kicad/pcbnew/tools/pcb_selection_tool.cpp

3747 lines
117 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2013-2017 CERN
* Copyright (C) 2018-2024 KiCad Developers, see AUTHORS.txt for contributors.
* @author Tomasz Wlostowski <tomasz.wlostowski@cern.ch>
* @author Maciej Suminski <maciej.suminski@cern.ch>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <limits>
#include <cmath>
#include <functional>
#include <stack>
using namespace std::placeholders;
#include <advanced_config.h>
#include <macros.h>
#include <core/kicad_algo.h>
#include <board.h>
#include <board_design_settings.h>
#include <board_item.h>
#include <clipper.hpp>
#include <pcb_reference_image.h>
#include <pcb_track.h>
#include <footprint.h>
#include <pad.h>
#include <pcb_group.h>
#include <pcb_shape.h>
#include <pcb_text.h>
#include <pcb_textbox.h>
#include <pcb_marker.h>
#include <pcb_generator.h>
#include <zone.h>
#include <collectors.h>
#include <dialog_filter_selection.h>
#include <dialogs/dialog_locked_items_query.h>
#include <class_draw_panel_gal.h>
#include <view/view_controls.h>
#include <preview_items/selection_area.h>
#include <gal/painter.h>
#include <router/router_tool.h>
#include <pcbnew_settings.h>
#include <tool/tool_event.h>
#include <tool/tool_manager.h>
#include <tools/tool_event_utils.h>
#include <tools/pcb_point_editor.h>
#include <tools/pcb_selection_tool.h>
#include <tools/pcb_actions.h>
#include <tools/board_inspection_tool.h>
#include <connectivity/connectivity_data.h>
#include <ratsnest/ratsnest_data.h>
#include <footprint_viewer_frame.h>
#include <wx/event.h>
#include <wx/timer.h>
#include <wx/log.h>
#include <core/profile.h>
#include <math/vector2wx.h>
struct LAYER_OPACITY_ITEM
{
PCB_LAYER_ID m_Layer;
double m_Opacity;
const BOARD_ITEM* m_Item;;
};
class SELECT_MENU : public ACTION_MENU
{
public:
SELECT_MENU() :
ACTION_MENU( true )
{
SetTitle( _( "Select" ) );
Add( PCB_ACTIONS::filterSelection );
AppendSeparator();
Add( PCB_ACTIONS::selectConnection );
Add( PCB_ACTIONS::selectNet );
// This could be enabled if we have better logic for picking the target net with the mouse
// Add( PCB_ACTIONS::deselectNet );
Add( PCB_ACTIONS::selectSameSheet );
Add( PCB_ACTIONS::selectOnSchematic );
Add( PCB_ACTIONS::selectUnconnected );
Add( PCB_ACTIONS::grabUnconnected );
}
private:
ACTION_MENU* create() const override
{
return new SELECT_MENU();
}
};
/**
* Private implementation of firewalled private data.
*/
class PCB_SELECTION_TOOL::PRIV
{
public:
DIALOG_FILTER_SELECTION::OPTIONS m_filterOpts;
};
PCB_SELECTION_TOOL::PCB_SELECTION_TOOL() :
SELECTION_TOOL( "pcbnew.InteractiveSelection" ),
m_frame( nullptr ),
m_isFootprintEditor( false ),
m_nonModifiedCursor( KICURSOR::ARROW ),
m_enteredGroup( nullptr ),
m_priv( std::make_unique<PRIV>() )
{
m_filter.lockedItems = false;
m_filter.footprints = true;
m_filter.text = true;
m_filter.tracks = true;
m_filter.vias = true;
m_filter.pads = true;
m_filter.graphics = true;
m_filter.zones = true;
m_filter.keepouts = true;
m_filter.dimensions = true;
m_filter.otherItems = true;
}
PCB_SELECTION_TOOL::~PCB_SELECTION_TOOL()
{
getView()->Remove( &m_selection );
getView()->Remove( &m_enteredGroupOverlay );
Disconnect( wxEVT_TIMER, wxTimerEventHandler( PCB_SELECTION_TOOL::onDisambiguationExpire ),
nullptr, this );
}
bool PCB_SELECTION_TOOL::Init()
{
PCB_BASE_FRAME* frame = getEditFrame<PCB_BASE_FRAME>();
if( frame && frame->IsType( FRAME_FOOTPRINT_VIEWER ) )
{
frame->AddStandardSubMenus( m_menu );
return true;
}
std::shared_ptr<SELECT_MENU> selectMenu = std::make_shared<SELECT_MENU>();
selectMenu->SetTool( this );
m_menu.RegisterSubMenu( selectMenu );
auto& menu = m_menu.GetMenu();
auto activeToolCondition =
[ frame ] ( const SELECTION& aSel )
{
return !frame->ToolStackIsEmpty();
};
auto haveHighlight =
[&]( const SELECTION& sel )
{
KIGFX::RENDER_SETTINGS* cfg = m_toolMgr->GetView()->GetPainter()->GetSettings();
return !cfg->GetHighlightNetCodes().empty();
};
auto groupEnterCondition =
SELECTION_CONDITIONS::Count( 1 ) && SELECTION_CONDITIONS::HasType( PCB_GROUP_T );
auto inGroupCondition =
[this] ( const SELECTION& )
{
return m_enteredGroup != nullptr;
};
if( frame && frame->IsType( FRAME_PCB_EDITOR ) )
{
menu.AddMenu( selectMenu.get(), SELECTION_CONDITIONS::NotEmpty );
menu.AddSeparator( 1000 );
}
// "Cancel" goes at the top of the context menu when a tool is active
menu.AddItem( ACTIONS::cancelInteractive, activeToolCondition, 1 );
menu.AddItem( PCB_ACTIONS::groupEnter, groupEnterCondition, 1 );
menu.AddItem( PCB_ACTIONS::groupLeave, inGroupCondition, 1 );
menu.AddItem( PCB_ACTIONS::clearHighlight, haveHighlight, 1 );
menu.AddSeparator( 1 );
if( frame )
frame->AddStandardSubMenus( m_menu );
m_disambiguateTimer.SetOwner( this );
Connect( wxEVT_TIMER, wxTimerEventHandler( PCB_SELECTION_TOOL::onDisambiguationExpire ),
nullptr, this );
return true;
}
void PCB_SELECTION_TOOL::Reset( RESET_REASON aReason )
{
m_frame = getEditFrame<PCB_BASE_FRAME>();
m_isFootprintEditor = m_frame->IsType( FRAME_FOOTPRINT_EDITOR );
if( aReason != TOOL_BASE::REDRAW )
{
if( m_enteredGroup )
ExitGroup();
// Deselect any item being currently in edit, to avoid unexpected behavior and remove
// pointers to the selected items from containers.
ClearSelection( true );
}
if( aReason == TOOL_BASE::MODEL_RELOAD )
getView()->GetPainter()->GetSettings()->SetHighlight( false );
// Reinsert the VIEW_GROUP, in case it was removed from the VIEW
view()->Remove( &m_selection );
view()->Add( &m_selection );
view()->Remove( &m_enteredGroupOverlay );
view()->Add( &m_enteredGroupOverlay );
}
void PCB_SELECTION_TOOL::OnIdle( wxIdleEvent& aEvent )
{
if( m_frame->ToolStackIsEmpty() && !m_multiple )
{
wxMouseState keyboardState = wxGetMouseState();
setModifiersState( keyboardState.ShiftDown(), keyboardState.ControlDown(),
keyboardState.AltDown() );
if( m_additive )
m_frame->GetCanvas()->SetCurrentCursor( KICURSOR::ADD );
else if( m_subtractive )
m_frame->GetCanvas()->SetCurrentCursor( KICURSOR::SUBTRACT );
else if( m_exclusive_or )
m_frame->GetCanvas()->SetCurrentCursor( KICURSOR::XOR );
else
m_frame->GetCanvas()->SetCurrentCursor( m_nonModifiedCursor );
}
}
int PCB_SELECTION_TOOL::Main( const TOOL_EVENT& aEvent )
{
// Main loop: keep receiving events
while( TOOL_EVENT* evt = Wait() )
{
MOUSE_DRAG_ACTION dragAction = m_frame->GetDragAction();
TRACK_DRAG_ACTION trackDragAction = TRACK_DRAG_ACTION::MOVE;
try
{
trackDragAction = m_frame->GetPcbNewSettings()->m_TrackDragAction;
}
catch( const std::runtime_error& e )
{
wxFAIL_MSG( e.what() );
}
// on left click, a selection is made, depending on modifiers ALT, SHIFT, CTRL:
setModifiersState( evt->Modifier( MD_SHIFT ), evt->Modifier( MD_CTRL ),
evt->Modifier( MD_ALT ) );
PCB_BASE_FRAME* frame = getEditFrame<PCB_BASE_FRAME>();
bool brd_editor = frame && frame->IsType( FRAME_PCB_EDITOR );
ROUTER_TOOL* router = m_toolMgr->GetTool<ROUTER_TOOL>();
// If the router tool is active, don't override
if( router && router->IsToolActive() && router->RoutingInProgress() )
{
evt->SetPassEvent();
}
else if( evt->IsMouseDown( BUT_LEFT ) )
{
// Avoid triggering when running under other tools
PCB_POINT_EDITOR *pt_tool = m_toolMgr->GetTool<PCB_POINT_EDITOR>();
if( m_frame->ToolStackIsEmpty() && pt_tool && !pt_tool->HasPoint() )
{
m_originalCursor = m_toolMgr->GetMousePosition();
m_disambiguateTimer.StartOnce( ADVANCED_CFG::GetCfg().m_DisambiguationMenuDelay );
}
}
else if( evt->IsClick( BUT_LEFT ) )
{
// If there is no disambiguation, this routine is still running and will
// register a `click` event when released
if( m_disambiguateTimer.IsRunning() )
{
m_disambiguateTimer.Stop();
// Single click? Select single object
if( m_highlight_modifier && brd_editor )
{
m_toolMgr->RunAction( PCB_ACTIONS::highlightNet );
}
else
{
m_frame->FocusOnItem( nullptr );
selectPoint( evt->Position() );
}
}
m_canceledMenu = false;
}
else if( evt->IsClick( BUT_RIGHT ) )
{
m_disambiguateTimer.Stop();
// Right click? if there is any object - show the context menu
bool selectionCancelled = false;
if( m_selection.Empty() )
{
selectPoint( evt->Position(), false, &selectionCancelled );
m_selection.SetIsHover( true );
}
// Show selection before opening menu
m_frame->GetCanvas()->ForceRefresh();
if( !selectionCancelled )
{
m_toolMgr->VetoContextMenuMouseWarp();
m_menu.ShowContextMenu( m_selection );
}
}
else if( evt->IsDblClick( BUT_LEFT ) )
{
m_disambiguateTimer.Stop();
// Double clicks make no sense in the footprint viewer
if( frame && frame->IsType( FRAME_FOOTPRINT_VIEWER ) )
{
evt->SetPassEvent();
continue;
}
// Double click? Display the properties window
m_frame->FocusOnItem( nullptr );
if( m_selection.Empty() )
selectPoint( evt->Position() );
if( m_selection.GetSize() == 1 && m_selection[0]->Type() == PCB_GROUP_T )
EnterGroup();
else
m_toolMgr->RunAction( PCB_ACTIONS::properties );
}
else if( evt->IsDblClick( BUT_MIDDLE ) )
{
// Middle double click? Do zoom to fit or zoom to objects
if( evt->Modifier( MD_CTRL ) ) // Is CTRL key down?
m_toolMgr->RunAction( ACTIONS::zoomFitObjects );
else
m_toolMgr->RunAction( ACTIONS::zoomFitScreen );
}
else if( evt->IsDrag( BUT_LEFT ) )
{
m_disambiguateTimer.Stop();
// Is another tool already moving a new object? Don't allow a drag start
if( !m_selection.Empty() && m_selection[0]->HasFlag( IS_NEW | IS_MOVING ) )
{
evt->SetPassEvent();
continue;
}
// Drag with LMB? Select multiple objects (or at least draw a selection box)
// or drag them
m_frame->FocusOnItem( nullptr );
m_toolMgr->ProcessEvent( EVENTS::InhibitSelectionEditing );
if( hasModifier() || dragAction == MOUSE_DRAG_ACTION::SELECT )
{
selectMultiple();
}
else if( m_selection.Empty() && dragAction != MOUSE_DRAG_ACTION::DRAG_ANY )
{
selectMultiple();
}
else
{
// Don't allow starting a drag from a zone filled area that isn't already selected
auto zoneFilledAreaFilter =
[]( const VECTOR2I& aWhere, GENERAL_COLLECTOR& aCollector,
PCB_SELECTION_TOOL* aTool )
{
int accuracy = aCollector.GetGuide()->Accuracy();
std::set<EDA_ITEM*> remove;
for( EDA_ITEM* item : aCollector )
{
if( item->Type() == PCB_ZONE_T )
{
ZONE* zone = static_cast<ZONE*>( item );
if( !zone->HitTestForCorner( aWhere, accuracy * 2 )
&& !zone->HitTestForEdge( aWhere, accuracy ) )
{
remove.insert( zone );
}
}
}
for( EDA_ITEM* item : remove )
aCollector.Remove( item );
};
// See if we can drag before falling back to selectMultiple()
bool doDrag = false;
if( evt->HasPosition() )
{
if( m_selection.Empty()
&& selectPoint( evt->DragOrigin(), false, nullptr, zoneFilledAreaFilter ) )
{
m_selection.SetIsHover( true );
doDrag = true;
}
// Check if dragging has started within any of selected items bounding box.
