they are used in microwave apps
// and the shae *must not* be changed by thermal pads or others
{
item_boundingbox = pad->GetBoundingBox();
if( item_boundingbox.Intersects( zone_boundingbox ) )
{
AddPadWithClearancePolygon( booleng, *pad, clearance );
have_poly_to_substract = true;
}
}
}
}
/* Add holes (i.e. tracks and pads areas as polygons outlines)
* in GroupB in Bool_Engine
* Next : Add tracks and vias
*/
for( TRACK* track = aPcb->m_Track; track; track = track->Next() )
{
if( !track->IsOnLayer( GetLayer() ) )
continue;
if( track->GetNet() == GetNet() && (GetNet() != 0) )
continue;
item_boundingbox = track->GetBoundingBox();
if( item_boundingbox.Intersects( zone_boundingbox ) )
{
AddTrackWithClearancePolygon( booleng, *track, clearance );
have_poly_to_substract = true;
}
}
// Draw graphic items (copper texts) and board edges
// zone clearance is used here regardless of the g_DesignSettings.m_TrackClearence value
for( BOARD_ITEM* item = aPcb->m_Drawings; item; item = item->Next() )
{
if( item->GetLayer() != GetLayer() && item->GetLayer() != EDGE_N )
continue;
switch( item->Type() )
{
case TYPE_DRAWSEGMENT:
switch( ( (DRAWSEGMENT*) item )->m_Shape )
{
case S_CIRCLE:
AddRingPolygon( booleng, ( (DRAWSEGMENT*) item )->m_Start, // Circle centre
( (DRAWSEGMENT*) item )->m_End, 3600,
( (DRAWSEGMENT*) item )->m_Width + (2 * m_ZoneClearance) );
have_poly_to_substract = true;
break;
case S_ARC:
AddRingPolygon( booleng, ( (DRAWSEGMENT*) item )->m_Start, // Arc centre
( (DRAWSEGMENT*) item )->m_End,
( (DRAWSEGMENT*) item )->m_Angle,
( (DRAWSEGMENT*) item )->m_Width + (2 * m_ZoneClearance) );
have_poly_to_substract = true;
break;
default:
AddRoundedEndsSegmentPolygon( booleng,
( (DRAWSEGMENT*) item )->m_Start,
( (DRAWSEGMENT*) item )->m_End,
( (DRAWSEGMENT*) item )->m_Width +
(2 * m_ZoneClearance) );
have_poly_to_substract = true;
break;
}
break;
case TYPE_TEXTE:
if( ( (TEXTE_PCB*) item )->GetLength() == 0 )
break;
AddTextBoxWithClearancePolygon( booleng, (TEXTE_PCB*) item, m_ZoneClearance );
have_poly_to_substract = true;
break;
default:
break;
}
}
/* calculates copper areas */
if( have_poly_to_substract )
{
booleng->Do_Operation( BOOL_A_SUB_B );
/* put these areas in m_FilledPolysList */
m_FilledPolysList.clear();
CopyPolygonsFromBoolengineToFilledPolysList( booleng );
}
delete booleng;
// Remove insulated islands:
if( GetNet() > 0 )
Test_For_Copper_Island_And_Remove_Insulated_Islands( aPcb );
// remove thermal gaps if required:
if( m_PadOption != THERMAL_PAD || aPcb->m_Modules == NULL )
return;
// Remove thermal symbols
have_poly_to_substract = false;
if( m_PadOption == THERMAL_PAD )
{
booleng = new Bool_Engine();
ArmBoolEng( booleng, true );
have_poly_to_substract = false;
for( MODULE* module = aPcb->m_Modules; module; module = module->Next() )
{
for( D_PAD* pad = module->m_Pads; pad != NULL; pad = pad->Next() )
{
if( !pad->IsOnLayer( GetLayer() ) )
continue;
if( pad->GetNet() != GetNet() )
continue;
item_boundingbox = pad->GetBoundingBox();
item_boundingbox.Inflate( m_ThermalReliefGapValue, m_ThermalReliefGapValue );
if( item_boundingbox.Intersects( zone_boundingbox ) )
{
have_poly_to_substract = true;
AddThermalReliefPadPolygon( booleng, *pad,
m_ThermalReliefGapValue,
m_ThermalReliefCopperBridgeValue,
m_ZoneMinThickness );
}
}
}
if( have_poly_to_substract )
{
/* Add the main corrected polygon (i.e. the filled area using only one outline)
* in GroupA in Bool_Engine
*/
CopyPolygonsFromFilledPolysListToBoolengine( booleng, GROUP_A );
/* remove thermal areas (non copper areas) */
booleng->Do_Operation( BOOL_A_SUB_B );
/* put these areas in m_FilledPolysList */
m_FilledPolysList.clear();
CopyPolygonsFromBoolengineToFilledPolysList( booleng );
}
delete booleng;
// Remove insulated islands:
if( GetNet() > 0 )
Test_For_Copper_Island_And_Remove_Insulated_Islands( aPcb );
}
// Now we remove all unused thermal stubs.
