kicad/pcbnew/autorouter/auto_place_footprints.cpp

1302 lines
38 KiB
C++

/**
* @file auto_place_footprints.cpp
* @brief Functions to automatically place Footprints on a board.
*/
/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2012 Jean-Pierre Charras, jean-pierre.charras@ujf-grenoble.fr
* Copyright (C) 2012 SoftPLC Corporation, Dick Hollenbeck <dick@softplc.com>
* Copyright (C) 2011 Wayne Stambaugh <stambaughw@verizon.net>
*
* Copyright (C) 1992-2012 KiCad Developers, see change_log.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <fctsys.h>
#include <class_drawpanel.h>
#include <confirm.h>
#include <pcbnew.h>
#include <wxPcbStruct.h>
#include <gr_basic.h>
#include <macros.h>
#include <msgpanel.h>
#include <autorout.h>
#include <cell.h>
#include <colors_selection.h>
#include <class_board.h>
#include <class_module.h>
#include <class_track.h>
#include <class_drawsegment.h>
#include <convert_to_biu.h>
#include <base_units.h>
#include <protos.h>
#define GAIN 16
#define KEEP_OUT_MARGIN 500
/* Penalty (cost) for CntRot90 and CntRot180:
* CntRot90 and CntRot180 are from 0 (rotation allowed) to 10 (rotation not allowed)
*/
static const double OrientPenality[11] =
{
2.0, // CntRot = 0 rotation prohibited
1.9, // CntRot = 1
1.8, // CntRot = 2
1.7, // CntRot = 3
1.6, // CntRot = 4
1.5, // CntRot = 5
1.4, // CntRot = 5
1.3, // CntRot = 7
1.2, // CntRot = 8
1.1, // CntRot = 9
1.0 // CntRot = 10 rotation authorized, no penalty
};
// Cell states.
#define OUT_OF_BOARD -2
#define OCCUPED_By_MODULE -1
#define FREE_CELL 0
static wxPoint CurrPosition; // Current position of the current module placement
double MinCout;
/* generates the Routing matrix, used to fing the best placement
* of a footprint.
* Allocate a "bitmap" which is an image of the real board
* the bitmap handles:
* - The free areas
* - penalties (cell not occupied, but near occupied areas)
* - cells occupied by footprints, board cutout ...
*/
int genPlacementRoutingMatrix( BOARD* aBrd, EDA_MSG_PANEL* messagePanel );
/* searches for the optimal position of aModule.
* return 1 if placement impossible or 0 if OK.
*/
static int getOptimalModulePlacement( PCB_EDIT_FRAME* aFrame,
MODULE* aModule, wxDC* aDC );
/*
* Function compute_Ratsnest_PlaceModule
* displays the module's ratsnest during displacement, and assess the "cost"
* of the position.
*
* The cost is the longest ratsnest distance with penalty for connections
* approaching 45 degrees.
*/
static double compute_Ratsnest_PlaceModule( BOARD* aBrd );
/* Place a footprint on the Routing matrix.