else if( selectionContains( evt->DragOrigin() ) )
{
doDrag = true;
}
}
if( doDrag )
{
bool haveTrack = m_selection.GetSize() == 1
&& dynamic_cast<PCB_TRACK*>( m_selection.GetItem( 0 ) );
if( haveTrack && trackDragAction == TRACK_DRAG_ACTION::DRAG )
m_toolMgr->RunAction( PCB_ACTIONS::drag45Degree );
else if( haveTrack && trackDragAction == TRACK_DRAG_ACTION::DRAG_FREE_ANGLE )
m_toolMgr->RunAction( PCB_ACTIONS::dragFreeAngle );
else
m_toolMgr->RunAction( PCB_ACTIONS::move );
}
else
{
// Otherwise drag a selection box
selectMultiple();
}
}
}
else if( evt->IsCancel() )
{
m_disambiguateTimer.Stop();
m_frame->FocusOnItem( nullptr );
if( !GetSelection().Empty() )
{
ClearSelection();
}
else if( evt->FirstResponder() == this && evt->GetCommandId() == (int) WXK_ESCAPE )
{
if( m_enteredGroup )
{
ExitGroup();
}
else
{
BOARD_INSPECTION_TOOL* controller = m_toolMgr->GetTool<BOARD_INSPECTION_TOOL>();
try
{
if( controller && m_frame->GetPcbNewSettings()->m_ESCClearsNetHighlight )
controller->ClearHighlight( *evt );
}
catch( const std::runtime_error& e )
{
wxCHECK_MSG( false, 0, e.what() );
}
}
}
}
else
{
evt->SetPassEvent();
}
if( m_frame->ToolStackIsEmpty() )
{
// move cursor prediction
if( !hasModifier()
&& dragAction == MOUSE_DRAG_ACTION::DRAG_SELECTED
&& !m_selection.Empty()
&& evt->HasPosition()
&& selectionContains( evt->Position() ) )
{
m_nonModifiedCursor = KICURSOR::MOVING;
}
else
{
m_nonModifiedCursor = KICURSOR::ARROW;
}
}
}
// Shutting down; clear the selection
m_selection.Clear();
m_disambiguateTimer.Stop();
return 0;
}
void PCB_SELECTION_TOOL::EnterGroup()
{
wxCHECK_RET( m_selection.GetSize() == 1 && m_selection[0]->Type() == PCB_GROUP_T,
wxT( "EnterGroup called when selection is not a single group" ) );
PCB_GROUP* aGroup = static_cast<PCB_GROUP*>( m_selection[0] );
if( m_enteredGroup != nullptr )
ExitGroup();
ClearSelection();
m_enteredGroup = aGroup;
m_enteredGroup->SetFlags( ENTERED );
m_enteredGroup->RunOnChildren( [&]( BOARD_ITEM* titem )
{
select( titem );
} );
m_toolMgr->ProcessEvent( EVENTS::SelectedEvent );
view()->Hide( m_enteredGroup, true );
m_enteredGroupOverlay.Add( m_enteredGroup );
view()->Update( &m_enteredGroupOverlay );
}
void PCB_SELECTION_TOOL::ExitGroup( bool aSelectGroup )
{
// Only continue if there is a group entered
if( m_enteredGroup == nullptr )
return;
m_enteredGroup->ClearFlags( ENTERED );
view()->Hide( m_enteredGroup, false );
ClearSelection();
if( aSelectGroup )
{
select( m_enteredGroup );
m_toolMgr->ProcessEvent( EVENTS::SelectedEvent );
}
m_enteredGroupOverlay.Clear();
m_enteredGroup = nullptr;
view()->Update( &m_enteredGroupOverlay );
}
PCB_SELECTION& PCB_SELECTION_TOOL::GetSelection()
{
return m_selection;
}
PCB_SELECTION& PCB_SELECTION_TOOL::RequestSelection( CLIENT_SELECTION_FILTER aClientFilter,
bool aConfirmLockedItems )
{
bool selectionEmpty = m_selection.Empty();
m_selection.SetIsHover( selectionEmpty );
if( selectionEmpty )
{
m_toolMgr->RunAction( PCB_ACTIONS::selectionCursor, aClientFilter );
m_selection.ClearReferencePoint();
}
if( aClientFilter )
{
enum DISPOSITION { BEFORE = 1, AFTER, BOTH };
std::map<EDA_ITEM*, DISPOSITION> itemDispositions;
GENERAL_COLLECTORS_GUIDE guide = getCollectorsGuide();
GENERAL_COLLECTOR collector;
collector.SetGuide( &guide );
for( EDA_ITEM* item : m_selection )
{
collector.Append( item );
itemDispositions[ item ] = BEFORE;
}
aClientFilter( VECTOR2I(), collector, this );
for( EDA_ITEM* item : collector )
{
if( itemDispositions.count( item ) )
itemDispositions[ item ] = BOTH;
else
itemDispositions[ item ] = AFTER;
}
// Unhighlight the BEFORE items before highlighting the AFTER items.
// This is so that in the case of groups, if aClientFilter replaces a selection
// with the enclosing group, the unhighlight of the element doesn't undo the
// recursive highlighting of that element by the group.
for( std::pair<EDA_ITEM* const, DISPOSITION> itemDisposition : itemDispositions )
{
EDA_ITEM* item = itemDisposition.first;
DISPOSITION disposition = itemDisposition.second;
if( disposition == BEFORE )
unhighlight( item, SELECTED, &m_selection );
}
for( std::pair<EDA_ITEM* const, DISPOSITION> itemDisposition : itemDispositions )
{
EDA_ITEM* item = itemDisposition.first;
DISPOSITION disposition = itemDisposition.second;
// Note that we must re-highlight even previously-highlighted items
// (ie: disposition BOTH) in case we removed any of their children.
if( disposition == AFTER || disposition == BOTH )
highlight( item, SELECTED, &m_selection );
}
m_frame->GetCanvas()->ForceRefresh();
}
if( aConfirmLockedItems )
{
std::vector<BOARD_ITEM*> lockedItems;
for( EDA_ITEM* item : m_selection )
{
BOARD_ITEM* boardItem = static_cast<BOARD_ITEM*>( item );
bool lockedDescendant = false;
boardItem->RunOnDescendants(
[&]( BOARD_ITEM* curr_item )
{
if( curr_item->IsLocked() )
lockedDescendant = true;
} );
if( boardItem->IsLocked() || lockedDescendant )
lockedItems.push_back( boardItem );
}
if( !lockedItems.empty() )
{
DIALOG_LOCKED_ITEMS_QUERY dlg( frame(), (int) lockedItems.size() );
switch( dlg.ShowModal() )
{
case wxID_OK:
// remove locked items from selection
for( BOARD_ITEM* item : lockedItems )
unselect( item );
break;
case wxID_CANCEL:
// cancel operation
ClearSelection();
break;
case wxID_APPLY:
// continue with operation with current selection
break;
}
}
}
return m_selection;
}
const GENERAL_COLLECTORS_GUIDE PCB_SELECTION_TOOL::getCollectorsGuide() const
{
GENERAL_COLLECTORS_GUIDE guide( board()->GetVisibleLayers(),
(PCB_LAYER_ID) view()->GetTopLayer(), view() );
bool padsDisabled = !board()->IsElementVisible( LAYER_PADS );
// account for the globals
guide.SetIgnoreMTextsMarkedNoShow( ! board()->IsElementVisible( LAYER_HIDDEN_TEXT ) );
guide.SetIgnoreMTextsOnBack( ! board()->IsElementVisible( LAYER_FP_TEXT ) );
guide.SetIgnoreMTextsOnFront( ! board()->IsElementVisible( LAYER_FP_TEXT ) );
guide.SetIgnoreModulesOnBack( ! board()->IsElementVisible( LAYER_FOOTPRINTS_BK ) );
guide.SetIgnoreModulesOnFront( ! board()->IsElementVisible( LAYER_FOOTPRINTS_FR ) );
guide.SetIgnorePadsOnBack( padsDisabled || ! board()->IsElementVisible( LAYER_PADS_SMD_BK ) );
guide.SetIgnorePadsOnFront( padsDisabled || ! board()->IsElementVisible( LAYER_PADS_SMD_FR ) );
guide.SetIgnoreThroughHolePads( padsDisabled || ! board()->IsElementVisible( LAYER_PADS_TH ) );
guide.SetIgnoreModulesVals( ! board()->IsElementVisible( LAYER_FP_VALUES ) );
guide.SetIgnoreModulesRefs( ! board()->IsElementVisible( LAYER_FP_REFERENCES ) );
guide.SetIgnoreThroughVias( ! board()->IsElementVisible( LAYER_VIAS ) );
guide.SetIgnoreBlindBuriedVias( ! board()->IsElementVisible( LAYER_VIAS ) );
guide.SetIgnoreMicroVias( ! board()->IsElementVisible( LAYER_VIAS ) );
guide.SetIgnoreTracks( ! board()->IsElementVisible( LAYER_TRACKS ) );
return guide;
}
bool PCB_SELECTION_TOOL::ctrlClickHighlights()
{
return m_frame && m_frame->GetPcbNewSettings()->m_CtrlClickHighlight && !m_isFootprintEditor;
}
bool PCB_SELECTION_TOOL::selectPoint( const VECTOR2I& aWhere, bool aOnDrag,
bool* aSelectionCancelledFlag,
CLIENT_SELECTION_FILTER aClientFilter )
{
GENERAL_COLLECTORS_GUIDE guide = getCollectorsGuide();
GENERAL_COLLECTOR collector;
const PCB_DISPLAY_OPTIONS& displayOpts = m_frame->GetDisplayOptions();
guide.SetIgnoreZoneFills( displayOpts.m_ZoneDisplayMode != ZONE_DISPLAY_MODE::SHOW_FILLED );
if( m_enteredGroup && !m_enteredGroup->GetBoundingBox().Contains( aWhere ) )
ExitGroup();
collector.Collect( board(), m_isFootprintEditor ? GENERAL_COLLECTOR::FootprintItems
: GENERAL_COLLECTOR::AllBoardItems,
aWhere, guide );
// Remove unselectable items
for( int i = collector.GetCount() - 1; i >= 0; --i )
{
if( !Selectable( collector[ i ] ) || ( aOnDrag && collector[i]->IsLocked() ) )
collector.Remove( i );
}
m_selection.ClearReferencePoint();
// Apply the stateful filter (remove items disabled by the Selection Filter)
FilterCollectedItems( collector, false );
// Allow the client to do tool- or action-specific filtering to see if we can get down
// to a single item
if( aClientFilter )
aClientFilter( aWhere, collector, this );
FilterCollectorForHierarchy( collector, false );
FilterCollectorForFootprints( collector, aWhere );
// For subtracting, we only want items that are selected
if( m_subtractive )
{
for( int i = collector.GetCount() - 1; i >= 0; --i )
{
if( !collector[i]->IsSelected() )
collector.Remove( i );
}
}
// Apply some ugly heuristics to avoid disambiguation menus whenever possible
if( collector.GetCount() > 1 && !m_skip_heuristics )
{
try
{
GuessSelectionCandidates( collector, aWhere );
}
catch( const std::exception& exc )
{
wxLogWarning( wxS( "Exception \"%s\" occurred attempting to guess selection "
"candidates." ), exc.what() );
return false;
}
}
// If still more than one item we're going to have to ask the user.
if( collector.GetCount() > 1 )
{
if( aOnDrag )
Wait( TOOL_EVENT( TC_ANY, TA_MOUSE_UP, BUT_LEFT ) );
if( !doSelectionMenu( &collector ) )
{
if( aSelectionCancelledFlag )
*aSelectionCancelledFlag = true;
return false;
}
}
int addedCount = 0;
bool anySubtracted = false;
if( !m_additive && !m_subtractive && !m_exclusive_or )
{
if( m_selection.GetSize() > 0 )
{
ClearSelection( true /*quiet mode*/ );
anySubtracted = true;
}
}
if( collector.GetCount() > 0 )
{
for( int i = 0; i < collector.GetCount(); ++i )
{
if( m_subtractive || ( m_exclusive_or && collector[i]->IsSelected() ) )
{
unselect( collector[i] );
anySubtracted = true;
}
else
{
select( collector[i] );
addedCount++;
}
}
}
if( addedCount == 1 )
{
m_toolMgr->ProcessEvent( EVENTS::PointSelectedEvent );
return true;
}
else if( addedCount > 1 )
{
m_toolMgr->ProcessEvent( EVENTS::SelectedEvent );
return true;
}
else if( anySubtracted )
{
m_toolMgr->ProcessEvent( EVENTS::UnselectedEvent );
return true;
}
return false;
}
bool PCB_SELECTION_TOOL::selectCursor( bool aForceSelect, CLIENT_SELECTION_FILTER aClientFilter )
{
if( aForceSelect || m_selection.Empty() )
{
ClearSelection( true /*quiet mode*/ );
selectPoint( getViewControls()->GetCursorPosition( false ), false, nullptr, aClientFilter );
}
return !m_selection.Empty();
}
// Some navigation actions are allowed in selectMultiple
const TOOL_ACTION* allowedActions[] = { &ACTIONS::panUp, &ACTIONS::panDown,
&ACTIONS::panLeft, &ACTIONS::panRight,
&ACTIONS::cursorUp, &ACTIONS::cursorDown,
&ACTIONS::cursorLeft, &ACTIONS::cursorRight,
&ACTIONS::cursorUpFast, &ACTIONS::cursorDownFast,
&ACTIONS::cursorLeftFast, &ACTIONS::cursorRightFast,
&ACTIONS::zoomIn, &ACTIONS::zoomOut,
&ACTIONS::zoomInCenter, &ACTIONS::zoomOutCenter,
&ACTIONS::zoomCenter, &ACTIONS::zoomFitScreen,
&ACTIONS::zoomFitObjects, nullptr };
bool PCB_SELECTION_TOOL::selectMultiple()
{
bool cancelled = false; // Was the tool canceled while it was running?