//define REMOVE_UNUSED_THERMAL_STUBS // Can be commented to skip unused thermal stubs calculations
//#ifdef REMOVE_UNUSED_THERMAL_STUBS
/* Add the main (corrected) polygon (i.e. the filled area using only one outline)
* in GroupA in Bool_Engine to do a BOOL_A_SUB_B operation
* All areas to remove will be put in GroupB in Bool_Engine
*/
booleng = new Bool_Engine();
ArmBoolEng( booleng, true );
/* Add the main corrected polygon (i.e. the filled area using only one outline)
* in GroupA in Bool_Engine
*/
CopyPolygonsFromFilledPolysListToBoolengine( booleng, GROUP_A );
/*
* Test and add polygons to remove thermal stubs.
*/
have_poly_to_substract = false;
for( MODULE* module = aPcb->m_Modules; module; module = module->Next() )
{
for( D_PAD* pad = module->m_Pads; pad != NULL; pad = pad->Next() )
{
// check
if( !pad->IsOnLayer( GetLayer() ) )
continue;
if( pad->GetNet() != GetNet() )
continue;
item_boundingbox = pad->GetBoundingBox();
item_boundingbox.Inflate( m_ThermalReliefGapValue, m_ThermalReliefGapValue );
if( !( item_boundingbox.Intersects( zone_boundingbox ) ) )
continue;
// test point
int dx =
( pad->m_Size.x / 2 ) + m_ThermalReliefGapValue;
int dy =
( pad->m_Size.y / 2 ) + m_ThermalReliefGapValue;
// This is CIRCLE pad tweak (for circle pads the thermal stubs are at 45 deg)
int fAngle = pad->m_Orient;
if( pad->m_PadShape == PAD_CIRCLE )
{
dx = (int) ( dx * s_Correction );
dy = dx;
fAngle = 450;
}
// compute north, south, west and east points for zone connection.
// Add a small value to ensure point is inside (or outside) zone, not on an edge
wxPoint ptTest[4];
ptTest[0] = wxPoint( 0, 3 + dy + m_ZoneMinThickness / 2 );
ptTest[1] = wxPoint( 0, -(3 + dy + m_ZoneMinThickness / 2) );
ptTest[2] = wxPoint( 3 + dx + m_ZoneMinThickness / 2, 0 );
ptTest[3] = wxPoint( -(3 + dx + m_ZoneMinThickness / 2), 0 );
// Test all sides
for( int i = 0; i<4; i++ )
{
// rotate point
RotatePoint( &ptTest[i], fAngle );
// translate point
ptTest[i] += pad->ReturnShapePos();
bool inside = HitTestFilledArea( ptTest[i] );
if( inside == false )
{
// polygon buffer
std::vector<wxPoint> corners_buffer;
// polygons are rectangles with width of copper bridge value
// contour line width has to be taken into calculation to avoid "thermal stub bleed"
const int iDTRC =
( m_ThermalReliefCopperBridgeValue - m_ZoneMinThickness ) / 2;
switch( i )
{
case 0:
corners_buffer.push_back( wxPoint( -iDTRC, dy ) );
corners_buffer.push_back( wxPoint( +iDTRC, dy ) );
corners_buffer.push_back( wxPoint( +iDTRC, iDTRC ) );
corners_buffer.push_back( wxPoint( -iDTRC, iDTRC ) );
break;
case 1:
corners_buffer.push_back( wxPoint( -iDTRC, -dy ) );
corners_buffer.push_back( wxPoint( +iDTRC, -dy ) );
corners_buffer.push_back( wxPoint( +iDTRC, -iDTRC ) );
corners_buffer.push_back( wxPoint( -iDTRC, -iDTRC ) );
break;
case 2:
corners_buffer.push_back( wxPoint( dx, -iDTRC ) );
corners_buffer.push_back( wxPoint( dx, iDTRC ) );
corners_buffer.push_back( wxPoint( +iDTRC, iDTRC ) );
corners_buffer.push_back( wxPoint( +iDTRC, -iDTRC ) );
break;
case 3:
corners_buffer.push_back( wxPoint( -dx, -iDTRC ) );
corners_buffer.push_back( wxPoint( -dx, iDTRC ) );
corners_buffer.push_back( wxPoint( -iDTRC, iDTRC ) );
corners_buffer.push_back( wxPoint( -iDTRC, -iDTRC ) );
break;
}
// add computed polygon to group_B
if( booleng->StartPolygonAdd( GROUP_B ) )
{
for( unsigned ic = 0; ic < corners_buffer.size(); ic++ )
{
wxPoint cpos = corners_buffer[ic];
RotatePoint( &cpos, fAngle ); // Rotate according to module orientation
cpos += pad->ReturnShapePos(); // Shift origin to position
booleng->AddPoint( cpos.x, cpos.y );
have_poly_to_substract = true;
}
booleng->EndPolygonAdd();
}
}
}
}
}
/* compute copper areas */
if( have_poly_to_substract )
{
booleng->Do_Operation( BOOL_A_SUB_B );
/* put these areas in m_FilledPolysList */
m_FilledPolysList.clear();
CopyPolygonsFromBoolengineToFilledPolysList( booleng );
// Remove insulated islands, if any:
if( GetNet() > 0 )
Test_For_Copper_Island_And_Remove_Insulated_Islands( aPcb );
}
delete booleng;
//#endif
}
/** Function AddPadPolygonWithPadClearance
* Add a polygon cutout for a pad in a zone area
* Convert arcs and circles to multiple straight lines
*/
void AddPadWithClearancePolygon( Bool_Engine* aBooleng,
D_PAD& aPad, int aClearanceValue )
{
if( aBooleng->StartPolygonAdd( GROUP_B ) == 0 )
return;
wxPoint corner_position;
int ii, angle;
int dx = (aPad.m_Size.x / 2) + aClearanceValue;
int dy = (aPad.m_Size.y / 2) + aClearanceValue;
int delta = 3600 / s_CircleToSegmentsCount; // rot angle in 0.1 degree
wxPoint PadShapePos = aPad.ReturnShapePos(); /* Note: for pad having a shape offset,
