kicad/bitmap2component/bitmap2component.cpp

533 lines
19 KiB
C++

/*
* This program source code file is part of KICAD, a free EDA CAD application.
*
* Copyright (C) 1992-2010 jean-pierre.charras
* Copyright (C) 1992-2010 Kicad Developers, see change_log.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include "kbool/booleng.h"
#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <stdlib.h>
#include <math.h>
#include <vector>
#include "potracelib.h"
#include "auxiliary.h"
#ifndef max
#define max( a, b ) ( ( (a) > (b) ) ? (a) : (b) )
#endif
#ifndef min
#define min( a, b ) ( ( (a) < (b) ) ? (a) : (b) )
#endif
enum output_format {
POSTSCRIPT_FMT = 1,
PCBNEW_FMT,
EESCHEMA_FMT
};
/* free a potrace bitmap */
static void bm_free(potrace_bitmap_t *bm) {
if (bm != NULL) {
free(bm->map);
}
free(bm);
}
/* Helper class th handle useful info to convert a bitmpa to
* a polygonal object description
*/
class BITMAPCONV_INFO
{
public:
enum output_format m_Format;
int m_PixmapWidth;
int m_PixmapHeight; // the bitmap size in pixels
double m_ScaleX;
double m_ScaleY; // the conversion scale
potrace_path_t* m_Paths; // the list of paths, from potrace (list of lines and bezier curves)
FILE* m_Outfile;
public:
BITMAPCONV_INFO();
};
static void BezierToPolyline( std::vector <potrace_dpoint_t>& aCornersBuffer,
potrace_dpoint_t p1,
potrace_dpoint_t p2,
potrace_dpoint_t p3,
potrace_dpoint_t p4 );
static void CreateOutputFile( BITMAPCONV_INFO& aInfo );
static const char* CmpName = "LOGO";
BITMAPCONV_INFO::BITMAPCONV_INFO()
{
m_Format = POSTSCRIPT_FMT;
m_PixmapWidth = 0;
m_PixmapHeight = 0;
m_ScaleX = 1.0;
m_ScaleY = 1.0;
m_Paths = NULL;
m_Outfile = NULL;
}
/** Function ArmBoolEng
* Initialise parameters used in kbool
* @param aBooleng = pointer to the Bool_Engine to initialise
* @param aConvertHoles = mode for holes when a boolean operation is made
* true: in resulting polygon, holes are linked into outer contours by double overlapping segments
* false: in resulting polygons, holes are not linked: they are separate polygons
*/
void ArmBoolEng( Bool_Engine* aBooleng, bool aConvertHoles )
{
// set some global vals to arm the boolean engine
// input points are scaled up with GetDGrid() * GetGrid()
// DGRID is only meant to make fractional parts of input data which
/*
* The input data scaled up with DGrid is related to the accuracy the user has in his input data.
* User data with a minimum accuracy of 0.001, means set the DGrid to 1000.
* The input data may contain data with a minimum accuracy much smaller, but by setting the DGrid
* everything smaller than 1/DGrid is rounded.
*
* DGRID is only meant to make fractional parts of input data which can be
* doubles, part of the integers used in vertexes within the boolean algorithm.
* And therefore DGRID bigger than 1 is not usefull, you would only loose accuracy.
* Within the algorithm all input data is multiplied with DGRID, and the result
* is rounded to an integer.