m_multiple = true; // Multiple selection mode is active
KIGFX::VIEW* view = getView();
KIGFX::PREVIEW::SELECTION_AREA area;
view->Add( &area );
bool anyAdded = false;
bool anySubtracted = false;
while( TOOL_EVENT* evt = Wait() )
{
int width = area.GetEnd().x - area.GetOrigin().x;
/* Selection mode depends on direction of drag-selection:
* Left > Right : Select objects that are fully enclosed by selection
* Right > Left : Select objects that are crossed by selection
*/
bool greedySelection = width >= 0 ? false : true;
if( view->IsMirroredX() )
greedySelection = !greedySelection;
m_frame->GetCanvas()->SetCurrentCursor( !greedySelection ? KICURSOR::SELECT_WINDOW
: KICURSOR::SELECT_LASSO );
if( evt->IsCancelInteractive() || evt->IsActivate() )
{
cancelled = true;
break;
}
if( evt->IsDrag( BUT_LEFT ) )
{
if( !m_drag_additive && !m_drag_subtractive )
{
if( m_selection.GetSize() > 0 )
{
anySubtracted = true;
ClearSelection( true /*quiet mode*/ );
}
}
// Start drawing a selection box
area.SetOrigin( evt->DragOrigin() );
area.SetEnd( evt->Position() );
area.SetAdditive( m_drag_additive );
area.SetSubtractive( m_drag_subtractive );
area.SetExclusiveOr( false );
view->SetVisible( &area, true );
view->Update( &area );
getViewControls()->SetAutoPan( true );
}
if( evt->IsMouseUp( BUT_LEFT ) )
{
getViewControls()->SetAutoPan( false );
// End drawing the selection box
view->SetVisible( &area, false );
std::vector<KIGFX::VIEW::LAYER_ITEM_PAIR> candidates;
BOX2I selectionBox = area.ViewBBox();
view->Query( selectionBox, candidates ); // Get the list of nearby items
int height = area.GetEnd().y - area.GetOrigin().y;
// Construct a BOX2I to determine BOARD_ITEM selection
BOX2I selectionRect( area.GetOrigin(), VECTOR2I( width, height ) );
selectionRect.Normalize();
GENERAL_COLLECTOR collector;
GENERAL_COLLECTOR padsCollector;
std::set<BOARD_ITEM*> group_items;
for( PCB_GROUP* group : board()->Groups() )
{
// The currently entered group does not get limited
if( m_enteredGroup == group )
continue;
std::unordered_set<BOARD_ITEM*>& newset = group->GetItems();
// If we are not greedy and have selected the whole group, add just one item
// to allow it to be promoted to the group later
if( !greedySelection && selectionRect.Contains( group->GetBoundingBox() )
&& newset.size() )
{
for( BOARD_ITEM* group_item : newset )
{
if( Selectable( group_item ) )
collector.Append( *newset.begin() );
}
}
for( BOARD_ITEM* group_item : newset )
group_items.emplace( group_item );
}
for( const KIGFX::VIEW::LAYER_ITEM_PAIR& candidate : candidates )
{
BOARD_ITEM* item = static_cast<BOARD_ITEM*>( candidate.first );
if( item && Selectable( item ) && item->HitTest( selectionRect, !greedySelection )
&& ( greedySelection || !group_items.count( item ) ) )
{
if( item->Type() == PCB_PAD_T && !m_isFootprintEditor )
padsCollector.Append( item );
else
collector.Append( item );
}
}
// Apply the stateful filter
FilterCollectedItems( collector, true );
FilterCollectorForHierarchy( collector, true );
// If we selected nothing but pads, allow them to be selected
if( collector.GetCount() == 0 )
{
collector = padsCollector;
FilterCollectedItems( collector, true );
FilterCollectorForHierarchy( collector, true );
}
for( EDA_ITEM* i : collector )
{
BOARD_ITEM* item = static_cast<BOARD_ITEM*>( i );
if( m_subtractive || ( m_exclusive_or && item->IsSelected() ) )
{
unselect( item );
anySubtracted = true;
}
else
{
select( item );
anyAdded = true;
}
}
m_selection.SetIsHover( false );
// Inform other potentially interested tools
if( anyAdded )
m_toolMgr->ProcessEvent( EVENTS::SelectedEvent );
else if( anySubtracted )
m_toolMgr->ProcessEvent( EVENTS::UnselectedEvent );
break; // Stop waiting for events
}
// Allow some actions for navigation
for( int i = 0; allowedActions[i]; ++i )
{
if( evt->IsAction( allowedActions[i] ) )
{
evt->SetPassEvent();
break;
}
}
}
getViewControls()->SetAutoPan( false );
// Stop drawing the selection box
view->Remove( &area );
m_multiple = false; // Multiple selection mode is inactive
if( !cancelled )
m_selection.ClearReferencePoint();
m_toolMgr->ProcessEvent( EVENTS::UninhibitSelectionEditing );
return cancelled;
}
int PCB_SELECTION_TOOL::disambiguateCursor( const TOOL_EVENT& aEvent )
{
wxMouseState keyboardState = wxGetMouseState();
setModifiersState( keyboardState.ShiftDown(), keyboardState.ControlDown(),
keyboardState.AltDown() );
m_skip_heuristics = true;
selectPoint( m_originalCursor, false, &m_canceledMenu );
m_skip_heuristics = false;
return 0;
}
int PCB_SELECTION_TOOL::CursorSelection( const TOOL_EVENT& aEvent )
{
CLIENT_SELECTION_FILTER aClientFilter = aEvent.Parameter<CLIENT_SELECTION_FILTER>();
selectCursor( false, aClientFilter );
return 0;
}
int PCB_SELECTION_TOOL::ClearSelection( const TOOL_EVENT& aEvent )
{
ClearSelection();
return 0;
}
int PCB_SELECTION_TOOL::SelectAll( const TOOL_EVENT& aEvent )
{
KIGFX::VIEW* view = getView();
// hold all visible items
std::vector<KIGFX::VIEW::LAYER_ITEM_PAIR> selectedItems;
// Filter the view items based on the selection box
BOX2I selectionBox;
// Intermediate step to allow filtering against hierarchy
GENERAL_COLLECTOR collection;
selectionBox.SetMaximum();
view->Query( selectionBox, selectedItems ); // Get the list of selected items
for( const KIGFX::VIEW::LAYER_ITEM_PAIR& item_pair : selectedItems )
{
BOARD_ITEM* item = static_cast<BOARD_ITEM*>( item_pair.first );
if( !item || !Selectable( item ) || !itemPassesFilter( item, true ) )
continue;
collection.Append( item );
}
FilterCollectorForHierarchy( collection, true );
for( EDA_ITEM* item : collection )
select( item );
m_toolMgr->ProcessEvent( EVENTS::SelectedEvent );
m_frame->GetCanvas()->ForceRefresh();
return 0;
}
int PCB_SELECTION_TOOL::UnselectAll( const TOOL_EVENT& aEvent )
{
KIGFX::VIEW* view = getView();
// hold all visible items
std::vector<KIGFX::VIEW::LAYER_ITEM_PAIR> selectedItems;
// Filter the view items based on the selection box
BOX2I selectionBox;
selectionBox.SetMaximum();
view->Query( selectionBox, selectedItems ); // Get the list of selected items
for( const KIGFX::VIEW::LAYER_ITEM_PAIR& item_pair : selectedItems )
{
BOARD_ITEM* item = static_cast<BOARD_ITEM*>( item_pair.first );
if( !item || !Selectable( item ) )
continue;
unselect( item );
}
m_toolMgr->ProcessEvent( EVENTS::UnselectedEvent );
m_frame->GetCanvas()->ForceRefresh();
return 0;
}
void connectedItemFilter( const VECTOR2I&, GENERAL_COLLECTOR& aCollector,
PCB_SELECTION_TOOL* sTool )
{
// Narrow the collection down to a single BOARD_CONNECTED_ITEM for each represented net.
// All other items types are removed.
std::set<int> representedNets;
for( int i = aCollector.GetCount() - 1; i >= 0; i-- )
{
BOARD_CONNECTED_ITEM* item = dynamic_cast<BOARD_CONNECTED_ITEM*>( aCollector[i] );
if( !item )
aCollector.Remove( i );
else if ( representedNets.count( item->GetNetCode() ) )
aCollector.Remove( i );
else
representedNets.insert( item->GetNetCode() );
}
}
int PCB_SELECTION_TOOL::unrouteSelected( const TOOL_EVENT& aEvent )
{
std::deque<EDA_ITEM*> selectedItems = m_selection.GetItems();
// Get all footprints and pads
std::vector<BOARD_CONNECTED_ITEM*> toUnroute;
for( EDA_ITEM* item : selectedItems )
{
if( item->Type() == PCB_FOOTPRINT_T )
{
for( PAD* pad : static_cast<FOOTPRINT*>( item )->Pads() )
toUnroute.push_back( pad );
}
else if( BOARD_CONNECTED_ITEM::ClassOf( item ) )
{
toUnroute.push_back( static_cast<BOARD_CONNECTED_ITEM*>( item ) );
}
}
// Clear selection so we don't delete our footprints/pads
ClearSelection( true );
// Get the tracks on our list of pads, then delete them
selectAllConnectedTracks( toUnroute, STOP_CONDITION::STOP_AT_PAD );
m_toolMgr->RunAction( ACTIONS::doDelete );
// Reselect our footprint/pads as they were in our original selection
for( EDA_ITEM* item : selectedItems )
{
if( item->Type() == PCB_FOOTPRINT_T || item->Type() == PCB_PAD_T )
select( item );
}
return 0;
}
int PCB_SELECTION_TOOL::expandConnection( const TOOL_EVENT& aEvent )
{
// expandConnection will get called no matter whether the user selected a connected item or a
// non-connected shape (graphic on a non-copper layer). The algorithm for expanding to connected
// items is different from graphics, so they need to be handled separately.
unsigned initialCount = 0;
for( const EDA_ITEM* item : m_selection.GetItems() )
{
if( item->Type() == PCB_FOOTPRINT_T
|| item->Type() == PCB_GENERATOR_T
|| ( static_cast<const BOARD_ITEM*>( item )->IsConnected() ) )
{
initialCount++;
}
}
if( initialCount == 0 )
{
// First, process any graphic shapes we have
std::vector<PCB_SHAPE*> startShapes;
for( EDA_ITEM* item : m_selection.GetItems() )
{
if( isExpandableGraphicShape( item ) )
startShapes.push_back( static_cast<PCB_SHAPE*>( item ) );
}
// If no non-copper shapes; fall back to looking for connected items
if( !startShapes.empty() )
selectAllConnectedShapes( startShapes );
else
selectCursor( true, connectedItemFilter );
}
m_frame->SetStatusText( _( "Select/Expand Connection..." ) );
for( STOP_CONDITION stopCondition : { STOP_AT_JUNCTION, STOP_AT_PAD, STOP_NEVER } )
{
std::deque<EDA_ITEM*> selectedItems = m_selection.GetItems();
for( EDA_ITEM* item : selectedItems )
item->ClearTempFlags();
std::vector<BOARD_CONNECTED_ITEM*> startItems;
for( EDA_ITEM* item : selectedItems )
{
if( item->Type() == PCB_FOOTPRINT_T )
{
FOOTPRINT* footprint = static_cast<FOOTPRINT*>( item );
for( PAD* pad : footprint->Pads() )
startItems.push_back( pad );
}
else if( item->Type() == PCB_GENERATOR_T )
{
for( BOARD_ITEM* generatedItem : static_cast<PCB_GENERATOR*>( item )->GetItems() )
{
if( BOARD_CONNECTED_ITEM::ClassOf( generatedItem ) )
startItems.push_back( static_cast<BOARD_CONNECTED_ITEM*>( generatedItem ) );
}
}
else if( BOARD_CONNECTED_ITEM::ClassOf( item ) )
{
startItems.push_back( static_cast<BOARD_CONNECTED_ITEM*>( item ) );
}
}
selectAllConnectedTracks( startItems, stopCondition );
if( m_selection.GetItems().size() > initialCount )
break;
}
m_frame->SetStatusText( wxEmptyString );
// Inform other potentially interested tools
m_toolMgr->ProcessEvent( EVENTS::SelectedEvent );
return 0;
}
void PCB_SELECTION_TOOL::selectAllConnectedTracks(
const std::vector<BOARD_CONNECTED_ITEM*>& aStartItems, STOP_CONDITION aStopCondition )
{
const LSET allCuMask = LSET::AllCuMask();
PROF_TIMER refreshTimer;
double refreshIntervalMs = 500; // Refresh display with this interval to indicate progress
int lastSelectionSize = (int) m_selection.GetSize();
auto connectivity = board()->GetConnectivity();
std::map<VECTOR2I, std::vector<PCB_TRACK*>> trackMap;
std::map<VECTOR2I, PCB_VIA*> viaMap;
std::map<VECTOR2I, PAD*> padMap;
std::map<VECTOR2I, std::vector<PCB_SHAPE*>> shapeMap;
std::set<PAD*> startPadSet;
std::vector<BOARD_CONNECTED_ITEM*> cleanupItems;
std::vector<std::pair<VECTOR2I, LSET>> activePts;
for( BOARD_CONNECTED_ITEM* startItem : aStartItems )
{
// Track starting pads
if( startItem->Type() == PCB_PAD_T )
startPadSet.insert( static_cast<PAD*>( startItem ) );
}
for( BOARD_CONNECTED_ITEM* startItem : aStartItems )
{
if( startItem->HasFlag( SKIP_STRUCT ) ) // Skip already visited items
continue;
auto connectedItems = connectivity->GetConnectedItems( startItem,
{ PCB_TRACE_T, PCB_ARC_T, PCB_VIA_T, PCB_PAD_T, PCB_SHAPE_T }, true );
// Build maps of connected items
for( BOARD_CONNECTED_ITEM* item : connectedItems )
{
switch( item->Type() )
{
case PCB_ARC_T:
case PCB_TRACE_T:
{
PCB_TRACK* track = static_cast<PCB_TRACK*>( item );