*/
void genModuleOnRoutingMatrix( MODULE* Module );
/*
* Displays the Placement/Routing matrix on the screen
*/
static void drawPlacementRoutingMatrix( BOARD* aBrd, wxDC* DC );
static int TstModuleOnBoard( BOARD* Pcb, MODULE* Module, bool TstOtherSide );
static void CreateKeepOutRectangle( int ux0, int uy0, int ux1, int uy1,
int marge, int aKeepOut, LSET aLayerMask );
static MODULE* PickModule( PCB_EDIT_FRAME* pcbframe, wxDC* DC );
static int propagate();
void PCB_EDIT_FRAME::AutoPlaceModule( MODULE* Module, int place_mode, wxDC* DC )
{
MODULE* currModule = NULL;
wxPoint PosOK;
wxPoint memopos;
int error;
LAYER_ID lay_tmp_TOP, lay_tmp_BOTTOM;
// Undo: init list
PICKED_ITEMS_LIST newList;
newList.m_Status = UR_CHANGED;
ITEM_PICKER picker( NULL, UR_CHANGED );
if( GetBoard()->m_Modules == NULL )
return;
m_canvas->SetAbortRequest( false );
switch( place_mode )
{
case PLACE_1_MODULE:
currModule = Module;
if( currModule == NULL )
return;
currModule->SetIsPlaced( false );
currModule->SetNeedsPlaced( false );
break;
case PLACE_OUT_OF_BOARD:
break;
case PLACE_ALL:
if( !IsOK( this, _( "Footprints NOT LOCKED will be moved" ) ) )
return;
break;
case PLACE_INCREMENTAL:
if( !IsOK( this, _( "Footprints NOT PLACED will be moved" ) ) )
return;
break;
}
memopos = CurrPosition;
lay_tmp_BOTTOM = g_Route_Layer_BOTTOM;
lay_tmp_TOP = g_Route_Layer_TOP;
RoutingMatrix.m_GridRouting = (int) GetScreen()->GetGridSize().x;
// Ensure Board.m_GridRouting has a reasonable value:
if( RoutingMatrix.m_GridRouting < Millimeter2iu( 0.25 ) )
RoutingMatrix.m_GridRouting = Millimeter2iu( 0.25 );
// Compute module parameters used in auto place
if( genPlacementRoutingMatrix( GetBoard(), m_messagePanel ) == 0 )
return;
int moduleCount = 0;
Module = GetBoard()->m_Modules;
for( ; Module != NULL; Module = Module->Next() )
{
Module->SetNeedsPlaced( false );
switch( place_mode )
{
case PLACE_1_MODULE:
if( currModule == Module )
{
// Module will be placed, add to undo.
picker.SetItem( currModule );
newList.PushItem( picker );
Module->SetNeedsPlaced( true );
}
break;
case PLACE_OUT_OF_BOARD:
Module->SetIsPlaced( false );
if( Module->IsLocked() )
break;
if( !RoutingMatrix.m_BrdBox.Contains( Module->GetPosition() ) )
{
// Module will be placed, add to undo.
picker.SetItem( Module );
newList.PushItem( picker );
Module->SetNeedsPlaced( true );
}
break;
case PLACE_ALL:
Module->SetIsPlaced( false );
if( Module->IsLocked() )
break;
// Module will be placed, add to undo.
picker.SetItem( Module );
newList.PushItem( picker );
Module->SetNeedsPlaced( true );
break;
case PLACE_INCREMENTAL:
if( Module->IsLocked() )
{
Module->SetIsPlaced( false );
break;
}
if( !Module->NeedsPlaced() )
{
// Module will be placed, add to undo.
picker.SetItem( Module );
newList.PushItem( picker );
Module->SetNeedsPlaced( true );
}
break;
}
if( Module->NeedsPlaced() ) // Erase from screen
{
moduleCount++;
Module->Draw( m_canvas, DC, GR_XOR );
}
else
{
genModuleOnRoutingMatrix( Module );
}
}
// Undo command: prepare list
if( newList.GetCount() )
SaveCopyInUndoList( newList, UR_CHANGED );
int cnt = 0;
wxString msg;
while( ( Module = PickModule( this, DC ) ) != NULL )
{
// Display some info about activity, module placement can take a while:
msg.Printf( _( "Place footprint %d of %d" ), cnt, moduleCount );
SetStatusText( msg );
double initialOrient = Module->GetOrientation();
// Display fill area of interest, barriers, penalties.
drawPlacementRoutingMatrix( GetBoard(), DC );
error = getOptimalModulePlacement( this, Module, DC );
double bestScore = MinCout;
double bestRotation = 0.0;
int rotAllowed;
PosOK = CurrPosition;
if( error == ESC )
goto end_of_tst;
// Try orientations 90, 180, 270 degrees from initial orientation
rotAllowed = Module->GetPlacementCost180();
if( rotAllowed != 0 )
{
Rotate_Module( DC, Module, 1800.0, true );
error = getOptimalModulePlacement( this, Module, DC );
MinCout *= OrientPenality[rotAllowed];
if( bestScore > MinCout ) // This orientation is better.