* the pad position is NOT the shape position */
wxSize psize = aPad.m_Size; /* pad size unsed in RECT and TRAPEZOIDAL pads
* trapezoidal pads are considered as rect pad shape having they boudary box size
*/
switch( aPad.m_PadShape )
{
case PAD_CIRCLE:
dx = (int) ( dx * s_Correction );
for( ii = 0; ii < s_CircleToSegmentsCount; ii++ )
{
corner_position = wxPoint( dx, 0 );
RotatePoint( &corner_position, (1800 / s_CircleToSegmentsCount) ); // Half increment offset to get more space between
angle = ii * delta;
RotatePoint( &corner_position, angle );
corner_position += PadShapePos;
aBooleng->AddPoint( corner_position.x, corner_position.y );
}
break;
case PAD_OVAL:
angle = aPad.m_Orient;
if( dy > dx ) // Oval pad X/Y ratio for choosing translation axles
{
dy = (int) ( dy * s_Correction );
int angle_pg; // Polygon angle
wxPoint shape_offset = wxPoint( 0, (dy - dx) );
RotatePoint( &shape_offset, angle ); // Rotating shape offset vector with component
for( ii = 0; ii < s_CircleToSegmentsCount / 2 + 1; ii++ ) // Half circle end cap...
{
corner_position = wxPoint( dx, 0 ); // Coordinate translation +dx
RotatePoint( &corner_position, (1800 / s_CircleToSegmentsCount) );
RotatePoint( &corner_position, angle );
angle_pg = ii * delta;
RotatePoint( &corner_position, angle_pg );
corner_position += PadShapePos - shape_offset;
aBooleng->AddPoint( corner_position.x, corner_position.y );
}
for( ii = 0; ii < s_CircleToSegmentsCount / 2 + 1; ii++ ) // Second half circle end cap...
{
corner_position = wxPoint( -dx, 0 ); // Coordinate translation -dx
RotatePoint( &corner_position, (1800 / s_CircleToSegmentsCount) );
RotatePoint( &corner_position, angle );
angle_pg = ii * delta;
RotatePoint( &corner_position, angle_pg );
corner_position += PadShapePos + shape_offset;
aBooleng->AddPoint( corner_position.x, corner_position.y );
}
break;
}
else //if( dy <= dx )
{
dx = (int) ( dx * s_Correction );
int angle_pg; // Polygon angle
wxPoint shape_offset = wxPoint( (dy - dx), 0 );
RotatePoint( &shape_offset, angle );
for( ii = 0; ii < s_CircleToSegmentsCount / 2 + 1; ii++ )
{
corner_position = wxPoint( 0, dy );
RotatePoint( &corner_position, (1800 / s_CircleToSegmentsCount) );
RotatePoint( &corner_position, angle );
angle_pg = ii * delta;
RotatePoint( &corner_position, angle_pg );
corner_position += PadShapePos - shape_offset;
aBooleng->AddPoint( corner_position.x, corner_position.y );
}
for( ii = 0; ii < s_CircleToSegmentsCount / 2 + 1; ii++ )
{
corner_position = wxPoint( 0, -dy );
RotatePoint( &corner_position, (1800 / s_CircleToSegmentsCount) );
RotatePoint( &corner_position, angle );
angle_pg = ii * delta;
RotatePoint( &corner_position, angle_pg );
corner_position += PadShapePos + shape_offset;
aBooleng->AddPoint( corner_position.x, corner_position.y );
}
break;
}
default:
case PAD_TRAPEZOID:
psize.x += ABS(aPad.m_DeltaSize.y);
psize.y += ABS(aPad.m_DeltaSize.x);
// fall through
case PAD_RECT: // Easy implementation for rectangular cutouts with rounded corners // Easy implementation for rectangular cutouts with rounded corners
angle = aPad.m_Orient;
int rounding_radius = (int) ( aClearanceValue * s_Correction ); // Corner rounding radius
int angle_pg; // Polygon increment angle
for( int i = 0; i < s_CircleToSegmentsCount / 4 + 1; i++ )
{
corner_position = wxPoint( 0, -rounding_radius );
RotatePoint( &corner_position, (1800 / s_CircleToSegmentsCount) ); // Start at half increment offset
angle_pg = i * delta;
RotatePoint( &corner_position, angle_pg ); // Rounding vector rotation
corner_position -= psize / 2; // Rounding vector + Pad corner offset
RotatePoint( &corner_position, angle ); // Rotate according to module orientation
corner_position += PadShapePos; // Shift origin to position
aBooleng->AddPoint( corner_position.x, corner_position.y );
}
for( int i = 0; i < s_CircleToSegmentsCount / 4 + 1; i++ )
{
corner_position = wxPoint( -rounding_radius, 0 );
RotatePoint( &corner_position, (1800 / s_CircleToSegmentsCount) );
angle_pg = i * delta;
RotatePoint( &corner_position, angle_pg );
corner_position -= wxPoint( psize.x / 2, -psize.y / 2 );
RotatePoint( &corner_position, angle );
corner_position += PadShapePos;
aBooleng->AddPoint( corner_position.x, corner_position.y );
}
for( int i = 0; i < s_CircleToSegmentsCount / 4 + 1; i++ )
{
corner_position = wxPoint( 0, rounding_radius );
RotatePoint( &corner_position, (1800 / s_CircleToSegmentsCount) );
angle_pg = i * delta;
RotatePoint( &corner_position, angle_pg );
corner_position += psize / 2;
RotatePoint( &corner_position, angle );
corner_position += PadShapePos;
aBooleng->AddPoint( corner_position.x, corner_position.y );