*/
double DGRID = 1000.0; // round coordinate X or Y value in calculations to this (initial value = 1000.0 in kbool example)
// kbool uses DGRID to convert float user units to integer
// kbool unit = (int)(user unit * DGRID)
// Note: in kicad, coordinates are already integer so DGRID could be set to 1
// we can choose 1.0,
// but choose DGRID = 1000.0 solves some filling problems
// (perhaps because this allows a better precision in kbool internal calculations
double MARGE = 1.0 / DGRID; // snap with in this range points to lines in the intersection routines
// should always be >= 1/DGRID a MARGE >= 10/DGRID is ok
// this is also used to remove small segments and to decide when
// two segments are in line. ( initial value = 0.001 )
// For kicad we choose MARGE = 1/DGRID
double CORRECTIONFACTOR = 0.0; // correct the polygons by this number: used in BOOL_CORRECTION operation
// this operation shrinks a polygon if CORRECTIONFACTOR < 0
// or stretch it if CORRECTIONFACTOR > 0
// the size change is CORRECTIONFACTOR (holes are correctly handled)
double CORRECTIONABER = 1.0; // the accuracy for the rounded shapes used in correction
double ROUNDFACTOR = 1.5; // when will we round the correction shape to a circle
double SMOOTHABER = 10.0; // accuracy when smoothing a polygon
double MAXLINEMERGE = 1000.0; // leave as is, segments of this length in smoothen
/*
* Grid makes sure that the integer data used within the algorithm has room for extra intersections
* smaller than the smallest number within the input data.
* The input data scaled up with DGrid is related to the accuracy the user has in his input data.
* Another scaling with Grid is applied on top of it to create space in the integer number for
* even smaller numbers.
*/
int GRID = (int) 10000 / DGRID; // initial value = 10000 in kbool example
// But we use 10000/DGRID because the scalling is made
// by DGRID on integer pcbnew units and
// the global scalling ( GRID*DGRID) must be < 30000 to avoid
// overflow in calculations (made in long long in kbool)
if( GRID <= 1 ) // Cannot be null!
GRID = 1;
aBooleng->SetMarge( MARGE );
aBooleng->SetGrid( GRID );
aBooleng->SetDGrid( DGRID );
aBooleng->SetCorrectionFactor( CORRECTIONFACTOR );
aBooleng->SetCorrectionAber( CORRECTIONABER );
aBooleng->SetSmoothAber( SMOOTHABER );
aBooleng->SetMaxlinemerge( MAXLINEMERGE );
aBooleng->SetRoundfactor( ROUNDFACTOR );
aBooleng->SetWindingRule( true ); // This is the default kbool value
if( aConvertHoles )
{
#if 1 // Can be set to 1 for kbool version >= 2.1, must be set to 0 for previous versions
// SetAllowNonTopHoleLinking() exists only in kbool >= 2.1
aBooleng->SetAllowNonTopHoleLinking( false ); // Default = , but i have problems (filling errors) when true
#endif
aBooleng->SetLinkHoles( true ); // holes will be connected by double overlapping segments
aBooleng->SetOrientationEntryMode( false ); // all polygons are contours, not holes
}
else
{