{
PosOK = CurrPosition;
bestScore = MinCout;
bestRotation = 1800.0;
}
else
{
Rotate_Module( DC, Module, initialOrient, false );
}
if( error == ESC )
goto end_of_tst;
}
// Determine if the best orientation of a module is 90.
rotAllowed = Module->GetPlacementCost90();
if( rotAllowed != 0 )
{
Rotate_Module( DC, Module, 900.0, true );
error = getOptimalModulePlacement( this, Module, DC );
MinCout *= OrientPenality[rotAllowed];
if( bestScore > MinCout ) // This orientation is better.
{
PosOK = CurrPosition;
bestScore = MinCout;
bestRotation = 900.0;
}
else
{
Rotate_Module( DC, Module, initialOrient, false );
}
if( error == ESC )
goto end_of_tst;
}
// Determine if the best orientation of a module is -90.
if( rotAllowed != 0 )
{
Rotate_Module( DC, Module, 2700.0, true );
error = getOptimalModulePlacement( this, Module, DC );
MinCout *= OrientPenality[rotAllowed];
if( bestScore > MinCout ) // This orientation is better.
{
PosOK = CurrPosition;
bestScore = MinCout;
bestRotation = 2700.0;
}
else
{
Rotate_Module( DC, Module, initialOrient, false );
}
if( error == ESC )
goto end_of_tst;
}
end_of_tst:
if( error == ESC )
break;
// Place module.
CurrPosition = GetCrossHairPosition();
SetCrossHairPosition( PosOK );
PlaceModule( Module, DC );
bestRotation += initialOrient;
if( bestRotation != Module->GetOrientation() )
Rotate_Module( DC, Module, bestRotation, false );
SetCrossHairPosition( CurrPosition );
Module->CalculateBoundingBox();
genModuleOnRoutingMatrix( Module );
Module->SetIsPlaced( true );
Module->SetNeedsPlaced( false );
}
CurrPosition = memopos;
RoutingMatrix.UnInitRoutingMatrix();
g_Route_Layer_TOP = lay_tmp_TOP;
g_Route_Layer_BOTTOM = lay_tmp_BOTTOM;
Module = GetBoard()->m_Modules;
for( ; Module != NULL; Module = Module->Next() )
{
Module->CalculateBoundingBox();
}
GetBoard()->m_Status_Pcb = 0;
Compile_Ratsnest( DC, true );
m_canvas->ReDraw( DC, true );
}
void drawPlacementRoutingMatrix( BOARD* aBrd, wxDC* DC )
{
int ii, jj;
COLOR4D color;
int ox, oy;
MATRIX_CELL top_state, bottom_state;
GRSetDrawMode( DC, GR_COPY );
for( ii = 0; ii < RoutingMatrix.m_Nrows; ii++ )
{
oy = RoutingMatrix.m_BrdBox.GetY() + ( ii * RoutingMatrix.m_GridRouting );
for( jj = 0; jj < RoutingMatrix.m_Ncols; jj++ )
{
ox = RoutingMatrix.m_BrdBox.GetX() + (jj * RoutingMatrix.m_GridRouting);
color = COLOR4D::BLACK;
top_state = RoutingMatrix.GetCell( ii, jj, TOP );
bottom_state = RoutingMatrix.GetCell( ii, jj, BOTTOM );
if( top_state & CELL_is_ZONE )
color = COLOR4D( BLUE );
// obstacles
if( ( top_state & CELL_is_EDGE ) || ( bottom_state & CELL_is_EDGE ) )
color = COLOR4D::WHITE;
else if( top_state & ( HOLE | CELL_is_MODULE ) )
color = COLOR4D( LIGHTRED );
else if( bottom_state & (HOLE | CELL_is_MODULE) )
color = COLOR4D( LIGHTGREEN );
else // Display the filling and keep out regions.