}
for( int i = 0; i < s_CircleToSegmentsCount / 4 + 1; i++ )
{
corner_position = wxPoint( rounding_radius, 0 );
RotatePoint( &corner_position, (1800 / s_CircleToSegmentsCount) );
angle_pg = i * delta;
RotatePoint( &corner_position, angle_pg );
corner_position -= wxPoint( -psize.x / 2, psize.y / 2 );
RotatePoint( &corner_position, angle );
corner_position += PadShapePos;
aBooleng->AddPoint( corner_position.x, corner_position.y );
}
break;
}
aBooleng->EndPolygonAdd();
}
/** function AddThermalReliefPadPolygon
* Add holes around a pad to create a thermal relief
* copper thickness is min (dx/2, aCopperWitdh) or min (dy/2, aCopperWitdh)
* @param aBooleng = current Bool_Engine
* @param aPad = the current pad used to create the thermal shape
* @param aThermalGap = gap in thermal shape
* @param aMinThicknessValue = min copper thickness allowed
*/
/* thermal reliefs are created as 4 polygons.
* each corner of a polygon if calculated for a pad at position 0, 0, orient 0,
* and then moved and rotated acroding to the pad position and orientation
*/
/* WARNING:
* When Kbool calculates the filled areas :
* i.e when substracting holes (thermal shapes) to the full zone area
* under certains circumstances kboll drop some holes.
* These circumstances are:
* some identical holes (same thermal shape and size) are *exactly* on the same vertical line
* And
* nothing else between holes
* And
* angles less than 90 deg between 2 consecutive lines in hole outline (sometime occurs without this condition)
* And
* a hole above the identical holes
*
* In fact, it is easy to find these conditions in pad arrays.
* So to avoid this, the workaround is do not use holes outlines that include
* angles less than 90 deg between 2 consecutive lines
* this is made in round and oblong thermal reliefs
*
* Note 1: polygons are drawm using outlines witk a thickness = aMinThicknessValue
* so shapes must keep in account this outline thickness
*
* Note 2:
* Trapezoidal pads are not considered here because they are very special case
* and are used in microwave applications and they *DO NOT* have a thermal relief that change the shape
* by creating stubs and destroy their properties.
*/
void AddThermalReliefPadPolygon( Bool_Engine* aBooleng,
D_PAD& aPad,
int aThermalGap,
int aCopperThickness, int aMinThicknessValue )
{
wxPoint corner, corner_end;
wxPoint PadShapePos = aPad.ReturnShapePos(); /* Note: for pad having a shape offset,
* the pad position is NOT the shape position */
int angle = 0;
wxSize copper_thickness;
int dx = aPad.m_Size.x / 2;
int dy = aPad.m_Size.y / 2;
int delta = 3600 / s_CircleToSegmentsCount; // rot angle in 0.1 degree
/* Keep in account the polygon outline thickness
* aThermalGap must be increased by aMinThicknessValue/2 because drawing external outline
* with a thickness of aMinThicknessValue will reduce gap by aMinThicknessValue/2
*/
aThermalGap += aMinThicknessValue / 2;
/* Keep in account the polygon outline thickness
* copper_thickness must be decreased by aMinThicknessValue because drawing outlines
* with a thickness of aMinThicknessValue will increase real thickness by aMinThicknessValue
*/
aCopperThickness -= aMinThicknessValue;
if( aCopperThickness < 0 )
aCopperThickness = 0;
copper_thickness.x = min( dx, aCopperThickness );
copper_thickness.y = min( dy, aCopperThickness );
switch( aPad.m_PadShape )
{
case PAD_CIRCLE: // Add 4 similar holes
{
/* we create 4 copper holes and put them in position 1, 2, 3 and 4
* here is the area of the rectangular pad + its thermal gap
* the 4 copper holes remove the copper in order to create the thermal gap
* 4 ------ 1
* | |
* | |
* | |
* | |
* 3 ------ 2
* holes 2, 3, 4 are the same as hole 1, rotated 90, 180, 270 deg
*/
// Build the hole pattern, for the hole in the X >0, Y > 0 plane:
// The pattern roughtly is a 90 deg arc pie
std::vector <wxPoint> corners_buffer;
// Radius of outer arcs of the shape:
int outer_radius = dx + aThermalGap; // The radius of the outer arc is pad radius + aThermalGap
// Crosspoint of thermal spoke sides, the first point of polygon buffer
corners_buffer.push_back( wxPoint( copper_thickness.x / 2, copper_thickness.y / 2 ) );
// Add an intermediate point on spoke sides, to allow a > 90 deg angle between side and first seg of arc approx
corner.x = copper_thickness.x / 2;
int y = outer_radius - (aThermalGap / 4);
corner.y = (int) sqrt( ( ( (double) y * y ) - (double) corner.x * corner.x ) );
corners_buffer.push_back( corner );
// calculate the starting point of the outter arc
corner.x = copper_thickness.x / 2;
double dtmp =
sqrt( ( (double) outer_radius * outer_radius ) - ( (double) corner.x * corner.x ) );