trackMap[track->GetStart()].push_back( track );
trackMap[track->GetEnd()].push_back( track );
break;
}
case PCB_VIA_T:
{
PCB_VIA* via = static_cast<PCB_VIA*>( item );
viaMap[via->GetStart()] = via;
break;
}
case PCB_PAD_T:
{
PAD* pad = static_cast<PAD*>( item );
padMap[pad->GetPosition()] = pad;
break;
}
case PCB_SHAPE_T:
{
PCB_SHAPE* shape = static_cast<PCB_SHAPE*>( item );
for( const auto& point : shape->GetConnectionPoints() )
shapeMap[point].push_back( shape );
break;
}
default:
break;
}
}
// Set up the initial active points
switch( startItem->Type() )
{
case PCB_ARC_T:
case PCB_TRACE_T:
{
PCB_TRACK* track = static_cast<PCB_TRACK*>( startItem );
activePts.push_back( { track->GetStart(), track->GetLayerSet() } );
activePts.push_back( { track->GetEnd(), track->GetLayerSet() } );
break;
}
case PCB_VIA_T:
activePts.push_back( { startItem->GetPosition(), startItem->GetLayerSet() } );
break;
case PCB_PAD_T:
activePts.push_back( { startItem->GetPosition(), startItem->GetLayerSet() } );
break;
case PCB_SHAPE_T:
{
PCB_SHAPE* shape = static_cast<PCB_SHAPE*>( startItem );
for( const auto& point : shape->GetConnectionPoints() )
activePts.push_back( { point, startItem->GetLayerSet() } );
break;
}
default:
break;
}
bool expand = true;
int failSafe = 0;
// Iterative push from all active points
while( expand && failSafe++ < 100000 )
{
expand = false;
for( int i = (int) activePts.size() - 1; i >= 0; --i )
{
VECTOR2I pt = activePts[i].first;
LSET layerSetCu = activePts[i].second & allCuMask;
auto viaIt = viaMap.find( pt );
auto padIt = padMap.find( pt );
bool gotVia = ( viaIt != viaMap.end() )
&& ( layerSetCu & ( viaIt->second->GetLayerSet() ) ).any();
bool gotPad = ( padIt != padMap.end() )
&& ( layerSetCu & ( padIt->second->GetLayerSet() ) ).any();
bool gotNonStartPad =
gotPad && ( startPadSet.find( padIt->second ) == startPadSet.end() );
if( aStopCondition == STOP_AT_JUNCTION )
{
size_t pt_count = 0;
for( PCB_TRACK* track : trackMap[pt] )
{
if( track->GetStart() != track->GetEnd()
&& layerSetCu.Contains( track->GetLayer() ) )
{
pt_count++;
}
}
if( pt_count > 2 || gotVia || gotNonStartPad )
{
activePts.erase( activePts.begin() + i );
continue;
}
}
else if( aStopCondition == STOP_AT_PAD )
{
if( gotNonStartPad )
{
activePts.erase( activePts.begin() + i );
continue;
}
}
if( gotPad )
{
PAD* pad = padIt->second;
if( !pad->HasFlag( SKIP_STRUCT ) )
{
pad->SetFlags( SKIP_STRUCT );
cleanupItems.push_back( pad );
activePts.push_back( { pad->GetPosition(), pad->GetLayerSet() } );
expand = true;
}
}
for( PCB_TRACK* track : trackMap[pt] )
{
if( !layerSetCu.Contains( track->GetLayer() ) )
continue;
if( !track->IsSelected() )
select( track );
if( !track->HasFlag( SKIP_STRUCT ) )
{
track->SetFlags( SKIP_STRUCT );
cleanupItems.push_back( track );
if( track->GetStart() == pt )
activePts.push_back( { track->GetEnd(), track->GetLayerSet() } );
else
activePts.push_back( { track->GetStart(), track->GetLayerSet() } );
expand = true;
}
}
for( PCB_SHAPE* shape : shapeMap[pt] )
{
if( !layerSetCu.Contains( shape->GetLayer() ) )
continue;
if( !shape->IsSelected() )
select( shape );
if( !shape->HasFlag( SKIP_STRUCT ) )
{
shape->SetFlags( SKIP_STRUCT );
cleanupItems.push_back( shape );
for( const VECTOR2I& newPoint : shape->GetConnectionPoints() )
{
if( newPoint == pt )
continue;
activePts.push_back( { newPoint, shape->GetLayerSet() } );
}
expand = true;
}
}
if( viaMap.count( pt ) )
{
PCB_VIA* via = viaMap[pt];
if( !via->IsSelected() )
select( via );
if( !via->HasFlag( SKIP_STRUCT ) )
{
via->SetFlags( SKIP_STRUCT );
cleanupItems.push_back( via );
activePts.push_back( { via->GetPosition(), via->GetLayerSet() } );
expand = true;
}
}
activePts.erase( activePts.begin() + i );
}
// Refresh display for the feel of progress
if( refreshTimer.msecs() >= refreshIntervalMs )
{
if( m_selection.Size() != lastSelectionSize )
{
m_frame->GetCanvas()->ForceRefresh();
lastSelectionSize = m_selection.Size();
}
refreshTimer.Start();
}
}
}
for( BOARD_CONNECTED_ITEM* item : cleanupItems )
item->ClearFlags( SKIP_STRUCT );
}
bool PCB_SELECTION_TOOL::isExpandableGraphicShape( const EDA_ITEM* aItem ) const
{
if( aItem->Type() == PCB_SHAPE_T )
{
const PCB_SHAPE* shape = static_cast<const PCB_SHAPE*>( aItem );
switch( shape->GetShape() )
{
case SHAPE_T::SEGMENT:
case SHAPE_T::ARC:
case SHAPE_T::BEZIER:
return !shape->IsOnCopperLayer();
case SHAPE_T::POLY:
return !shape->IsOnCopperLayer() && !shape->IsClosed();
default:
return false;
}
}
return false;
}
void PCB_SELECTION_TOOL::selectAllConnectedShapes( const std::vector<PCB_SHAPE*>& aStartItems )
{
std::stack<PCB_SHAPE*> toSearch;
std::set<PCB_SHAPE*> toCleanup;
for( PCB_SHAPE* startItem : aStartItems )
toSearch.push( startItem );
GENERAL_COLLECTOR collector;
GENERAL_COLLECTORS_GUIDE guide = getCollectorsGuide();
auto searchPoint = [&]( const VECTOR2I& aWhere )
{
collector.Collect( board(), { PCB_SHAPE_T }, aWhere, guide );
for( EDA_ITEM* item : collector )
{
if( isExpandableGraphicShape( item ) )
toSearch.push( static_cast<PCB_SHAPE*>( item ) );
}
};
while( !toSearch.empty() )
{
PCB_SHAPE* shape = toSearch.top();
toSearch.pop();
if( shape->HasFlag( SKIP_STRUCT ) )
continue;
select( shape );
shape->SetFlags( SKIP_STRUCT );
toCleanup.insert( shape );
guide.SetLayerVisibleBits( shape->GetLayerSet() );
searchPoint( shape->GetStart() );
searchPoint( shape->GetEnd() );
}
for( PCB_SHAPE* shape : toCleanup )
shape->ClearFlags( SKIP_STRUCT );
}
int PCB_SELECTION_TOOL::selectUnconnected( const TOOL_EVENT& aEvent )
{
// Get all pads
std::vector<PAD*> pads;
for( EDA_ITEM* item : m_selection.GetItems() )
{
if( item->Type() == PCB_FOOTPRINT_T )
{
for( PAD* pad : static_cast<FOOTPRINT*>( item )->Pads() )
pads.push_back( pad );
}
else if( item->Type() == PCB_PAD_T )
{
pads.push_back( static_cast<PAD*>( item ) );
}
}
// Select every footprint on the end of the ratsnest for each pad in our selection
std::shared_ptr<CONNECTIVITY_DATA> conn = board()->GetConnectivity();
for( PAD* pad : pads )
{
for( const CN_EDGE& edge : conn->GetRatsnestForPad( pad ) )
{
wxCHECK2( edge.GetSourceNode() && !edge.GetSourceNode()->Dirty(), continue );
wxCHECK2( edge.GetTargetNode() && !edge.GetTargetNode()->Dirty(), continue );
BOARD_CONNECTED_ITEM* sourceParent = edge.GetSourceNode()->Parent();
BOARD_CONNECTED_ITEM* targetParent = edge.GetTargetNode()->Parent();
if( sourceParent == pad )
{
if( targetParent->Type() == PCB_PAD_T )
select( static_cast<PAD*>( targetParent )->GetParent() );
}
else if( targetParent == pad )
{
if( sourceParent->Type() == PCB_PAD_T )
select( static_cast<PAD*>( sourceParent )->GetParent() );
}
}
}
return 0;
}
int PCB_SELECTION_TOOL::grabUnconnected( const TOOL_EVENT& aEvent )
{
PCB_SELECTION originalSelection = m_selection;
// Get all pads
std::vector<PAD*> pads;
for( EDA_ITEM* item : m_selection.GetItems() )
{
if( item->Type() == PCB_FOOTPRINT_T )
{
for( PAD* pad : static_cast<FOOTPRINT*>( item )->Pads() )
pads.push_back( pad );
}
else if( item->Type() == PCB_PAD_T )
{
pads.push_back( static_cast<PAD*>( item ) );
}
}
ClearSelection();
// Select every footprint on the end of the ratsnest for each pad in our selection
std::shared_ptr<CONNECTIVITY_DATA> conn = board()->GetConnectivity();
for( PAD* pad : pads )
{
const std::vector<CN_EDGE> edges = conn->GetRatsnestForPad( pad );
// Need to have something unconnected to grab
if( edges.size() == 0 )
continue;
double currentDistance = DBL_MAX;
FOOTPRINT* nearest = nullptr;
// Check every ratsnest line for the nearest one
for( const CN_EDGE& edge : edges )
{
// Figure out if we are the source or the target node on the ratnest
const CN_ANCHOR* other = edge.GetSourceNode()->Parent() == pad ? edge.GetTargetNode().get()
: edge.GetSourceNode().get();
wxCHECK2( other && !other->Dirty(), continue );
// We only want to grab footprints, so the ratnest has to point to a pad
if( other->Parent()->Type() != PCB_PAD_T )
continue;
if( edge.GetLength() < currentDistance )
{
currentDistance = edge.GetLength();
nearest = other->Parent()->GetParentFootprint();
}
}
if( nearest != nullptr )
select( nearest );
}
m_toolMgr->RunAction( PCB_ACTIONS::moveIndividually );
return 0;
}
void PCB_SELECTION_TOOL::SelectAllItemsOnNet( int aNetCode, bool aSelect )
{
std::shared_ptr<CONNECTIVITY_DATA> conn = board()->GetConnectivity();
for( BOARD_ITEM* item : conn->GetNetItems( aNetCode, { PCB_TRACE_T, PCB_ARC_T, PCB_VIA_T } ) )
{
if( itemPassesFilter( item, true ) )
aSelect ? select( item ) : unselect( item );
}
}
int PCB_SELECTION_TOOL::selectNet( const TOOL_EVENT& aEvent )
{
bool select = aEvent.IsAction( &PCB_ACTIONS::selectNet );
// If we've been passed an argument, just select that netcode1
int netcode = aEvent.Parameter<int>();
if( netcode > 0 )
{
SelectAllItemsOnNet( netcode, select );
// Inform other potentially interested tools
if( m_selection.Size() > 0 )
m_toolMgr->ProcessEvent( EVENTS::SelectedEvent );
else
m_toolMgr->ProcessEvent( EVENTS::UnselectedEvent );
return 0;
}
if( !selectCursor() )
return 0;
// copy the selection, since we're going to iterate and modify
auto selection = m_selection.GetItems();
for( EDA_ITEM* i : selection )
{
BOARD_CONNECTED_ITEM* connItem = dynamic_cast<BOARD_CONNECTED_ITEM*>( i );
if( connItem )
SelectAllItemsOnNet( connItem->GetNetCode(), select );
}
// Inform other potentially interested tools
if( m_selection.Size() > 0 )
m_toolMgr->ProcessEvent( EVENTS::SelectedEvent );
else
m_toolMgr->ProcessEvent( EVENTS::UnselectedEvent );
return 0;
}
void PCB_SELECTION_TOOL::selectAllItemsOnSheet( wxString& aSheetPath )
{
std::vector<BOARD_ITEM*> footprints;
// store all footprints that are on that sheet path
for( FOOTPRINT* footprint : board()->Footprints() )
{
if( footprint == nullptr )
continue;
wxString footprint_path = footprint->GetPath().AsString().BeforeLast( '/' );
if( footprint_path.IsEmpty() )
footprint_path += '/';
if( footprint_path == aSheetPath )
footprints.push_back( footprint );
}
for( BOARD_ITEM* i : footprints )
{
if( i != nullptr )
select( i );
}
selectConnections( footprints );
}
void PCB_SELECTION_TOOL::selectConnections( const std::vector<BOARD_ITEM*>& aItems )
{
// Generate a list of all pads, and of all nets they belong to.
std::list<int> netcodeList;
std::vector<BOARD_CONNECTED_ITEM*> padList;
for( BOARD_ITEM* item : aItems )
{
switch( item->Type() )
{
case PCB_FOOTPRINT_T:
{
for( PAD* pad : static_cast<FOOTPRINT*>( item )->Pads() )
{
if( pad->IsConnected() )
{
netcodeList.push_back( pad->GetNetCode() );
padList.push_back( pad );
}
}
break;
}
case PCB_PAD_T:
{
PAD* pad = static_cast<PAD*>( item );
if( pad->IsConnected() )
{
netcodeList.push_back( pad->GetNetCode() );
padList.push_back( pad );
}
break;
}
default:
break;
}
}
// Sort for binary search
std::sort( padList.begin(), padList.end() );
// remove all duplicates
netcodeList.sort();
netcodeList.unique();
selectAllConnectedTracks( padList, STOP_AT_PAD );
// now we need to find all footprints that are connected to each of these nets then we need
// to determine if these footprints are in the list of footprints
std::vector<int> removeCodeList;
std::shared_ptr<CONNECTIVITY_DATA> conn = board()->GetConnectivity();
for( int netCode : netcodeList )
{
for( BOARD_CONNECTED_ITEM* pad : conn->GetNetItems( netCode, { PCB_PAD_T } ) )
{
if( !std::binary_search( padList.begin(), padList.end(), pad ) )
{
// if we cannot find the pad in the padList then we can assume that that pad
// should not be used, therefore invalidate this netcode.