aBooleng->SetLinkHoles( false ); // holes will not be connected by double overlapping segments
aBooleng->SetOrientationEntryMode( true ); // holes are entered counter clockwise
}
}
int bitmap2component( potrace_bitmap_t* aPotrace_bitmap, FILE * aOutfile, int aFormat )
{
potrace_param_t* param;
potrace_state_t* st;
/* set tracing parameters, starting from defaults */
param = potrace_param_default();
if( !param )
{
fprintf( stderr, "Error allocating parameters: %s\n", strerror( errno ) );
return 1;
}
param->turdsize = 0;
/* convert the bitmap to curves */
st = potrace_trace( param, aPotrace_bitmap );
if( !st || st->status != POTRACE_STATUS_OK )
{
fprintf( stderr, "Error tracing bitmap: %s\n", strerror( errno ) );
return 1;
}
BITMAPCONV_INFO info;
info.m_PixmapWidth = aPotrace_bitmap->w;
info.m_PixmapHeight = aPotrace_bitmap->h; // the bitmap size in pixels
info.m_Paths = st->plist;
info.m_Outfile = aOutfile;
switch( aFormat )
{
case 2:
info.m_Format = POSTSCRIPT_FMT;
info.m_ScaleX = info.m_ScaleY = 1.0; // the conversion scale
/* output vector data, e.g. as a rudimentary EPS file */
CreateOutputFile( info );
break;
case 1:
info.m_Format = EESCHEMA_FMT;
info.m_ScaleX = 1000.0 / 300; // the conversion scale
info.m_ScaleY = - info.m_ScaleX; // Y axis is bottom to Top for components in libs
CreateOutputFile( info );
break;
case 0:
info.m_Format = PCBNEW_FMT;
info.m_ScaleX = 10000.0 / 300; // the conversion scale
info.m_ScaleY = info.m_ScaleX; // Y axis is top to bottom in modedit
CreateOutputFile( info );
break;
default:
break;
}
bm_free( aPotrace_bitmap );
potrace_state_free( st );
potrace_param_free( param );
return 0;
}
static void OuputHeader( BITMAPCONV_INFO& aInfo )
{
int Ypos = (int) ( aInfo.m_PixmapHeight / 2 * aInfo.m_ScaleY );
int fieldSize; // fields text size = 60 mils
switch( aInfo.m_Format )
{
case POSTSCRIPT_FMT:
/* output vector data, e.g. as a rudimentary EPS file */
fprintf( aInfo.m_Outfile, "%%!PS-Adobe-3.0 EPSF-3.0\n" );
fprintf( aInfo.m_Outfile, "%%%%BoundingBox: 0 0 %d %d\n",
aInfo.m_PixmapWidth, aInfo.m_PixmapHeight );
fprintf( aInfo.m_Outfile, "gsave\n" );
break;
case PCBNEW_FMT:
#define FIELD_LAYER 21
fieldSize = 600; // fields text size = 60 mils
Ypos += fieldSize / 2;
fprintf( aInfo.m_Outfile, "PCBNEW-LibModule-V1\n" );
fprintf( aInfo.m_Outfile, "$INDEX\n%s\n$EndINDEX\n", CmpName );
fprintf( aInfo.m_Outfile, "#\n# %s\n", CmpName );
fprintf( aInfo.m_Outfile, "# pixmap w = %d, h = %d\n#\n",
aInfo.m_PixmapWidth, aInfo.m_PixmapHeight );
fprintf( aInfo.m_Outfile, "$MODULE %s\n", CmpName );
fprintf( aInfo.m_Outfile, "Po 0 0 0 15 00000000 00000000 ~~\n");
fprintf( aInfo.m_Outfile, "T0 0 %d %d %d 0 %d N I %d \"G***\"\n",
Ypos, fieldSize, fieldSize, fieldSize/5, FIELD_LAYER );
fprintf( aInfo.m_Outfile, "T1 0 %d %d %d 0 %d N I %d \"%s\"\n",
-Ypos, fieldSize, fieldSize, fieldSize/5, FIELD_LAYER, CmpName );
break;
case EESCHEMA_FMT:
fprintf( aInfo.m_Outfile, "EESchema-LIBRARY Version 2.3\n" );
fprintf( aInfo.m_Outfile, "#\n# %s\n", CmpName );