corner.y = (int) dtmp;
RotatePoint( &corner, 90 );
// calculate the ending point of the outter arc
corner_end.x = corner.y;
corner_end.y = corner.x;
// calculate intermediate points (y coordinate from corner.y to corner_end.y
while( (corner.y > corner_end.y) && (corner.x < corner_end.x) )
{
corners_buffer.push_back( corner );
RotatePoint( &corner, delta );
}
corners_buffer.push_back( corner_end );
/* add an intermediate point, to avoid angles < 90 deg between last arc approx line and radius line
*/
corner.x = corners_buffer[1].y;
corner.y = corners_buffer[1].x;
corners_buffer.push_back( corner );
// Now, add the 4 holes ( each is the pattern, rotated by 0, 90, 180 and 270 deg
// WARNING: problems with kbool if angle = 0 (in fact when angle < 200):
// bad filled polygon on some cases, when pads are on a same vertical line
// this seems a bug in kbool polygon (exists in 1.9 kbool version)
// angle = 450 (45.0 degrees orientation) seems work fine.
// angle = 0 with thermal shapes without angle < 90 deg has problems in rare circumstances
// Note: with the 2 step build ( thermal shpaes after correr areas build), 0 seems work
angle = 450;
int angle_pad = aPad.m_Orient; // Pad orientation
for( unsigned ihole = 0; ihole < 4; ihole++ )
{
if( aBooleng->StartPolygonAdd( GROUP_B ) )
{
for( unsigned ii = 0; ii < corners_buffer.size(); ii++ )
{
corner = corners_buffer[ii];
RotatePoint( &corner, angle + angle_pad ); // Rotate by segment angle and pad orientation
corner += PadShapePos;
aBooleng->AddPoint( corner.x, corner.y );
}
aBooleng->EndPolygonAdd();
angle += 900; // Note: angle in in 0.1 deg.
}
}
}
break;
case PAD_OVAL:
{
// Oval pad support along the lines of round and rectangular pads
std::vector <wxPoint> corners_buffer; // Polygon buffer as vector
int dx = (aPad.m_Size.x / 2) + aThermalGap; // Cutout radius x
int dy = (aPad.m_Size.y / 2) + aThermalGap; // Cutout radius y
wxPoint shape_offset;
// We want to calculate an oval shape with dx > dy.
// if this is not the case, exchange dx and dy, and rotate the shape 90 deg.
int supp_angle = 0;
if( dx < dy )
{
EXCHG( dx, dy );
supp_angle = 900;
EXCHG( copper_thickness.x, copper_thickness.y );
}
int deltasize = dx - dy; // = distance between shape position and the 2 demi-circle ends centre
// here we have dx > dy
// Radius of outer arcs of the shape:
int outer_radius = dy; // The radius of the outer arc is radius end + aThermalGap
// Some coordinate fiddling, depending on the shape offset direction
shape_offset = wxPoint( deltasize, 0 );
// Crosspoint of thermal spoke sides, the first point of polygon buffer
corners_buffer.push_back( wxPoint( copper_thickness.x / 2, copper_thickness.y / 2 ) );
// Arc start point calculation, the intersecting point of cutout arc and thermal spoke edge
if( copper_thickness.x > deltasize ) // If copper thickness is more than shape offset, we need to calculate arc intercept point.
{
corner.x = copper_thickness.x / 2;
corner.y =
(int) sqrt( ( (double) outer_radius * outer_radius ) -
( (double) ( corner.x - delta ) * ( corner.x - deltasize ) ) );
corner.x -= deltasize;
/* creates an intermediate point, to have a > 90 deg angle
* between the side and the first segment of arc approximation
*/
wxPoint intpoint = corner;
intpoint.y -= aThermalGap / 4;
corners_buffer.push_back( intpoint + shape_offset );
RotatePoint( &corner, 90 );
}
else
{
corner.x = copper_thickness.x / 2;
corner.y = outer_radius;
corners_buffer.push_back( corner );
corner.x = ( deltasize - copper_thickness.x ) / 2;
}
// Add an intermediate point on spoke sides, to allow a > 90 deg angle between side and first seg of arc approx
wxPoint last_corner;
last_corner.y = copper_thickness.y / 2;
int px = outer_radius - (aThermalGap / 4);
last_corner.x =
(int) sqrt( ( ( (double) px * px ) - (double) last_corner.y * last_corner.y ) );
// Arc stop point calculation, the intersecting point of cutout arc and thermal spoke edge
corner_end.y = copper_thickness.y / 2;
corner_end.x =
(int) sqrt( ( (double) outer_radius *
outer_radius ) - ( (double) corner_end.y * corner_end.y ) );
RotatePoint( &corner_end, -90 );
// calculate intermediate arc points till limit is reached
while( (corner.y > corner_end.y) && (corner.x < corner_end.x) )
{
corners_buffer.push_back( corner + shape_offset );
RotatePoint( &corner, delta );
}
//corners_buffer.push_back(corner + shape_offset); // TODO: about one mil geometry error forms somewhere.
corners_buffer.push_back( corner_end + shape_offset );
corners_buffer.push_back( last_corner + shape_offset ); // Enabling the line above shows intersection point.