removeCodeList.push_back( netCode );
break;
}
}
}
for( int removeCode : removeCodeList )
netcodeList.remove( removeCode );
std::unordered_set<BOARD_ITEM*> localConnectionList;
for( int netCode : netcodeList )
{
for( BOARD_ITEM* item : conn->GetNetItems( netCode,
{ PCB_TRACE_T, PCB_ARC_T, PCB_VIA_T } ) )
localConnectionList.insert( item );
}
for( BOARD_ITEM* item : localConnectionList )
select( item );
}
int PCB_SELECTION_TOOL::syncSelection( const TOOL_EVENT& aEvent )
{
std::vector<BOARD_ITEM*>* items = aEvent.Parameter<std::vector<BOARD_ITEM*>*>();
if( items )
doSyncSelection( *items, false );
return 0;
}
int PCB_SELECTION_TOOL::syncSelectionWithNets( const TOOL_EVENT& aEvent )
{
std::vector<BOARD_ITEM*>* items = aEvent.Parameter<std::vector<BOARD_ITEM*>*>();
if( items )
doSyncSelection( *items, true );
return 0;
}
void PCB_SELECTION_TOOL::doSyncSelection( const std::vector<BOARD_ITEM*>& aItems, bool aWithNets )
{
ClearSelection( true /*quiet mode*/ );
// Perform individual selection of each item before processing the event.
for( BOARD_ITEM* item : aItems )
select( item );
if( aWithNets )
selectConnections( aItems );
BOX2I bbox = m_selection.GetBoundingBox();
if( bbox.GetWidth() != 0 && bbox.GetHeight() != 0 )
{
if( m_frame->GetPcbNewSettings()->m_CrossProbing.center_on_items )
{
if( m_frame->GetPcbNewSettings()->m_CrossProbing.zoom_to_fit )
ZoomFitCrossProbeBBox( bbox );
m_frame->FocusOnLocation( bbox.Centre() );
}
}
view()->UpdateAllLayersColor();
m_frame->GetCanvas()->ForceRefresh();
if( m_selection.Size() > 0 )
m_toolMgr->ProcessEvent( EVENTS::SelectedEvent );
}
int PCB_SELECTION_TOOL::selectSheetContents( const TOOL_EVENT& aEvent )
{
ClearSelection( true /*quiet mode*/ );
wxString sheetPath = *aEvent.Parameter<wxString*>();
selectAllItemsOnSheet( sheetPath );
zoomFitSelection();
if( m_selection.Size() > 0 )
m_toolMgr->ProcessEvent( EVENTS::SelectedEvent );
return 0;
}
int PCB_SELECTION_TOOL::selectSameSheet( const TOOL_EVENT& aEvent )
{
// this function currently only supports footprints since they are only on one sheet.
EDA_ITEM* item = m_selection.Front();
if( !item )
return 0;
if( item->Type() != PCB_FOOTPRINT_T )
return 0;
FOOTPRINT* footprint = dynamic_cast<FOOTPRINT*>( item );
if( !footprint || footprint->GetPath().empty() )
return 0;
ClearSelection( true /*quiet mode*/ );
// get the sheet path only.
wxString sheetPath = footprint->GetPath().AsString().BeforeLast( '/' );
if( sheetPath.IsEmpty() )
sheetPath += '/';
selectAllItemsOnSheet( sheetPath );
// Inform other potentially interested tools
if( m_selection.Size() > 0 )
m_toolMgr->ProcessEvent( EVENTS::SelectedEvent );
return 0;
}
void PCB_SELECTION_TOOL::zoomFitSelection()
{
// Should recalculate the view to zoom in on the selection.
BOX2I selectionBox = m_selection.GetBoundingBox();
KIGFX::VIEW* view = getView();
VECTOR2D screenSize = view->ToWorld( ToVECTOR2D( m_frame->GetCanvas()->GetClientSize() ),
false );
screenSize.x = std::max( 10.0, screenSize.x );
screenSize.y = std::max( 10.0, screenSize.y );
if( selectionBox.GetWidth() != 0 || selectionBox.GetHeight() != 0 )
{
VECTOR2D vsize = selectionBox.GetSize();
double scale = view->GetScale()
/ std::max( fabs( vsize.x / screenSize.x ), fabs( vsize.y / screenSize.y ) );
view->SetScale( scale );
view->SetCenter( selectionBox.Centre() );
view->Add( &m_selection );
}
m_frame->GetCanvas()->ForceRefresh();
}
void PCB_SELECTION_TOOL::ZoomFitCrossProbeBBox( const BOX2I& aBBox )
{
// Should recalculate the view to zoom in on the bbox.
KIGFX::VIEW* view = getView();
if( aBBox.GetWidth() == 0 )
return;
BOX2I bbox = aBBox;
bbox.Normalize();
//#define DEFAULT_PCBNEW_CODE // Un-comment for normal full zoom KiCad algorithm
#ifdef DEFAULT_PCBNEW_CODE
auto bbSize = bbox.Inflate( bbox.GetWidth() * 0.2f ).GetSize();
auto screenSize = view->ToWorld( GetCanvas()->GetClientSize(), false );
// The "fabs" on x ensures the right answer when the view is flipped
screenSize.x = std::max( 10.0, fabs( screenSize.x ) );
screenSize.y = std::max( 10.0, screenSize.y );
double ratio = std::max( fabs( bbSize.x / screenSize.x ), fabs( bbSize.y / screenSize.y ) );
// Try not to zoom on every cross-probe; it gets very noisy
if( crossProbingSettings.zoom_to_fit && ( ratio < 0.5 || ratio > 1.0 ) )
view->SetScale( view->GetScale() / ratio );
#endif // DEFAULT_PCBNEW_CODE
#ifndef DEFAULT_PCBNEW_CODE // Do the scaled zoom
auto bbSize = bbox.Inflate( KiROUND( bbox.GetWidth() * 0.2 ) ).GetSize();
VECTOR2D screenSize = view->ToWorld( ToVECTOR2D( m_frame->GetCanvas()->GetClientSize() ),
false );
// This code tries to come up with a zoom factor that doesn't simply zoom in
// to the cross probed component, but instead shows a reasonable amount of the
// circuit around it to provide context. This reduces or eliminates the need
// to manually change the zoom because it's too close.
// Using the default text height as a constant to compare against, use the
// height of the bounding box of visible items for a footprint to figure out
// if this is a big footprint (like a processor) or a small footprint (like a resistor).
// This ratio is not useful by itself as a scaling factor. It must be "bent" to
// provide good scaling at varying component sizes. Bigger components need less
// scaling than small ones.
double currTextHeight = pcbIUScale.mmToIU( DEFAULT_TEXT_SIZE );
double compRatio = bbSize.y / currTextHeight; // Ratio of component to text height
// This will end up as the scaling factor we apply to "ratio".
double compRatioBent = 1.0;
// This is similar to the original KiCad code that scaled the zoom to make sure
// components were visible on screen. It's simply a ratio of screen size to
// component size, and its job is to zoom in to make the component fullscreen.
// Earlier in the code the component BBox is given a 20% margin to add some
// breathing room. We compare the height of this enlarged component bbox to the
// default text height. If a component will end up with the sides clipped, we
// adjust later to make sure it fits on screen.
//
// The "fabs" on x ensures the right answer when the view is flipped
screenSize.x = std::max( 10.0, fabs( screenSize.x ) );
screenSize.y = std::max( 10.0, screenSize.y );
double ratio = std::max( -1.0, fabs( bbSize.y / screenSize.y ) );
// Original KiCad code for how much to scale the zoom
double kicadRatio =
std::max( fabs( bbSize.x / screenSize.x ), fabs( bbSize.y / screenSize.y ) );
// LUT to scale zoom ratio to provide reasonable schematic context. Must work
// with footprints of varying sizes (e.g. 0402 package and 200 pin BGA).
// "first" is used as the input and "second" as the output
//
// "first" = compRatio (footprint height / default text height)
// "second" = Amount to scale ratio by
std::vector<std::pair<double, double>> lut{
{ 1, 8 }, { 1.5, 5 }, { 3, 3 }, { 4.5, 2.5 }, { 8, 2.0 },
{ 12, 1.7 }, { 16, 1.5 }, { 24, 1.3 }, { 32, 1.0 },
};
std::vector<std::pair<double, double>>::iterator it;
compRatioBent = lut.back().second; // Large component default
if( compRatio >= lut.front().first )
{
// Use LUT to do linear interpolation of "compRatio" within "first", then
// use that result to linearly interpolate "second" which gives the scaling
// factor needed.
for( it = lut.begin(); it < lut.end() - 1; it++ )
{
if( it->first <= compRatio && next( it )->first >= compRatio )
{
double diffx = compRatio - it->first;
double diffn = next( it )->first - it->first;
compRatioBent = it->second + ( next( it )->second - it->second ) * diffx / diffn;
break; // We have our interpolated value
}
}
}
else
{
compRatioBent = lut.front().second; // Small component default
}
// If the width of the part we're probing is bigger than what the screen width will be
// after the zoom, then punt and use the KiCad zoom algorithm since it guarantees the
// part's width will be encompassed within the screen. This will apply to parts that
// are much wider than they are tall.
if( bbSize.x > screenSize.x * ratio * compRatioBent )
{
// Use standard KiCad zoom algorithm for parts too wide to fit screen/
ratio = kicadRatio;
compRatioBent = 1.0; // Reset so we don't modify the "KiCad" ratio
wxLogTrace( "CROSS_PROBE_SCALE",
"Part TOO WIDE for screen. Using normal KiCad zoom ratio: %1.5f", ratio );
}
// Now that "compRatioBent" holds our final scaling factor we apply it to the original
// fullscreen zoom ratio to arrive at the final ratio itself.
ratio *= compRatioBent;
bool alwaysZoom = false; // DEBUG - allows us to minimize zooming or not
// Try not to zoom on every cross-probe; it gets very noisy
if( ( ratio < 0.5 || ratio > 1.0 ) || alwaysZoom )
view->SetScale( view->GetScale() / ratio );
#endif // ifndef DEFAULT_PCBNEW_CODE
}
void PCB_SELECTION_TOOL::FindItem( BOARD_ITEM* aItem )
{
bool cleared = false;
if( m_selection.GetSize() > 0 )
{
// Don't fire an event now; most of the time it will be redundant as we're about to
// fire a SelectedEvent.
cleared = true;
ClearSelection( true /*quiet mode*/ );
}
if( aItem )
{
switch( aItem->Type() )
{
case PCB_NETINFO_T:
{
int netCode = static_cast<NETINFO_ITEM*>( aItem )->GetNetCode();
if( netCode > 0 )
{
SelectAllItemsOnNet( netCode, true );
m_frame->FocusOnLocation( aItem->GetCenter() );
}
break;
}
default:
select( aItem );
m_frame->FocusOnLocation( aItem->GetPosition() );
}
// If the item has a bounding box, then zoom out if needed
if( aItem->GetBoundingBox().GetHeight() > 0 && aItem->GetBoundingBox().GetWidth() > 0 )
{
// This adds some margin
double marginFactor = 2;
KIGFX::PCB_VIEW* pcbView = canvas()->GetView();
BOX2D screenBox = pcbView->GetViewport();
VECTOR2I screenSize = screenBox.GetSize();
BOX2I screenRect( screenBox.GetOrigin(), screenSize / marginFactor );
if( !screenRect.Contains( aItem->GetBoundingBox() ) )
{
double scaleX = screenSize.x /
static_cast<double>( aItem->GetBoundingBox().GetWidth() );
double scaleY = screenSize.y /
static_cast<double>( aItem->GetBoundingBox().GetHeight() );
scaleX /= marginFactor;
scaleY /= marginFactor;
double scale = scaleX > scaleY ? scaleY : scaleX;
if( scale < 1 ) // Don't zoom in, only zoom out
{
pcbView->SetScale( pcbView->GetScale() * ( scale ) );
//Let's refocus because there is an algorithm to avoid dialogs in there.
m_frame->FocusOnLocation( aItem->GetCenter() );
}
}
}
// Inform other potentially interested tools
m_toolMgr->ProcessEvent( EVENTS::SelectedEvent );
}
else if( cleared )
{
m_toolMgr->ProcessEvent( EVENTS::ClearedEvent );
}
m_frame->GetCanvas()->ForceRefresh();
}
/**
* Determine if an item is included by the filter specified.