{
if( RoutingMatrix.GetDist( ii, jj, TOP )
|| RoutingMatrix.GetDist( ii, jj, BOTTOM ) )
color = DARKGRAY;
}
GRPutPixel( NULL, DC, ox, oy, color );
}
}
}
int genPlacementRoutingMatrix( BOARD* aBrd, EDA_MSG_PANEL* messagePanel )
{
wxString msg;
RoutingMatrix.UnInitRoutingMatrix();
EDA_RECT bbox = aBrd->ComputeBoundingBox( true );
if( bbox.GetWidth() == 0 || bbox.GetHeight() == 0 )
{
DisplayError( NULL, _( "No PCB edge found, unknown board size!" ) );
return 0;
}
RoutingMatrix.ComputeMatrixSize( aBrd, true );
int nbCells = RoutingMatrix.m_Ncols * RoutingMatrix.m_Nrows;
messagePanel->EraseMsgBox();
msg.Printf( wxT( "%d" ), RoutingMatrix.m_Ncols );
messagePanel->SetMessage( 1, _( "Cols" ), msg, GREEN );
msg.Printf( wxT( "%d" ), RoutingMatrix.m_Nrows );
messagePanel->SetMessage( 7, _( "Lines" ), msg, GREEN );
msg.Printf( wxT( "%d" ), nbCells );
messagePanel->SetMessage( 14, _( "Cells." ), msg, YELLOW );
// Choose the number of board sides.
RoutingMatrix.m_RoutingLayersCount = 2;
RoutingMatrix.InitRoutingMatrix();
// Display memory usage.
msg.Printf( wxT( "%d" ), RoutingMatrix.m_MemSize / 1024 );
messagePanel->SetMessage( 24, wxT( "Mem(Kb)" ), msg, CYAN );
g_Route_Layer_BOTTOM = F_Cu;
if( RoutingMatrix.m_RoutingLayersCount > 1 )
g_Route_Layer_BOTTOM = B_Cu;
g_Route_Layer_TOP = F_Cu;
// Place the edge layer segments
TRACK TmpSegm( NULL );
TmpSegm.SetLayer( UNDEFINED_LAYER );
TmpSegm.SetNetCode( -1 );
TmpSegm.SetWidth( RoutingMatrix.m_GridRouting / 2 );
EDA_ITEM* PtStruct = aBrd->m_Drawings;
for( ; PtStruct != NULL; PtStruct = PtStruct->Next() )
{
DRAWSEGMENT* DrawSegm;
switch( PtStruct->Type() )
{
case PCB_LINE_T:
DrawSegm = (DRAWSEGMENT*) PtStruct;
if( DrawSegm->GetLayer() != Edge_Cuts )
break;
TraceSegmentPcb( DrawSegm, HOLE | CELL_is_EDGE,
RoutingMatrix.m_GridRouting, WRITE_CELL );
break;
case PCB_TEXT_T:
default:
break;
}
}
// Mark cells of the routing matrix to CELL_is_ZONE
// (i.e. availlable cell to place a module )
// Init a starting point of attachment to the area.
RoutingMatrix.OrCell( RoutingMatrix.m_Nrows / 2, RoutingMatrix.m_Ncols / 2,
BOTTOM, CELL_is_ZONE );
// find and mark all other availlable cells:
for( int ii = 1; ii != 0; )
ii = propagate();
// Initialize top layer. to the same value as the bottom layer
if( RoutingMatrix.m_BoardSide[TOP] )
memcpy( RoutingMatrix.m_BoardSide[TOP], RoutingMatrix.m_BoardSide[BOTTOM],
nbCells * sizeof(MATRIX_CELL) );
return 1;
}
/* Place module on Routing matrix.