/* Create 2 holes, rotated by pad rotation.
*/
angle = aPad.m_Orient + supp_angle;
for( int irect = 0; irect < 2; irect++ )
{
if( aBooleng->StartPolygonAdd( GROUP_B ) )
{
for( unsigned ic = 0; ic < corners_buffer.size(); ic++ )
{
wxPoint cpos = corners_buffer[ic];
RotatePoint( &cpos, angle );
cpos += PadShapePos;
aBooleng->AddPoint( cpos.x, cpos.y );
}
aBooleng->EndPolygonAdd();
angle += 1800; // this is calculate hole 3
if( angle >= 3600 )
angle -= 3600;
}
}
// Create holes, that are the mirrored from the previous holes
for( unsigned ic = 0; ic < corners_buffer.size(); ic++ )
{
wxPoint swap = corners_buffer[ic];
swap.x = -swap.x;
corners_buffer[ic] = swap;
}
// Now add corner 4 and 2 (2 is the corner 4 rotated by 180 deg
angle = aPad.m_Orient + supp_angle;
for( int irect = 0; irect < 2; irect++ )
{
if( aBooleng->StartPolygonAdd( GROUP_B ) )
{
for( unsigned ic = 0; ic < corners_buffer.size(); ic++ )
{
wxPoint cpos = corners_buffer[ic];
RotatePoint( &cpos, angle );
cpos += PadShapePos;
aBooleng->AddPoint( cpos.x, cpos.y );
}
aBooleng->EndPolygonAdd();
angle += 1800;
if( angle >= 3600 )
angle -= 3600;
}
}
}
break;
case PAD_RECT: // draw 4 Holes
{
/* we create 4 copper holes and put them in position 1, 2, 3 and 4
* here is the area of the rectangular pad + its thermal gap
* the 4 copper holes remove the copper in order to create the thermal gap
* 4 ------ 1
* | |
* | |
* | |
* | |
* 3 ------ 2
* hole 3 is the same as hole 1, rotated 180 deg
* hole 4 is the same as hole 2, rotated 180 deg and is the same as hole 1, mirrored
*/
// First, create a rectangular hole for position 1 :
// 2 ------- 3
// | |
// | |
// | |
// 1 -------4
// Modified rectangles with one corner rounded. TODO: merging with oval thermals and possibly round too.
std::vector <wxPoint> corners_buffer; // Polygon buffer as vector
int dx = (aPad.m_Size.x / 2) + aThermalGap; // Cutout radius x
int dy = (aPad.m_Size.y / 2) + aThermalGap; // Cutout radius y
// The first point of polygon buffer is left lower corner, second the crosspoint of thermal spoke sides,
// the third is upper right corner and the rest are rounding vertices going anticlockwise. Note the inveted Y-axis in CG.
corners_buffer.push_back( wxPoint( -dx, -(aThermalGap / 4 + copper_thickness.y / 2) ) ); // Adds small miters to zone
corners_buffer.push_back( wxPoint( -(dx - aThermalGap / 4), -copper_thickness.y / 2 ) ); // fill and spoke corner
corners_buffer.push_back( wxPoint( -copper_thickness.x / 2, -copper_thickness.y / 2 ) );
corners_buffer.push_back( wxPoint( -copper_thickness.x / 2, -(dy - aThermalGap / 4) ) );
corners_buffer.push_back( wxPoint( -(aThermalGap / 4 + copper_thickness.x / 2), -dy ) );
angle = aPad.m_Orient;
int rounding_radius = (int) ( aThermalGap * s_Correction ); // Corner rounding radius
int angle_pg; // Polygon increment angle
for( int i = 0; i < s_CircleToSegmentsCount / 4 + 1; i++ )
{
wxPoint corner_position = wxPoint( 0, -rounding_radius );
RotatePoint( &corner_position, (1800 / s_CircleToSegmentsCount) ); // Start at half increment offset
angle_pg = i * delta;
RotatePoint( &corner_position, angle_pg ); // Rounding vector rotation
corner_position -= aPad.m_Size / 2; // Rounding vector + Pad corner offset
corners_buffer.push_back( wxPoint( corner_position.x, corner_position.y ) );
}
for( int irect = 0; irect < 2; irect++ )
{
if( aBooleng->StartPolygonAdd( GROUP_B ) )
{
for( unsigned ic = 0; ic < corners_buffer.size(); ic++ )
{
wxPoint cpos = corners_buffer[ic];
RotatePoint( &cpos, angle ); // Rotate according to module orientation
cpos += PadShapePos; // Shift origin to position
aBooleng->AddPoint( cpos.x, cpos.y );
}
aBooleng->EndPolygonAdd();
angle += 1800; // this is calculate hole 3
if( angle >= 3600 )
angle -= 3600;
}
}
// Create holes, that are the mirrored from the previous holes
for( unsigned ic = 0; ic < corners_buffer.size(); ic++ )
{
wxPoint swap = corners_buffer[ic];
swap.x = -swap.x;
corners_buffer[ic] = swap;
}
// Now add corner 4 and 2 (2 is the corner 4 rotated by 180 deg