*
* @return true if aItem should be selected by this filter (i..e not filtered out)
*/
static bool itemIsIncludedByFilter( const BOARD_ITEM& aItem, const BOARD& aBoard,
const DIALOG_FILTER_SELECTION::OPTIONS& aFilterOptions )
{
switch( aItem.Type() )
{
case PCB_FOOTPRINT_T:
{
const FOOTPRINT& footprint = static_cast<const FOOTPRINT&>( aItem );
return aFilterOptions.includeModules
&& ( aFilterOptions.includeLockedModules || !footprint.IsLocked() );
}
case PCB_TRACE_T:
case PCB_ARC_T:
return aFilterOptions.includeTracks;
case PCB_VIA_T:
return aFilterOptions.includeVias;
case PCB_ZONE_T:
return aFilterOptions.includeZones;
case PCB_SHAPE_T:
case PCB_TARGET_T:
case PCB_DIM_ALIGNED_T:
case PCB_DIM_CENTER_T:
case PCB_DIM_RADIAL_T:
case PCB_DIM_ORTHOGONAL_T:
case PCB_DIM_LEADER_T:
if( aItem.GetLayer() == Edge_Cuts )
return aFilterOptions.includeBoardOutlineLayer;
else
return aFilterOptions.includeItemsOnTechLayers;
case PCB_FIELD_T:
case PCB_TEXT_T:
case PCB_TEXTBOX_T:
return aFilterOptions.includePcbTexts;
default:
// Filter dialog is inclusive, not exclusive. If it's not included, then it doesn't
// get selected.
return false;
}
}
int PCB_SELECTION_TOOL::filterSelection( const TOOL_EVENT& aEvent )
{
const BOARD& board = *getModel<BOARD>();
DIALOG_FILTER_SELECTION::OPTIONS& opts = m_priv->m_filterOpts;
DIALOG_FILTER_SELECTION dlg( m_frame, opts );
const int cmd = dlg.ShowModal();
if( cmd != wxID_OK )
return 0;
// copy current selection
std::deque<EDA_ITEM*> selection = m_selection.GetItems();
ClearSelection( true /*quiet mode*/ );
// re-select items from the saved selection according to the dialog options
for( EDA_ITEM* i : selection )
{
BOARD_ITEM* item = static_cast<BOARD_ITEM*>( i );
bool include = itemIsIncludedByFilter( *item, board, opts );
if( include )
select( item );
}
m_toolMgr->ProcessEvent( EVENTS::SelectedEvent );
return 0;
}
void PCB_SELECTION_TOOL::FilterCollectedItems( GENERAL_COLLECTOR& aCollector, bool aMultiSelect )
{
if( aCollector.GetCount() == 0 )
return;
std::set<BOARD_ITEM*> rejected;
for( EDA_ITEM* i : aCollector )
{
BOARD_ITEM* item = static_cast<BOARD_ITEM*>( i );
if( !itemPassesFilter( item, aMultiSelect ) )
rejected.insert( item );
}
for( BOARD_ITEM* item : rejected )
aCollector.Remove( item );
}
bool PCB_SELECTION_TOOL::itemPassesFilter( BOARD_ITEM* aItem, bool aMultiSelect )
{
if( !m_filter.lockedItems )
{
if( aItem->IsLocked() || ( aItem->GetParent() && aItem->GetParent()->IsLocked() ) )
{
if( aItem->Type() == PCB_PAD_T && !aMultiSelect )
{
// allow a single pad to be selected -- there are a lot of operations that
// require this so we allow this one inconsistency
}
else
{
return false;
}
}
}
if( !aItem )
return false;
KICAD_T itemType = aItem->Type();
if( itemType == PCB_GENERATOR_T )
{
if( static_cast<PCB_GENERATOR*>( aItem )->GetItems().empty() )
{
if( !m_filter.otherItems )
return false;
}
else
{
itemType = ( *static_cast<PCB_GENERATOR*>( aItem )->GetItems().begin() )->Type();
}
}
switch( itemType )
{
case PCB_FOOTPRINT_T:
if( !m_filter.footprints )
return false;
break;
case PCB_PAD_T:
if( !m_filter.pads )
return false;
break;
case PCB_TRACE_T:
case PCB_ARC_T:
if( !m_filter.tracks )
return false;
break;
case PCB_VIA_T:
if( !m_filter.vias )
return false;
break;
case PCB_ZONE_T:
{
ZONE* zone = static_cast<ZONE*>( aItem );
if( ( !m_filter.zones && !zone->GetIsRuleArea() )
|| ( !m_filter.keepouts && zone->GetIsRuleArea() ) )
{
return false;
}
// m_SolderMaskBridges zone is a special zone, only used to showsolder mask briges
// after running DRC. it is not really a board item.
// Never select it or delete by a Commit.
if( zone == m_frame->GetBoard()->m_SolderMaskBridges )
return false;
break;
}
case PCB_SHAPE_T:
case PCB_TARGET_T:
if( !m_filter.graphics )
return false;
break;
case PCB_REFERENCE_IMAGE_T:
if( !m_filter.graphics )
return false;
// a reference image living in a footprint must not be selected inside the board editor
if( !m_isFootprintEditor && aItem->GetParentFootprint() )
return false;
break;
case PCB_FIELD_T:
case PCB_TEXT_T:
case PCB_TEXTBOX_T:
if( !m_filter.text )
return false;
break;
case PCB_DIM_ALIGNED_T:
case PCB_DIM_CENTER_T:
case PCB_DIM_RADIAL_T:
case PCB_DIM_ORTHOGONAL_T:
case PCB_DIM_LEADER_T:
if( !m_filter.dimensions )
return false;
break;
default:
if( !m_filter.otherItems )
return false;
}
return true;
}
void PCB_SELECTION_TOOL::ClearSelection( bool aQuietMode )
{
if( m_selection.Empty() )
return;
while( m_selection.GetSize() )
unhighlight( m_selection.Front(), SELECTED, &m_selection );
view()->Update( &m_selection );
m_selection.SetIsHover( false );
m_selection.ClearReferencePoint();
// Inform other potentially interested tools
if( !aQuietMode )
{
m_toolMgr->ProcessEvent( EVENTS::ClearedEvent );
m_toolMgr->RunAction( PCB_ACTIONS::hideLocalRatsnest );
}
}
void PCB_SELECTION_TOOL::RebuildSelection()
{
m_selection.Clear();
bool enteredGroupFound = false;
INSPECTOR_FUNC inspector =
[&]( EDA_ITEM* item, void* testData )
{
if( item->IsSelected() )
{
EDA_ITEM* parent = item->GetParent();
// Let selected parents handle their children.
if( parent && parent->IsSelected() )
return INSPECT_RESULT::CONTINUE;
highlight( item, SELECTED, &m_selection );
}
if( item->Type() == PCB_GROUP_T )
{
if( item == m_enteredGroup )
{
item->SetFlags( ENTERED );
enteredGroupFound = true;
}
else
{
item->ClearFlags( ENTERED );
}
}
return INSPECT_RESULT::CONTINUE;
};
board()->Visit( inspector, nullptr, m_isFootprintEditor ? GENERAL_COLLECTOR::FootprintItems
: GENERAL_COLLECTOR::AllBoardItems );
if( !enteredGroupFound )
{
m_enteredGroupOverlay.Clear();
m_enteredGroup = nullptr;
}
}
bool PCB_SELECTION_TOOL::Selectable( const BOARD_ITEM* aItem, bool checkVisibilityOnly ) const
{
const RENDER_SETTINGS* settings = getView()->GetPainter()->GetSettings();
const PCB_DISPLAY_OPTIONS& options = frame()->GetDisplayOptions();
auto visibleLayers =
[&]()
{
if( m_isFootprintEditor )
{
LSET set;
for( PCB_LAYER_ID layer : LSET::AllLayersMask().Seq() )
set.set( layer, view()->IsLayerVisible( layer ) );
return set;
}
else
{
return board()->GetVisibleLayers();
}
};
auto layerVisible =
[&]( PCB_LAYER_ID aLayer )
{
if( m_isFootprintEditor )
return view()->IsLayerVisible( aLayer );
else
return board()->IsLayerVisible( aLayer );
};
if( settings->GetHighContrast() )
{
const std::set<int> activeLayers = settings->GetHighContrastLayers();
bool onActiveLayer = false;
for( int layer : activeLayers )
{
// NOTE: Only checking the regular layers (not GAL meta-layers)
if( layer < PCB_LAYER_ID_COUNT && aItem->IsOnLayer( ToLAYER_ID( layer ) ) )
{
onActiveLayer = true;
break;
}
}
if( !onActiveLayer ) // We do not want to select items that are in the background
return false;
}
if( aItem->Type() == PCB_FOOTPRINT_T )
{
const FOOTPRINT* footprint = static_cast<const FOOTPRINT*>( aItem );
// In footprint editor, we do not want to select the footprint itself.
if( m_isFootprintEditor )
return false;
// Allow selection of footprints if some part of the footprint is visible.
if( footprint->GetSide() != UNDEFINED_LAYER && !m_skip_heuristics )
{
LSET boardSide = footprint->IsFlipped() ? LSET::BackMask() : LSET::FrontMask();
if( !( visibleLayers() & boardSide ).any() )
return false;
}
// If the footprint has no items except the reference and value fields, include the
// footprint in the selections.
if( footprint->GraphicalItems().empty()
&& footprint->Pads().empty()
&& footprint->Zones().empty() )
{
return true;
}
for( const BOARD_ITEM* item : footprint->GraphicalItems() )
{
if( Selectable( item, true ) )
return true;
}
for( const PAD* pad : footprint->Pads() )
{
if( Selectable( pad, true ) )
return true;
}
for( const ZONE* zone : footprint->Zones() )
{
if( Selectable( zone, true ) )
return true;
}
return false;
}
else if( aItem->Type() == PCB_GROUP_T )
{
PCB_GROUP* group = const_cast<PCB_GROUP*>( static_cast<const PCB_GROUP*>( aItem ) );
// Similar to logic for footprint, a group is selectable if any of its members are.
// (This recurses.)
for( BOARD_ITEM* item : group->GetItems() )
{
if( Selectable( item, true ) )
return true;
}
return false;
}
if( aItem->GetParentGroup() && aItem->GetParentGroup()->Type() == PCB_GENERATOR_T )
return false;
const ZONE* zone = nullptr;
const PCB_VIA* via = nullptr;
const PAD* pad = nullptr;
const PCB_TEXT* text = nullptr;
const PCB_FIELD* field = nullptr;
// Most footprint children can only be selected in the footprint editor.
if( aItem->GetParentFootprint() && !m_isFootprintEditor && !checkVisibilityOnly )
{
if( aItem->Type() != PCB_FIELD_T && aItem->Type() != PCB_PAD_T )
return false;
}
switch( aItem->Type() )
{
case PCB_ZONE_T:
if( !board()->IsElementVisible( LAYER_ZONES ) || ( options.m_ZoneOpacity == 0.00 ) )
return false;
zone = static_cast<const ZONE*>( aItem );
// A teardrop is modelled as a property of a via, pad or the board (for track-to-track
// teardrops). The underlying zone is only an implementation detail.
if( zone->IsTeardropArea() && !board()->LegacyTeardrops() )
return false;
// zones can exist on multiple layers!
if( !( zone->GetLayerSet() & visibleLayers() ).any() )
return false;
break;
case PCB_TRACE_T:
case PCB_ARC_T:
if( !board()->IsElementVisible( LAYER_TRACKS ) || ( options.m_TrackOpacity == 0.00 ) )
return false;
if( !layerVisible( aItem->GetLayer() ) )
return false;
break;
case PCB_VIA_T:
if( !board()->IsElementVisible( LAYER_VIAS ) || ( options.m_ViaOpacity == 0.00 ) )
return false;
via = static_cast<const PCB_VIA*>( aItem );
// For vias it is enough if only one of its layers is visible
if( !( visibleLayers() & via->GetLayerSet() ).any() )
return false;
break;
case PCB_FIELD_T:
field = static_cast<const PCB_FIELD*>( aItem );
if( field->IsReference() && !view()->IsLayerVisible( LAYER_FP_REFERENCES ) )
return false;
if( field->IsValue() && !view()->IsLayerVisible( LAYER_FP_VALUES ) )
return false;
// Handle all other fields with normal text visibility controls
KI_FALLTHROUGH;
case PCB_TEXT_T:
text = static_cast<const PCB_TEXT*>( aItem );
if( !text->IsVisible() )
{
if( !m_isFootprintEditor || !view()->IsLayerVisible( LAYER_HIDDEN_TEXT ) )
return false;
}
if( !layerVisible( text->GetLayer() ) )
return false;
// Apply the LOD visibility test as well
if( !view()->IsVisible( text ) )
return false;
if( aItem->GetParentFootprint() )
{
int controlLayer = LAYER_FP_TEXT;
if( text->GetText() == wxT( "${REFERENCE}" ) )
controlLayer = LAYER_FP_REFERENCES;
else if( text->GetText() == wxT( "${VALUE}" ) )
controlLayer = LAYER_FP_VALUES;
if( !view()->IsLayerVisible( controlLayer ) )
return false;
}
break;
case PCB_REFERENCE_IMAGE_T:
if( options.m_ImageOpacity == 0.00 )
return false;
// Bitmap images on board are hidden if LAYER_DRAW_BITMAPS is not visible
if( !view()->IsLayerVisible( LAYER_DRAW_BITMAPS ) )
return false;
KI_FALLTHROUGH;
case PCB_SHAPE_T:
case PCB_TEXTBOX_T:
if( !layerVisible( aItem->GetLayer() ) )
return false;
break;
case PCB_DIM_ALIGNED_T:
case PCB_DIM_LEADER_T:
case PCB_DIM_CENTER_T:
case PCB_DIM_RADIAL_T:
case PCB_DIM_ORTHOGONAL_T:
if( !layerVisible( aItem->GetLayer() ) )
return false;
break;
case PCB_PAD_T:
if( options.m_PadOpacity == 0.00 )
return false;
pad = static_cast<const PAD*>( aItem );
if( pad->GetAttribute() == PAD_ATTRIB::PTH || pad->GetAttribute() == PAD_ATTRIB::NPTH )
{
// Check render mode (from the Items tab) first
if( !board()->IsElementVisible( LAYER_PADS_TH ) )
return false;
// A pad's hole is visible on every layer the pad is visible on plus many layers the
// pad is not visible on -- so we only need to check for any visible hole layers.
if( !( visibleLayers() & LSET::PhysicalLayersMask() ).any() )
return false;
}
else
{
// Check render mode (from the Items tab) first
if( pad->IsOnLayer( F_Cu ) && !board()->IsElementVisible( LAYER_PADS_SMD_FR ) )
return false;
else if( pad->IsOnLayer( B_Cu ) && !board()->IsElementVisible( LAYER_PADS_SMD_BK ) )
return false;
if( !( pad->GetLayerSet() & visibleLayers() ).any() )
return false;
}
break;
// These are not selectable
case PCB_NETINFO_T:
case NOT_USED:
case TYPE_NOT_INIT:
return false;
default: // Suppress warnings
break;
}
return true;
}
void PCB_SELECTION_TOOL::select( EDA_ITEM* aItem )
{
if( aItem->IsSelected() )
return;
if( aItem->Type() == PCB_PAD_T )
{
FOOTPRINT* footprint = static_cast<FOOTPRINT*>( aItem->GetParent() );
if( m_selection.Contains( footprint ) )
return;
}
if( m_enteredGroup &&
!PCB_GROUP::WithinScope( static_cast<BOARD_ITEM*>( aItem ), m_enteredGroup,
m_isFootprintEditor ) )
{
ExitGroup();
}
highlight( aItem, SELECTED, &m_selection );
}
void PCB_SELECTION_TOOL::unselect( EDA_ITEM* aItem )
{
unhighlight( aItem, SELECTED, &m_selection );
}
void PCB_SELECTION_TOOL::highlight( EDA_ITEM* aItem, int aMode, SELECTION* aGroup )
{
if( aGroup )
aGroup->Add( aItem );
highlightInternal( aItem, aMode, aGroup != nullptr );
view()->Update( aItem, KIGFX::REPAINT );
// Many selections are very temporal and updating the display each time just
// creates noise.