fprintf( aInfo.m_Outfile, "# pixmap size w = %d, h = %d\n#\n",
aInfo.m_PixmapWidth, aInfo.m_PixmapHeight );
// print reference and value
fieldSize = 60; // fields text size = 60 mils
Ypos += fieldSize / 2;
fprintf( aInfo.m_Outfile, "DEF %s G 0 40 Y Y 1 F N\n", CmpName );
fprintf( aInfo.m_Outfile, "F0 \"#G\" 0 %d %d H I C CNN\n", Ypos, fieldSize );
fprintf( aInfo.m_Outfile, "F1 \"%s\" 0 %d %d H I C CNN\n", CmpName, -Ypos, fieldSize );
fprintf( aInfo.m_Outfile, "DRAW\n" );
break;
}
}
static void OuputEnd( BITMAPCONV_INFO& aInfo )
{
switch( aInfo.m_Format )
{
case POSTSCRIPT_FMT:
fprintf( aInfo.m_Outfile, "grestore\n" );
fprintf( aInfo.m_Outfile, "%%EOF\n" );
break;
case PCBNEW_FMT:
fprintf( aInfo.m_Outfile, "$EndMODULE %s\n", CmpName );
fprintf( aInfo.m_Outfile, "$EndLIBRARY\n" );
break;
case EESCHEMA_FMT:
fprintf( aInfo.m_Outfile, "ENDDRAW\n" );
fprintf( aInfo.m_Outfile, "ENDDEF\n" );
break;
}
}
static void OuputOnePolygon( BITMAPCONV_INFO& aInfo,
std::vector <potrace_dpoint_t>& aPolygonBuffer )
{
unsigned ii;
double offsetX = aInfo.m_PixmapWidth / 2 * aInfo.m_ScaleX;
double offsetY = aInfo.m_PixmapHeight / 2 * aInfo.m_ScaleY;
switch( aInfo.m_Format )
{
case POSTSCRIPT_FMT:
fprintf( aInfo.m_Outfile, "%f %f moveto\n",
aPolygonBuffer[0].x * aInfo.m_ScaleX,
aPolygonBuffer[0].y * aInfo.m_ScaleY );
for( ii = 1; ii < aPolygonBuffer.size(); ii++ )
fprintf( aInfo.m_Outfile, "%f %f lineto\n",
aPolygonBuffer[ii].x * aInfo.m_ScaleX,
aPolygonBuffer[ii].y * aInfo.m_ScaleY );
fprintf( aInfo.m_Outfile, "0 setgray fill\n" );
break;
case PCBNEW_FMT:
{
#define SILKSCREEN_N_FRONT 21
int layer = SILKSCREEN_N_FRONT;
int width = 1;
fprintf( aInfo.m_Outfile, "DP %d %d %d %d %d %d %d\n",
0, 0, 0, 0,
int(aPolygonBuffer.size()+1),
width, layer );
for( ii = 0; ii < aPolygonBuffer.size(); ii++ )
fprintf( aInfo.m_Outfile, "Dl %d %d\n",
(int) ( aPolygonBuffer[ii].x * aInfo.m_ScaleX - offsetX ),
(int) ( aPolygonBuffer[ii].y * aInfo.m_ScaleY - offsetY ) );
// Close polygon
fprintf( aInfo.m_Outfile, "Dl %d %d\n",
(int) ( aPolygonBuffer[0].x * aInfo.m_ScaleX - offsetX ),
(int) ( aPolygonBuffer[0].y * aInfo.m_ScaleY - offsetY ) );
}
break;
case EESCHEMA_FMT:
fprintf( aInfo.m_Outfile, "P %d 0 0 1", int(aPolygonBuffer.size()+1) );
for( ii = 0; ii < aPolygonBuffer.size(); ii++ )
fprintf( aInfo.m_Outfile, " %d %d",
(int) ( aPolygonBuffer[ii].x * aInfo.m_ScaleX - offsetX ),
(int) ( aPolygonBuffer[ii].y * aInfo.m_ScaleY - offsetY ) );
// Close polygon
fprintf( aInfo.m_Outfile, " %d %d",
(int) ( aPolygonBuffer[0].x * aInfo.m_ScaleX - offsetX ),
(int) ( aPolygonBuffer[0].y * aInfo.m_ScaleY - offsetY ) );
fprintf( aInfo.m_Outfile, " F\n" );
break;
}
}
static void CreateOutputFile( BITMAPCONV_INFO& aInfo )
{
unsigned int i, n;
int* tag;
std::vector <potrace_dpoint_t> cornersBuffer;
potrace_dpoint_t( *c )[3];
OuputHeader( aInfo );
bool main_outline = true;
Bool_Engine* booleng = NULL;
/* draw each as a polygon with no hole.