for( int irect = 0; irect < 2; irect++ )
{
if( aBooleng->StartPolygonAdd( GROUP_B ) )
{
for( unsigned ic = 0; ic < corners_buffer.size(); ic++ )
{
wxPoint cpos = corners_buffer[ic];
RotatePoint( &cpos, angle );
cpos += PadShapePos;
aBooleng->AddPoint( cpos.x, cpos.y );
}
aBooleng->EndPolygonAdd();
angle += 1800;
if( angle >= 3600 )
angle -= 3600;
}
}
break;
}
}
}
/** Function AddTrackWithClearancePolygon
* Add a polygon cutout for a track in a zone area
* Convert arcs and circles to multiple straight lines
*/
void AddTrackWithClearancePolygon( Bool_Engine* aBooleng,
TRACK& aTrack, int aClearanceValue )
{
wxPoint corner_position;
int ii, angle;
int dx = (aTrack.m_Width / 2) + aClearanceValue;
int delta = 3600 / s_CircleToSegmentsCount; // rot angle in 0.1 degree
switch( aTrack.Type() )
{
case TYPE_VIA:
if( aBooleng->StartPolygonAdd( GROUP_B ) )
{
dx = (int) ( dx * s_Correction );
for( ii = 0; ii < s_CircleToSegmentsCount; ii++ )
{
corner_position = wxPoint( dx, 0 );
RotatePoint( &corner_position, (1800 / s_CircleToSegmentsCount) );
angle = ii * delta;
RotatePoint( &corner_position, angle );
corner_position += aTrack.m_Start;
aBooleng->AddPoint( corner_position.x, corner_position.y );
}
aBooleng->EndPolygonAdd();
}
break;
default:
AddRoundedEndsSegmentPolygon( aBooleng,
aTrack.m_Start, aTrack.m_End,
aTrack.m_Width + (2 * aClearanceValue) );
break;
}
}
/** Function AddRoundedEndsSegmentPolygon
* Add a polygon cutout for a segment (with rounded ends) in a zone area
* Convert arcs to multiple straight lines
*/
void AddRoundedEndsSegmentPolygon( Bool_Engine* aBooleng,
wxPoint aStart, wxPoint aEnd,
int aWidth )
{
int rayon = aWidth / 2;
wxPoint endp = aEnd - aStart; // end point coordinate for the same segment starting at (0,0)
wxPoint startp = aStart;
wxPoint corner;
int seg_len;
// normalize the position in order to have endp.x >= 0;
if( endp.x < 0 )
{
endp = aStart - aEnd;
startp = aEnd;
}
int delta_angle = ArcTangente( endp.y, endp.x ); // delta_angle is in 0.1 degrees
seg_len = (int) sqrt( ( (double) endp.y * endp.y ) + ( (double) endp.x * endp.x ) );
if( !aBooleng->StartPolygonAdd( GROUP_B ) )
return; // error!
int delta = 3600 / s_CircleToSegmentsCount; // rot angle in 0.1 degree
// Compute the outlines of the segment, and creates a polygon
corner = wxPoint( 0, rayon );
RotatePoint( &corner, -delta_angle );
corner += startp;
aBooleng->AddPoint( corner.x, corner.y );
corner = wxPoint( seg_len, rayon );
RotatePoint( &corner, -delta_angle );
corner += startp;
aBooleng->AddPoint( corner.x, corner.y );
// add right rounded end:
for( int ii = delta; ii < 1800; ii += delta )
{
corner = wxPoint( 0, rayon );
RotatePoint( &corner, ii );
corner.x += seg_len;
RotatePoint( &corner, -delta_angle );
corner += startp;
aBooleng->AddPoint( corner.x, corner.y );
}
corner = wxPoint( seg_len, -rayon );
RotatePoint( &corner, -delta_angle );
corner += startp;
aBooleng->AddPoint( corner.x, corner.y );
corner = wxPoint( 0, -rayon );
RotatePoint( &corner, -delta_angle );
corner += startp;
aBooleng->AddPoint( corner.x, corner.y );
// add left rounded end:
for( int ii = delta; ii < 1800; ii += delta )
{
corner = wxPoint( 0, -rayon );
RotatePoint( &corner, ii );
RotatePoint( &corner, -delta_angle );
corner += startp;
aBooleng->AddPoint( corner.x, corner.y );
}
aBooleng->EndPolygonAdd();
}
/** Function AddRingPolygon
* Add a polygon cutout for an Arc in a zone area
* Convert arcs to multiple straight segments
* @param aBooleng = the bool engine to use
* @param aCentre = centre of the arc or circle
* @param aStart = start point of the arc, or apoint of the circle
* @param aArcAngle = arc angle in 0.1 degrees. For a circle, aArcAngle = 3600
* @param aWidth = width of the line
*/
void AddRingPolygon( Bool_Engine* aBooleng, wxPoint aCentre,
wxPoint aStart, int aArcAngle,
int aWidth )
{
wxPoint arc_start, arc_end;
int delta = 3600 / s_CircleToSegmentsCount; // rot angle in 0.1 degree
arc_end = arc_start = aStart;
if( aArcAngle != 3600 )