if( aMode == BRIGHTENED )
getView()->MarkTargetDirty( KIGFX::TARGET_OVERLAY );
}
void PCB_SELECTION_TOOL::highlightInternal( EDA_ITEM* aItem, int aMode, bool aUsingOverlay )
{
if( aMode == SELECTED )
aItem->SetSelected();
else if( aMode == BRIGHTENED )
aItem->SetBrightened();
if( aUsingOverlay && aMode != BRIGHTENED )
view()->Hide( aItem, true ); // Hide the original item, so it is shown only on overlay
if( BOARD_ITEM* boardItem = dynamic_cast<BOARD_ITEM*>( aItem ) )
{
boardItem->RunOnDescendants( std::bind( &PCB_SELECTION_TOOL::highlightInternal, this, _1,
aMode, aUsingOverlay ) );
}
}
void PCB_SELECTION_TOOL::unhighlight( EDA_ITEM* aItem, int aMode, SELECTION* aGroup )
{
if( aGroup )
aGroup->Remove( aItem );
unhighlightInternal( aItem, aMode, aGroup != nullptr );
view()->Update( aItem, KIGFX::REPAINT );
// Many selections are very temporal and updating the display each time just creates noise.
if( aMode == BRIGHTENED )
getView()->MarkTargetDirty( KIGFX::TARGET_OVERLAY );
}
void PCB_SELECTION_TOOL::unhighlightInternal( EDA_ITEM* aItem, int aMode, bool aUsingOverlay )
{
if( aMode == SELECTED )
aItem->ClearSelected();
else if( aMode == BRIGHTENED )
aItem->ClearBrightened();
if( aUsingOverlay && aMode != BRIGHTENED )
{
view()->Hide( aItem, false ); // Restore original item visibility...
view()->Update( aItem ); // ... and make sure it's redrawn un-selected
}
if( BOARD_ITEM* boardItem = dynamic_cast<BOARD_ITEM*>( aItem ) )
{
boardItem->RunOnDescendants( std::bind( &PCB_SELECTION_TOOL::unhighlightInternal, this, _1,
aMode, aUsingOverlay ) );
}
}
bool PCB_SELECTION_TOOL::selectionContains( const VECTOR2I& aPoint ) const
{
const unsigned GRIP_MARGIN = 20;
int margin = KiROUND( getView()->ToWorld( GRIP_MARGIN ) );
// Check if the point is located close to any of the currently selected items
for( EDA_ITEM* item : m_selection )
{
BOX2I itemBox = item->ViewBBox();
itemBox.Inflate( margin ); // Give some margin for gripping an item
if( itemBox.Contains( aPoint ) )
{
if( item->HitTest( aPoint, margin ) )
return true;
bool found = false;
if( PCB_GROUP* group = dynamic_cast<PCB_GROUP*>( item ) )
{
group->RunOnDescendants(
[&]( BOARD_ITEM* aItem )
{
if( aItem->HitTest( aPoint, margin ) )
found = true;
} );
}
if( found )
return true;
}
}
return false;
}
int PCB_SELECTION_TOOL::hitTestDistance( const VECTOR2I& aWhere, BOARD_ITEM* aItem,
int aMaxDistance ) const
{
BOX2D viewportD = getView()->GetViewport();
BOX2I viewport( VECTOR2I( viewportD.GetPosition() ), VECTOR2I( viewportD.GetSize() ) );
int distance = INT_MAX;
SEG loc( aWhere, aWhere );
switch( aItem->Type() )
{
case PCB_FIELD_T:
case PCB_TEXT_T:
{
PCB_TEXT* text = static_cast<PCB_TEXT*>( aItem );
// Add a bit of slop to text-shapes
if( text->GetEffectiveTextShape()->Collide( loc, aMaxDistance, &distance ) )
distance = std::clamp( distance - ( aMaxDistance / 2 ), 0, distance );
break;
}
case PCB_TEXTBOX_T:
{
PCB_TEXTBOX* textbox = static_cast<PCB_TEXTBOX*>( aItem );
// Add a bit of slop to text-shapes
if( textbox->GetEffectiveTextShape()->Collide( loc, aMaxDistance, &distance ) )
distance = std::clamp( distance - ( aMaxDistance / 2 ), 0, distance );
break;
}
case PCB_ZONE_T:
{
ZONE* zone = static_cast<ZONE*>( aItem );
// Zone borders are very specific
if( zone->HitTestForEdge( aWhere, aMaxDistance / 2 ) )
distance = 0;
else if( zone->HitTestForEdge( aWhere, aMaxDistance ) )
distance = aMaxDistance / 2;
else
aItem->GetEffectiveShape()->Collide( loc, aMaxDistance, &distance );
break;
}
case PCB_FOOTPRINT_T:
{
FOOTPRINT* footprint = static_cast<FOOTPRINT*>( aItem );
BOX2I bbox = footprint->GetBoundingBox( false, false );
try
{
footprint->GetBoundingHull().Collide( loc, aMaxDistance, &distance );
}
catch( const std::exception& exc )
{
// This may be overkill and could be an assertion but we are more likely to find
// any clipper errors this way.
wxLogError( wxT( "Clipper library exception '%s' occurred." ), exc.what() );
}
// Consider footprints larger than the viewport only as a last resort
if( bbox.GetHeight() > viewport.GetHeight() || bbox.GetWidth() > viewport.GetWidth() )
distance = INT_MAX / 2;
break;
}
case PCB_MARKER_T:
{
PCB_MARKER* marker = static_cast<PCB_MARKER*>( aItem );
SHAPE_LINE_CHAIN polygon;
marker->ShapeToPolygon( polygon );
polygon.Move( marker->GetPos() );
polygon.Collide( loc, aMaxDistance, &distance );
break;
}
case PCB_GROUP_T:
case PCB_GENERATOR_T:
{
PCB_GROUP* group = static_cast<PCB_GROUP*>( aItem );
for( BOARD_ITEM* member : group->GetItems() )
distance = std::min( distance, hitTestDistance( aWhere, member, aMaxDistance ) );
break;
}
default:
aItem->GetEffectiveShape()->Collide( loc, aMaxDistance, &distance );
break;
}
return distance;
}
void PCB_SELECTION_TOOL::pruneObscuredSelectionCandidates( GENERAL_COLLECTOR& aCollector ) const
{
wxCHECK( m_frame, /* void */ );
if( aCollector.GetCount() < 2 )
return;
const RENDER_SETTINGS* settings = getView()->GetPainter()->GetSettings();
wxCHECK( settings, /* void */ );
PCB_LAYER_ID activeLayer = m_frame->GetActiveLayer();
LSET visibleLayers = m_frame->GetBoard()->GetVisibleLayers();
LSET enabledLayers = m_frame->GetBoard()->GetEnabledLayers();
LSEQ enabledLayerStack = enabledLayers.SeqStackupTop2Bottom( activeLayer );
wxCHECK( !enabledLayerStack.empty(), /* void */ );
auto isCopperPourKeepoutZone = []( const BOARD_ITEM* aItem ) -> bool
{
if( aItem->Type() == PCB_ZONE_T )
{
const ZONE* zone = static_cast<const ZONE*>( aItem );
wxCHECK( zone, false );
if( zone->GetIsRuleArea()
&& zone->GetDoNotAllowCopperPour() )
return true;
}
return false;
};
std::vector<LAYER_OPACITY_ITEM> opacityStackup;
for( int i = 0; i < aCollector.GetCount(); i++ )
{
const BOARD_ITEM* item = aCollector[i];
LSET itemLayers = item->GetLayerSet() & enabledLayers & visibleLayers;
LSEQ itemLayerSeq = itemLayers.Seq( enabledLayerStack );
for( PCB_LAYER_ID layer : itemLayerSeq )
{
COLOR4D color = settings->GetColor( item, layer );
if( color.a == 0 )
continue;
LAYER_OPACITY_ITEM opacityItem;
opacityItem.m_Layer = layer;
opacityItem.m_Opacity = color.a;
opacityItem.m_Item = item;
if( isCopperPourKeepoutZone( item ) )
opacityItem.m_Opacity = 0.0;
opacityStackup.emplace_back( opacityItem );
}
}
std::sort( opacityStackup.begin(), opacityStackup.end(),
[&]( const LAYER_OPACITY_ITEM& aLhs, const LAYER_OPACITY_ITEM& aRhs ) -> bool
{
int retv = enabledLayerStack.TestLayers( aLhs.m_Layer, aRhs.m_Layer );
if( retv )
return retv > 0;
return aLhs.m_Opacity > aRhs.m_Opacity;
} );
std::set<const BOARD_ITEM*> visibleItems;
std::set<const BOARD_ITEM*> itemsToRemove;
double minAlphaLimit = ADVANCED_CFG::GetCfg().m_PcbSelectionVisibilityRatio;
double currentStackupOpacity = 0.0;
PCB_LAYER_ID lastVisibleLayer = PCB_LAYER_ID::UNDEFINED_LAYER;
for( const LAYER_OPACITY_ITEM& opacityItem : opacityStackup )
{
if( lastVisibleLayer == PCB_LAYER_ID::UNDEFINED_LAYER )
{
currentStackupOpacity = opacityItem.m_Opacity;
lastVisibleLayer = opacityItem.m_Layer;
visibleItems.emplace( opacityItem.m_Item );
continue;
}
// Objects to ignore and fallback to the old selection behavior.
auto ignoreItem = [&]()
{
const BOARD_ITEM* item = opacityItem.m_Item;
wxCHECK( item, false );
// Check items that span multiple layers for visibility.
if( visibleItems.count( item ) )
return true;
// Don't prune child items of a footprint that is already visible.
if( item->GetParent()
&& ( item->GetParent()->Type() == PCB_FOOTPRINT_T )
&& visibleItems.count( item->GetParent() ) )
return true;
// Keepout zones are transparent but for some reason,
// PCB_PAINTER::GetColor() returns the color of the zone it
// prevents from filling.
if( isCopperPourKeepoutZone( item ) )
return true;
return false;
};
// Everything on the currently selected layer is visible;
if( opacityItem.m_Layer == enabledLayerStack[0] )
{
visibleItems.emplace( opacityItem.m_Item );
}
else
{
double itemVisibility = opacityItem.m_Opacity * ( 1.0 - currentStackupOpacity );
if( ( itemVisibility <= minAlphaLimit ) && !ignoreItem() )
itemsToRemove.emplace( opacityItem.m_Item );
else
visibleItems.emplace( opacityItem.m_Item );
}
if( opacityItem.m_Layer != lastVisibleLayer )
{
currentStackupOpacity += opacityItem.m_Opacity * ( 1.0 - currentStackupOpacity );
currentStackupOpacity = std::min( currentStackupOpacity, 1.0 );
lastVisibleLayer = opacityItem.m_Layer;
}
}
for( const BOARD_ITEM* itemToRemove : itemsToRemove )
{
wxCHECK( aCollector.GetCount() > 1, /* void */ );
aCollector.Remove( itemToRemove );
}
}
// The general idea here is that if the user clicks directly on a small item inside a larger
// one, then they want the small item. The quintessential case of this is clicking on a pad
// within a footprint, but we also apply it for text within a footprint, footprints within
// larger footprints, and vias within either larger pads or longer tracks.
//
// These "guesses" presume there is area within the larger item to click in to select it. If
// an item is mostly covered by smaller items within it, then the guesses are inappropriate as
// there might not be any area left to click to select the larger item. In this case we must
// leave the items in the collector and bring up a Selection Clarification menu.
//
// We currently check for pads and text mostly covering a footprint, but we don't check for
// smaller footprints mostly covering a larger footprint.
//
void PCB_SELECTION_TOOL::GuessSelectionCandidates( GENERAL_COLLECTOR& aCollector,
const VECTOR2I& aWhere ) const
{
static const LSET silkLayers( 2, B_SilkS, F_SilkS );
static const LSET courtyardLayers( 2, B_CrtYd, F_CrtYd );
static std::vector<KICAD_T> singleLayerSilkTypes = { PCB_FIELD_T, PCB_TEXT_T, PCB_TEXTBOX_T,
PCB_SHAPE_T };
if( ADVANCED_CFG::GetCfg().m_PcbSelectionVisibilityRatio != 1.0 )
pruneObscuredSelectionCandidates( aCollector );
if( aCollector.GetCount() == 1 )
return;
std::set<BOARD_ITEM*> preferred;
std::set<BOARD_ITEM*> rejected;
VECTOR2I where( aWhere.x, aWhere.y );
const RENDER_SETTINGS* settings = getView()->GetPainter()->GetSettings();
PCB_LAYER_ID activeLayer = m_frame->GetActiveLayer();
// If a silk layer is in front, we assume the user is working with silk and give preferential
// treatment to single-layer items on *either* silk layer.
if( silkLayers[activeLayer] )
{
for( int i = 0; i < aCollector.GetCount(); ++i )
{
BOARD_ITEM* item = aCollector[i];
if( item->IsType( singleLayerSilkTypes ) && silkLayers[ item->GetLayer() ] )
preferred.insert( item );
}
}
// Similarly, if a courtyard layer is in front, we assume the user is positioning footprints
// and give preferential treatment to footprints on *both* top and bottom.
else if( courtyardLayers[activeLayer] && settings->GetHighContrast() )
{
for( int i = 0; i < aCollector.GetCount(); ++i )
{
BOARD_ITEM* item = aCollector[i];
if( item->Type() == PCB_FOOTPRINT_T )
preferred.insert( item );
}
}
if( preferred.size() > 0 )
{
aCollector.Empty();
for( BOARD_ITEM* item : preferred )
aCollector.Append( item );
return;
}
// Prefer exact hits to sloppy ones
constexpr int MAX_SLOP = 5;
int singlePixel = KiROUND( aCollector.GetGuide()->OnePixelInIU() );
int maxSlop = KiROUND( MAX_SLOP * aCollector.GetGuide()->OnePixelInIU() );
int minSlop = INT_MAX;
std::map<BOARD_ITEM*, int> itemsBySloppiness;
for( int i = 0; i < aCollector.GetCount(); ++i )
{
BOARD_ITEM* item = aCollector[i];
int itemSlop = hitTestDistance( where, item, maxSlop );
itemsBySloppiness[ item ] = itemSlop;
if( itemSlop < minSlop )
minSlop = itemSlop;
}
// Prune sloppier items
if( minSlop < INT_MAX )
{
for( std::pair<BOARD_ITEM*, int> pair : itemsBySloppiness )
{
if( pair.second > minSlop + singlePixel )
aCollector.Transfer( pair.first );
}
}
// If the user clicked on a small item within a much larger one then it's pretty clear
// they're trying to select the smaller one.