* Bezier curves are approximated by a polyline
*/
potrace_path_t* paths = aInfo.m_Paths; // the list of paths
while( paths != NULL )
{
n = paths->curve.n;
tag = paths->curve.tag;
c = paths->curve.c;
potrace_dpoint_t startpoint = c[n - 1][2];
cornersBuffer.push_back( startpoint );
if( booleng == NULL )
{
booleng = new Bool_Engine();
ArmBoolEng( booleng, true );
}
for( i = 0; i < n; i++ )
{
switch( tag[i] )
{
case POTRACE_CORNER:
cornersBuffer.push_back( c[i][1] );
cornersBuffer.push_back( c[i][2] );
startpoint = c[i][2];
break;
case POTRACE_CURVETO:
BezierToPolyline( cornersBuffer, startpoint, c[i][0], c[i][1], c[i][2] );
startpoint = c[i][2];
break;
}
}
// Store current path
if( main_outline )
{
main_outline = false;
booleng->StartPolygonAdd( GROUP_A );
for( i = 1; i < cornersBuffer.size(); i++ )
booleng->AddPoint( cornersBuffer[i].x, cornersBuffer[i].y );
booleng->EndPolygonAdd();
}
else
{
booleng->StartPolygonAdd( GROUP_B );
for( i = 1; i < cornersBuffer.size(); i++ )
booleng->AddPoint( cornersBuffer[i].x, cornersBuffer[i].y );
booleng->EndPolygonAdd();
}
cornersBuffer.clear();
/* at the end of a group of a positive path and its negative
* children, fill. */
if( paths->next == NULL || paths->next->sign == '+' )
{
booleng->Do_Operation( BOOL_A_SUB_B );
std::vector <potrace_dpoint_t> PolygonBuffer;
while( booleng->StartPolygonGet() )
{
potrace_dpoint_t corner;
PolygonBuffer.clear();
while( booleng->PolygonHasMorePoints() )
{
corner.x = booleng->GetPolygonXPoint();
corner.y = booleng->GetPolygonYPoint();
PolygonBuffer.push_back( corner );
}
booleng->EndPolygonGet();
OuputOnePolygon( aInfo, PolygonBuffer );
PolygonBuffer.clear();
}
delete booleng;
booleng = NULL;
main_outline = true;
}
paths = paths->next;
}
OuputEnd( aInfo );
}
/* render a Bezier curve. */
void BezierToPolyline( std::vector <potrace_dpoint_t>& aCornersBuffer,
potrace_dpoint_t p1,
potrace_dpoint_t p2,
potrace_dpoint_t p3,
potrace_dpoint_t p4 )
{
double dd0, dd1, dd, delta, e2, epsilon, t;
// p1 = starting point
/* we approximate the curve by small line segments. The interval
* size, epsilon, is determined on the fly so that the distance
* between the true curve and its approximation does not exceed the
* desired accuracy delta. */
delta = 0.5; /* desired accuracy, in pixels */
/* let dd = maximal value of 2nd derivative over curve - this must
* occur at an endpoint. */
dd0 = sq( p1.x - 2 * p2.x + p3.x ) + sq( p1.y - 2 * p2.y + p3.y );
dd1 = sq( p2.x - 2 * p3.x + p4.x ) + sq( p2.y - 2 * p3.y + p4.y );
dd = 6 * sqrt( max( dd0, dd1 ) );
e2 = 8 * delta <= dd ? 8 * delta / dd : 1;
epsilon = sqrt( e2 ); /* necessary interval size */
for( t = epsilon; t<1; t += epsilon )
{
potrace_dpoint_t intermediate_point;
intermediate_point.x = p1.x * cu( 1 - t ) +
3* p2.x* sq( 1 - t ) * t +
3 * p3.x * (1 - t) * sq( t ) +
p4.x* cu( t );
intermediate_point.y = p1.y * cu( 1 - t ) +
3* p2.y* sq( 1 - t ) * t +
3 * p3.y * (1 - t) * sq( t ) + p4.y* cu( t );
aCornersBuffer.push_back( intermediate_point );
}
aCornersBuffer.push_back( p4 );
}