*/
void genModuleOnRoutingMatrix( MODULE* Module )
{
int ox, oy, fx, fy;
LSET layerMask;
D_PAD* Pad;
EDA_RECT fpBBox = Module->GetBoundingBox();
fpBBox.Inflate( RoutingMatrix.m_GridRouting / 2 );
ox = fpBBox.GetX();
fx = fpBBox.GetRight();
oy = fpBBox.GetY();
fy = fpBBox.GetBottom();
if( ox < RoutingMatrix.m_BrdBox.GetX() )
ox = RoutingMatrix.m_BrdBox.GetX();
if( ox > RoutingMatrix.m_BrdBox.GetRight() )
ox = RoutingMatrix.m_BrdBox.GetRight();
if( fx < RoutingMatrix.m_BrdBox.GetX() )
fx = RoutingMatrix.m_BrdBox.GetX();
if( fx > RoutingMatrix.m_BrdBox.GetRight() )
fx = RoutingMatrix.m_BrdBox.GetRight();
if( oy < RoutingMatrix.m_BrdBox.GetY() )
oy = RoutingMatrix.m_BrdBox.GetY();
if( oy > RoutingMatrix.m_BrdBox.GetBottom() )
oy = RoutingMatrix.m_BrdBox.GetBottom();
if( fy < RoutingMatrix.m_BrdBox.GetY() )
fy = RoutingMatrix.m_BrdBox.GetY();
if( fy > RoutingMatrix.m_BrdBox.GetBottom() )
fy = RoutingMatrix.m_BrdBox.GetBottom();
if( Module->GetLayer() == F_Cu )
layerMask.set( F_Cu );
if( Module->GetLayer() == B_Cu )
layerMask.set( B_Cu );
TraceFilledRectangle( ox, oy, fx, fy, layerMask,
CELL_is_MODULE, WRITE_OR_CELL );
// Trace pads + clearance areas.
for( Pad = Module->Pads(); Pad != NULL; Pad = Pad->Next() )
{
int margin = (RoutingMatrix.m_GridRouting / 2) + Pad->GetClearance();
::PlacePad( Pad, CELL_is_MODULE, margin, WRITE_OR_CELL );
}
// Trace clearance.
int margin = ( RoutingMatrix.m_GridRouting * Module->GetPadCount() ) / GAIN;
CreateKeepOutRectangle( ox, oy, fx, fy, margin, KEEP_OUT_MARGIN, layerMask );
}
// A minor helper function to draw a bounding box:
inline void draw_FootprintRect( EDA_RECT* aClipBox, wxDC* aDC, EDA_RECT& fpBBox, COLOR4D aColor )
{
#ifndef USE_WX_OVERLAY
GRRect( aClipBox, aDC, fpBBox, 0, aColor );
#endif
}
int getOptimalModulePlacement( PCB_EDIT_FRAME* aFrame, MODULE* aModule, wxDC* aDC )
{
int error = 1;
wxPoint LastPosOK;
double min_cost, curr_cost, Score;
bool TstOtherSide;
DISPLAY_OPTIONS* displ_opts = (DISPLAY_OPTIONS*)aFrame->GetDisplayOptions();
BOARD* brd = aFrame->GetBoard();
aModule->CalculateBoundingBox();
bool showRats = displ_opts->m_Show_Module_Ratsnest;
displ_opts->m_Show_Module_Ratsnest = false;
brd->m_Status_Pcb &= ~RATSNEST_ITEM_LOCAL_OK;
aFrame->SetMsgPanel( aModule );
LastPosOK = RoutingMatrix.m_BrdBox.GetOrigin();
wxPoint mod_pos = aModule->GetPosition();
EDA_RECT fpBBox = aModule->GetFootprintRect();
// Move fpBBox to have the footprint position at (0,0)
fpBBox.Move( -mod_pos );
wxPoint fpBBoxOrg = fpBBox.GetOrigin();
// Calculate the limit of the footprint position, relative
// to the routing matrix area
wxPoint xylimit = RoutingMatrix.m_BrdBox.GetEnd() - fpBBox.GetEnd();
wxPoint initialPos = RoutingMatrix.m_BrdBox.GetOrigin() - fpBBoxOrg;
// Stay on grid.
initialPos.x -= initialPos.x % RoutingMatrix.m_GridRouting;
initialPos.y -= initialPos.y % RoutingMatrix.m_GridRouting;
CurrPosition = initialPos;
// Undraw the current footprint
aModule->DrawOutlinesWhenMoving( aFrame->GetCanvas(), aDC, wxPoint( 0, 0 ) );
g_Offset_Module = mod_pos - CurrPosition;
/* Examine pads, and set TstOtherSide to true if a footprint
* has at least 1 pad through.