{
RotatePoint( &arc_end, aCentre, -aArcAngle );
}
if( aArcAngle < 0 )
{
EXCHG( arc_start, arc_end );
NEGATE( aArcAngle );
}
// Compute the ends of segments and creates poly
wxPoint curr_end = arc_start, curr_start = arc_start;
for( int ii = delta; ii < aArcAngle; ii += delta )
{
curr_end = arc_start;
RotatePoint( &curr_end, aCentre, -ii );
AddRoundedEndsSegmentPolygon( aBooleng, curr_start, curr_end, aWidth );
curr_start = curr_end;
}
if( curr_end != arc_end )
AddRoundedEndsSegmentPolygon( aBooleng, curr_end, arc_end, aWidth );
}
/** function AddTextBoxWithClearancePolygon
* creates a polygon containing the text and add it to bool engine
*/
void AddTextBoxWithClearancePolygon( Bool_Engine* aBooleng,
TEXTE_PCB* aText, int aClearanceValue )
{
int corners[8]; // Buffer of coordinates
int ii;
int dx = aText->Pitch() * aText->GetLength();
int dy = aText->m_Size.y + aText->m_Width;
/* Creates bounding box (rectangle) for an horizontal text */
dx /= 2; dy /= 2; /* dx et dy = demi dimensionx X et Y */
dx += aClearanceValue;
dy += aClearanceValue;
corners[0] = aText->m_Pos.x - dx;
corners[1] = aText->m_Pos.y - dy;
corners[2] = aText->m_Pos.x + dx;
corners[3] = aText->m_Pos.y - dy;
corners[4] = aText->m_Pos.x + dx;
corners[5] = aText->m_Pos.y + dy;
corners[6] = aText->m_Pos.x - dx;
corners[7] = aText->m_Pos.y + dy;
// Rotate rectangle
RotatePoint( &corners[0], &corners[1], aText->m_Pos.x, aText->m_Pos.y, aText->m_Orient );
RotatePoint( &corners[2], &corners[3], aText->m_Pos.x, aText->m_Pos.y, aText->m_Orient );
RotatePoint( &corners[4], &corners[5], aText->m_Pos.x, aText->m_Pos.y, aText->m_Orient );
RotatePoint( &corners[6], &corners[7], aText->m_Pos.x, aText->m_Pos.y, aText->m_Orient );
if( aBooleng->StartPolygonAdd( GROUP_B ) )
{
for( ii = 0; ii < 8; ii += 2 )
{
aBooleng->AddPoint( corners[ii], corners[ii + 1] );
}
aBooleng->EndPolygonAdd();
}
}
/***********************************************************************************************************/
int ZONE_CONTAINER::CopyPolygonsFromFilledPolysListToBoolengine( Bool_Engine* aBoolengine,
GroupType aGroup )
/************************************************************************************************************/
/** Function CopyPolygonsFromFilledPolysListToBoolengine
* Copy (Add) polygons found in m_FilledPolysList to kbool BoolEngine
* m_FilledPolysList may have more than one polygon
* @param aBoolengine = kbool engine
* @param aGroup = group in kbool engine (GROUP_A or GROUP_B only)
* @return the corner count
*/
{
unsigned corners_count = m_FilledPolysList.size();
int count = 0;
unsigned ic = 0;
while( ic < corners_count )
{
if( aBoolengine->StartPolygonAdd( aGroup ) )
{
for( ; ic < corners_count; ic++ )
{
CPolyPt* corner = &m_FilledPolysList[ic];
aBoolengine->AddPoint( corner->x, corner->y );
count++;
if( corner->end_contour )
{
ic++;
break;
}
}
aBoolengine->EndPolygonAdd();
}
}
return count;
}
/*****************************************************************************************/
int ZONE_CONTAINER::CopyPolygonsFromBoolengineToFilledPolysList( Bool_Engine* aBoolengine )
/*****************************************************************************************/
/** Function CopyPolygonsFromBoolengineToFilledPolysList
* Copy (Add) polygons created by kbool (after Do_Operation) to m_FilledPolysList
* @param aBoolengine = kbool engine
* @return the corner count
*/
{
int count = 0;
while( aBoolengine->StartPolygonGet() )
{
CPolyPt corner( 0, 0, false );
while( aBoolengine->PolygonHasMorePoints() )
{
corner.x = (int) aBoolengine->GetPolygonXPoint();
corner.y = (int) aBoolengine->GetPolygonYPoint();
corner.end_contour = false;
// Flag this corner if starting a hole connection segment:
corner.utility = (aBoolengine->GetPolygonPointEdgeType() == KB_FALSE_EDGE) ? 1 : 0;
m_FilledPolysList.push_back( corner );
count++;
}
corner.end_contour = true;
m_FilledPolysList.pop_back();
m_FilledPolysList.push_back( corner );
aBoolengine->EndPolygonGet();
}
return count;
}