constexpr double sizeRatio = 1.5;
std::vector<std::pair<BOARD_ITEM*, double>> itemsByArea;
for( int i = 0; i < aCollector.GetCount(); ++i )
{
BOARD_ITEM* item = aCollector[i];
double area = 0.0;
if( item->Type() == PCB_ZONE_T
&& static_cast<ZONE*>( item )->HitTestForEdge( where, maxSlop / 2 ) )
{
// Zone borders are very specific, so make them "small"
area = (double) SEG::Square( singlePixel ) * MAX_SLOP;
}
else if( item->Type() == PCB_VIA_T )
{
// Vias rarely hide other things, and we don't want them deferring to short track
// segments underneath them -- so artificially reduce their size from πr² to r².
area = (double) SEG::Square( static_cast<PCB_VIA*>( item )->GetDrill() / 2 );
}
else if( item->Type() == PCB_REFERENCE_IMAGE_T )
{
VECTOR2D size = static_cast<const PCB_REFERENCE_IMAGE*>( item )->GetSize();
area = size.x * size.y;
}
else
{
try
{
area = FOOTPRINT::GetCoverageArea( item, aCollector );
}
catch( const std::exception& e )
{
wxLogError( wxT( "A clipper exception %s was detected." ), e.what() );
}
}
itemsByArea.emplace_back( item, area );
}
std::sort( itemsByArea.begin(), itemsByArea.end(),
[]( const std::pair<BOARD_ITEM*, double>& lhs,
const std::pair<BOARD_ITEM*, double>& rhs ) -> bool
{
return lhs.second < rhs.second;
} );
bool rejecting = false;
for( int i = 1; i < (int) itemsByArea.size(); ++i )
{
if( itemsByArea[i].second > itemsByArea[i-1].second * sizeRatio )
rejecting = true;
if( rejecting )
rejected.insert( itemsByArea[i].first );
}
// Special case: if a footprint is completely covered with other features then there's no
// way to select it -- so we need to leave it in the list for user disambiguation.
constexpr double maxCoverRatio = 0.70;
for( int i = 0; i < aCollector.GetCount(); ++i )
{
if( FOOTPRINT* footprint = dynamic_cast<FOOTPRINT*>( aCollector[i] ) )
{
if( footprint->CoverageRatio( aCollector ) > maxCoverRatio )
rejected.erase( footprint );
}
}
// Hopefully we've now got what the user wanted.
if( (unsigned) aCollector.GetCount() > rejected.size() ) // do not remove everything
{
for( BOARD_ITEM* item : rejected )
aCollector.Transfer( item );
}
// Finally, what we are left with is a set of items of similar coverage area. We now reject
// any that are not on the active layer, to reduce the number of disambiguation menus shown.
// If the user wants to force-disambiguate, they can either switch layers or use the modifier
// key to force the menu.
if( aCollector.GetCount() > 1 )
{
bool haveItemOnActive = false;
rejected.clear();
for( int i = 0; i < aCollector.GetCount(); ++i )
{
if( !aCollector[i]->IsOnLayer( activeLayer ) )
rejected.insert( aCollector[i] );
else
haveItemOnActive = true;
}
if( haveItemOnActive )
for( BOARD_ITEM* item : rejected )
aCollector.Transfer( item );
}
}
void PCB_SELECTION_TOOL::FilterCollectorForHierarchy( GENERAL_COLLECTOR& aCollector,
bool aMultiselect ) const
{
std::unordered_set<BOARD_ITEM*> toAdd;
// Set CANDIDATE on all parents which are included in the GENERAL_COLLECTOR. This
// algorithm is O(3n), whereas checking for the parent inclusion could potentially be O(n^2).
for( int j = 0; j < aCollector.GetCount(); j++ )
{
if( aCollector[j]->GetParent() )
aCollector[j]->GetParent()->ClearFlags( CANDIDATE );
}
if( aMultiselect )
{
for( int j = 0; j < aCollector.GetCount(); j++ )
aCollector[j]->SetFlags( CANDIDATE );
}
for( int j = 0; j < aCollector.GetCount(); )
{
BOARD_ITEM* item = aCollector[j];
BOARD_ITEM* parent = item->GetParent();
BOARD_ITEM* start = item;
if( !m_isFootprintEditor && parent && parent->Type() == PCB_FOOTPRINT_T )
start = parent;
// If a group is entered, disallow selections of objects outside the group.
if( m_enteredGroup && !PCB_GROUP::WithinScope( item, m_enteredGroup, m_isFootprintEditor ) )
{
aCollector.Remove( item );
continue;
}
// If any element is a member of a group, replace those elements with the top containing
// group.
if( PCB_GROUP* top = PCB_GROUP::TopLevelGroup( start, m_enteredGroup,
m_isFootprintEditor ) )
{
if( top != item )
{
toAdd.insert( top );
top->SetFlags(CANDIDATE );
aCollector.Remove( item );
continue;
}
}
// Footprints are a bit easier as they can't be nested.
if( parent && ( parent->GetFlags() & CANDIDATE ) )
{
// Remove children of selected items
aCollector.Remove( item );
continue;
}
++j;
}
for( BOARD_ITEM* item : toAdd )
{
if( !aCollector.HasItem( item ) )
aCollector.Append( item );
}
}
void PCB_SELECTION_TOOL::FilterCollectorForFreePads( GENERAL_COLLECTOR& aCollector,
bool aForcePromotion ) const
{
std::set<BOARD_ITEM*> to_add;
// Iterate from the back so we don't have to worry about removals.
for( int i = aCollector.GetCount() - 1; i >= 0; --i )
{
BOARD_ITEM* item = aCollector[i];
if( !m_isFootprintEditor && item->Type() == PCB_PAD_T
&& ( !frame()->GetPcbNewSettings()->m_AllowFreePads || aForcePromotion ) )
{
if( !aCollector.HasItem( item->GetParent() ) )
to_add.insert( item->GetParent() );
aCollector.Remove( item );
}
}
for( BOARD_ITEM* item : to_add )
aCollector.Append( item );
}
void PCB_SELECTION_TOOL::FilterCollectorForMarkers( GENERAL_COLLECTOR& aCollector ) const
{
// Iterate from the back so we don't have to worry about removals.
for( int i = aCollector.GetCount() - 1; i >= 0; --i )
{
BOARD_ITEM* item = aCollector[i];
if( item->Type() == PCB_MARKER_T )
aCollector.Remove( item );
}
}
void PCB_SELECTION_TOOL::FilterCollectorForFootprints( GENERAL_COLLECTOR& aCollector,
const VECTOR2I& aWhere ) const
{
const RENDER_SETTINGS* settings = getView()->GetPainter()->GetSettings();
BOX2D viewport = getView()->GetViewport();
BOX2I extents( viewport.GetPosition(), viewport.GetSize() );
bool need_direct_hit = false;
FOOTPRINT* single_fp = nullptr;
// If the designer is not modifying the existing selection AND we already have
// a selection, then we only want to select items that are directly under the cursor.
// This prevents us from being unable to clear the selection when zoomed into a footprint
if( !m_additive && !m_subtractive && !m_exclusive_or && m_selection.GetSize() > 0 )
{
need_direct_hit = true;
for( EDA_ITEM* item : m_selection )
{
FOOTPRINT* fp = nullptr;
if( item->Type() != PCB_FOOTPRINT_T )
fp = static_cast<BOARD_ITEM*>( item )->GetParentFootprint();
else
fp = static_cast<FOOTPRINT*>( item );
// If the selection contains items that are not footprints, then don't restrict
// whether we deselect the item or not.
if( !fp )
{
single_fp = nullptr;
break;
}
else if( !single_fp )
{
single_fp = fp;
}
// If the selection contains items from multiple footprints, then don't restrict
// whether we deselect the item or not.
else if( single_fp != fp )
{
single_fp = nullptr;
break;
}
}
}
auto visibleLayers =
[&]()
{
if( m_isFootprintEditor )
{
LSET set;
for( PCB_LAYER_ID layer : LSET::AllLayersMask().Seq() )
set.set( layer, view()->IsLayerVisible( layer ) );
return set;
}
else
{
return board()->GetVisibleLayers();
}
};
LSET layers = visibleLayers();
if( settings->GetHighContrast() )
{
layers.reset();
const std::set<int> activeLayers = settings->GetHighContrastLayers();
for( int layer : activeLayers )
{
if( layer >= 0 && layer < PCB_LAYER_ID_COUNT )
layers.set( layer );
}
}
// Iterate from the back so we don't have to worry about removals.
for( int i = aCollector.GetCount() - 1; i >= 0; --i )
{
BOARD_ITEM* item = aCollector[i];
FOOTPRINT* fp = dyn_cast<FOOTPRINT*>( item );
if( !fp )
continue;
// Make footprints not difficult to select in high-contrast modes.
if( layers[fp->GetLayer()] )
continue;
BOX2I bbox = fp->GetLayerBoundingBox( layers );
// If the point clicked is not inside the visible bounding box, we can also remove it.
if( !bbox.Contains( aWhere) )
aCollector.Remove( item );
bool has_hit = false;
for( PCB_LAYER_ID layer : layers.Seq() )
{
if( fp->HitTestOnLayer( extents, false, layer ) )
{
has_hit = true;
break;
}
}
// If the point is outside of the visible bounding box, we can remove it.
if( !has_hit )
{
aCollector.Remove( item );
}
// Do not require a direct hit on this fp if the existing selection only contains
// this fp's items. This allows you to have a selection of pads from a single
// footprint and still click in the center of the footprint to select it.
else if( single_fp )
{
if( fp == single_fp )
continue;
}
else if( need_direct_hit )
{
has_hit = false;
for( PCB_LAYER_ID layer : layers.Seq() )
{
if( fp->HitTestOnLayer( aWhere, layer ) )
{
has_hit = true;
break;
}
}
if( !has_hit )
aCollector.Remove( item );
}
}
}
int PCB_SELECTION_TOOL::updateSelection( const TOOL_EVENT& aEvent )
{
getView()->Update( &m_selection );
getView()->Update( &m_enteredGroupOverlay );
return 0;
}
void PCB_SELECTION_TOOL::setTransitions()
{
Go( &PCB_SELECTION_TOOL::UpdateMenu, ACTIONS::updateMenu.MakeEvent() );
Go( &PCB_SELECTION_TOOL::Main, PCB_ACTIONS::selectionActivate.MakeEvent() );
Go( &PCB_SELECTION_TOOL::CursorSelection, PCB_ACTIONS::selectionCursor.MakeEvent() );
Go( &PCB_SELECTION_TOOL::ClearSelection, PCB_ACTIONS::selectionClear.MakeEvent() );
Go( &PCB_SELECTION_TOOL::AddItemToSel, PCB_ACTIONS::selectItem.MakeEvent() );
Go( &PCB_SELECTION_TOOL::AddItemsToSel, PCB_ACTIONS::selectItems.MakeEvent() );
Go( &PCB_SELECTION_TOOL::RemoveItemFromSel, PCB_ACTIONS::unselectItem.MakeEvent() );
Go( &PCB_SELECTION_TOOL::RemoveItemsFromSel, PCB_ACTIONS::unselectItems.MakeEvent() );
Go( &PCB_SELECTION_TOOL::ReselectItem, PCB_ACTIONS::reselectItem.MakeEvent() );
Go( &PCB_SELECTION_TOOL::SelectionMenu, PCB_ACTIONS::selectionMenu.MakeEvent() );
Go( &PCB_SELECTION_TOOL::filterSelection, PCB_ACTIONS::filterSelection.MakeEvent() );
Go( &PCB_SELECTION_TOOL::expandConnection, PCB_ACTIONS::selectConnection.MakeEvent() );
Go( &PCB_SELECTION_TOOL::unrouteSelected, PCB_ACTIONS::unrouteSelected.MakeEvent() );
Go( &PCB_SELECTION_TOOL::selectNet, PCB_ACTIONS::selectNet.MakeEvent() );
Go( &PCB_SELECTION_TOOL::selectNet, PCB_ACTIONS::deselectNet.MakeEvent() );
Go( &PCB_SELECTION_TOOL::selectUnconnected, PCB_ACTIONS::selectUnconnected.MakeEvent() );
Go( &PCB_SELECTION_TOOL::grabUnconnected, PCB_ACTIONS::grabUnconnected.MakeEvent() );
Go( &PCB_SELECTION_TOOL::syncSelection, PCB_ACTIONS::syncSelection.MakeEvent() );
Go( &PCB_SELECTION_TOOL::syncSelectionWithNets,
PCB_ACTIONS::syncSelectionWithNets.MakeEvent() );
Go( &PCB_SELECTION_TOOL::selectSameSheet, PCB_ACTIONS::selectSameSheet.MakeEvent() );
Go( &PCB_SELECTION_TOOL::selectSheetContents,
PCB_ACTIONS::selectOnSheetFromEeschema.MakeEvent() );
Go( &PCB_SELECTION_TOOL::updateSelection, EVENTS::SelectedItemsModified );
Go( &PCB_SELECTION_TOOL::updateSelection, EVENTS::SelectedItemsMoved );
Go( &PCB_SELECTION_TOOL::SelectAll, ACTIONS::selectAll.MakeEvent() );
Go( &PCB_SELECTION_TOOL::UnselectAll, ACTIONS::unselectAll.MakeEvent() );
Go( &PCB_SELECTION_TOOL::disambiguateCursor, EVENTS::DisambiguatePoint );
}