*/
TstOtherSide = false;
if( RoutingMatrix.m_RoutingLayersCount > 1 )
{
LSET other( aModule->GetLayer() == B_Cu ? F_Cu : B_Cu );
for( D_PAD* pad = aModule->Pads(); pad; pad = pad->Next() )
{
if( !( pad->GetLayerSet() & other ).any() )
continue;
TstOtherSide = true;
break;
}
}
// Draw the initial bounding box position
COLOR4D color = COLOR4D( BROWN );
fpBBox.SetOrigin( fpBBoxOrg + CurrPosition );
draw_FootprintRect(aFrame->GetCanvas()->GetClipBox(), aDC, fpBBox, color);
min_cost = -1.0;
aFrame->SetStatusText( wxT( "Score ??, pos ??" ) );
for( ; CurrPosition.x < xylimit.x; CurrPosition.x += RoutingMatrix.m_GridRouting )
{
wxYield();
if( aFrame->GetCanvas()->GetAbortRequest() )
{
if( IsOK( aFrame, _( "OK to abort?" ) ) )
{
displ_opts->m_Show_Module_Ratsnest = showRats;
return ESC;
}
else
aFrame->GetCanvas()->SetAbortRequest( false );
}
CurrPosition.y = initialPos.y;
for( ; CurrPosition.y < xylimit.y; CurrPosition.y += RoutingMatrix.m_GridRouting )
{
// Erase traces.
draw_FootprintRect( aFrame->GetCanvas()->GetClipBox(), aDC, fpBBox, color );
fpBBox.SetOrigin( fpBBoxOrg + CurrPosition );
g_Offset_Module = mod_pos - CurrPosition;
int keepOutCost = TstModuleOnBoard( brd, aModule, TstOtherSide );
// Draw at new place
color = keepOutCost >= 0 ? BROWN : RED;
draw_FootprintRect( aFrame->GetCanvas()->GetClipBox(), aDC, fpBBox, color );
if( keepOutCost >= 0 ) // i.e. if the module can be put here
{
error = 0;
aFrame->build_ratsnest_module( aModule );
curr_cost = compute_Ratsnest_PlaceModule( brd );
Score = curr_cost + keepOutCost;
if( (min_cost >= Score ) || (min_cost < 0 ) )
{
LastPosOK = CurrPosition;
min_cost = Score;
wxString msg;
msg.Printf( wxT( "Score %g, pos %s, %s" ),
min_cost,
GetChars( ::CoordinateToString( LastPosOK.x ) ),
GetChars( ::CoordinateToString( LastPosOK.y ) ) );
aFrame->SetStatusText( msg );
}
}
}
}
// erasing the last traces
GRRect( aFrame->GetCanvas()->GetClipBox(), aDC, fpBBox, 0, BROWN );
displ_opts->m_Show_Module_Ratsnest = showRats;
// Regeneration of the modified variable.
CurrPosition = LastPosOK;
brd->m_Status_Pcb &= ~( RATSNEST_ITEM_LOCAL_OK | LISTE_PAD_OK );
MinCout = min_cost;
return error;
}
/* Test if the rectangular area (ux, ux .. y0, y1):
* - is a free zone (except OCCUPED_By_MODULE returns)
* - is on the working surface of the board (otherwise returns OUT_OF_BOARD)
*
* Returns OUT_OF_BOARD, or OCCUPED_By_MODULE or FREE_CELL if OK
*/
int TstRectangle( BOARD* Pcb, const EDA_RECT& aRect, int side )
{
EDA_RECT rect = aRect;
rect.Inflate( RoutingMatrix.m_GridRouting / 2 );
wxPoint start = rect.GetOrigin();
wxPoint end = rect.GetEnd();
start -= RoutingMatrix.m_BrdBox.GetOrigin();
end -= RoutingMatrix.m_BrdBox.GetOrigin();
int row_min = start.y / RoutingMatrix.m_GridRouting;
int row_max = end.y / RoutingMatrix.m_GridRouting;
int col_min = start.x / RoutingMatrix.m_GridRouting;
int col_max = end.x / RoutingMatrix.m_GridRouting;
if( start.y > row_min * RoutingMatrix.m_GridRouting )
row_min++;
if( start.x > col_min * RoutingMatrix.m_GridRouting )
col_min++;
if( row_min < 0 )
row_min = 0;
if( row_max >= ( RoutingMatrix.m_Nrows - 1 ) )
row_max = RoutingMatrix.m_Nrows - 1;
if( col_min < 0 )
col_min = 0;
if( col_max >= ( RoutingMatrix.m_Ncols - 1 ) )
col_max = RoutingMatrix.m_Ncols - 1;
for( int row = row_min; row <= row_max; row++ )
{
for( int col = col_min; col <= col_max; col++ )
{
unsigned int data = RoutingMatrix.GetCell( row, col, side );
if( ( data & CELL_is_ZONE ) == 0 )
return OUT_OF_BOARD;
if( (data & CELL_is_MODULE) )
return OCCUPED_By_MODULE;
}
}
return FREE_CELL;
}
/* Calculates and returns the clearance area of the rectangular surface
* aRect):
* (Sum of cells in terms of distance)
*/
unsigned int CalculateKeepOutArea( const EDA_RECT& aRect, int side )
{
wxPoint start = aRect.GetOrigin();
wxPoint end = aRect.GetEnd();
start -= RoutingMatrix.m_BrdBox.GetOrigin();
end -= RoutingMatrix.m_BrdBox.GetOrigin();
int row_min = start.y / RoutingMatrix.m_GridRouting;
int row_max = end.y / RoutingMatrix.m_GridRouting;
int col_min = start.x / RoutingMatrix.m_GridRouting;
int col_max = end.x / RoutingMatrix.m_GridRouting;
if( start.y > row_min * RoutingMatrix.m_GridRouting )
row_min++;
if( start.x > col_min * RoutingMatrix.m_GridRouting )
col_min++;
if( row_min < 0 )
row_min = 0;
if( row_max >= ( RoutingMatrix.m_Nrows - 1 ) )
row_max = RoutingMatrix.m_Nrows - 1;
if( col_min < 0 )
col_min = 0;
if( col_max >= ( RoutingMatrix.m_Ncols - 1 ) )
col_max = RoutingMatrix.m_Ncols - 1;
unsigned int keepOutCost = 0;
for( int row = row_min; row <= row_max; row++ )
{
for( int col = col_min; col <= col_max; col++ )
{
// RoutingMatrix.GetDist returns the "cost" of the cell
// at position (row, col)
// in autoplace this is the cost of the cell, if it is
// inside aRect
keepOutCost += RoutingMatrix.GetDist( row, col, side );
}
}
return keepOutCost;
}
/* Test if the module can be placed on the board.
* Returns the value TstRectangle().
* Module is known by its bounding box
*/
int TstModuleOnBoard( BOARD* Pcb, MODULE* aModule, bool TstOtherSide )
{
int side = TOP;
int otherside = BOTTOM;
if( aModule->GetLayer() == B_Cu )
{
side = BOTTOM; otherside = TOP;
}
EDA_RECT fpBBox = aModule->GetFootprintRect();
fpBBox.Move( -g_Offset_Module );
int diag = TstRectangle( Pcb, fpBBox, side );
if( diag != FREE_CELL )
return diag;
if( TstOtherSide )
{
diag = TstRectangle( Pcb, fpBBox, otherside );
if( diag != FREE_CELL )
return diag;
}
int marge = ( RoutingMatrix.m_GridRouting * aModule->GetPadCount() ) / GAIN;
fpBBox.Inflate( marge );
return CalculateKeepOutArea( fpBBox, side );
}
double compute_Ratsnest_PlaceModule( BOARD* aBrd )
{
double curr_cost;
wxPoint start; // start point of a ratsnest
wxPoint end; // end point of a ratsnest
int dx, dy;
if( ( aBrd->m_Status_Pcb & RATSNEST_ITEM_LOCAL_OK ) == 0 )
return -1;
curr_cost = 0;
for( unsigned ii = 0; ii < aBrd->m_LocalRatsnest.size(); ii++ )
{
RATSNEST_ITEM* pt_local_rats_nest = &aBrd->m_LocalRatsnest[ii];
if( ( pt_local_rats_nest->m_Status & LOCAL_RATSNEST_ITEM ) )
continue; // Skip ratsnest between 2 pads of the current module
// Skip modules not inside the board area
MODULE* module = pt_local_rats_nest->m_PadEnd->GetParent();
if( !RoutingMatrix.m_BrdBox.Contains( module->GetPosition() ) )
continue;
start = pt_local_rats_nest->m_PadStart->GetPosition() - g_Offset_Module;
end = pt_local_rats_nest->m_PadEnd->GetPosition();
// Cost of the ratsnest.
dx = end.x - start.x;
dy = end.y - start.y;
dx = abs( dx );
dy = abs( dy );
// ttry to have always dx >= dy to calculate the cost of the rastsnet
if( dx < dy )
std::swap( dx, dy );
// Cost of the connection = length + penalty due to the slope
// dx is the biggest length relative to the X or Y axis
// the penalty is max for 45 degrees ratsnests,
// and 0 for horizontal or vertical ratsnests.
// For Horizontal and Vertical ratsnests, dy = 0;
double conn_cost = hypot( dx, dy * 2.0 );
curr_cost += conn_cost; // Total cost = sum of costs of each connection
}
return curr_cost;
}
/**
* Function CreateKeepOutRectangle
* builds the cost map:
* Cells ( in Dist map ) inside the rect x0,y0 a x1,y1 are
* incremented by value aKeepOut
* Cell outside this rectangle, but inside the rectangle
* x0,y0 -marge to x1,y1 + marge are incremented by a decreasing value
* (aKeepOut ... 0). The decreasing value depends on the distance to the first rectangle
* Therefore the cost is high in rect x0,y0 to x1,y1, and decrease outside this rectangle
*/
void CreateKeepOutRectangle( int ux0, int uy0, int ux1, int uy1,
int marge, int aKeepOut, LSET aLayerMask )
{
int row, col;
int row_min, row_max, col_min, col_max, pmarge;
int trace = 0;
DIST_CELL data, LocalKeepOut;
int lgain, cgain;
if( aLayerMask[g_Route_Layer_BOTTOM] )
trace = 1; // Trace on bottom layer.
if( aLayerMask[g_Route_Layer_TOP] && RoutingMatrix.m_RoutingLayersCount )
trace |= 2; // Trace on top layer.
if( trace == 0 )
return;
ux0 -= RoutingMatrix.m_BrdBox.GetX();
uy0 -= RoutingMatrix.m_BrdBox.GetY();
ux1 -= RoutingMatrix.m_BrdBox.GetX();
uy1 -= RoutingMatrix.m_BrdBox.GetY();
ux0 -= marge; ux1 += marge;
uy0 -= marge; uy1 += marge;
pmarge = marge / RoutingMatrix.m_GridRouting;
if( pmarge < 1 )
pmarge = 1;
// Calculate the coordinate limits of the rectangle.
row_max = uy1 / RoutingMatrix.m_GridRouting;
col_max = ux1 / RoutingMatrix.m_GridRouting;
row_min = uy0 / RoutingMatrix.m_GridRouting;
if( uy0 > row_min * RoutingMatrix.m_GridRouting )
row_min++;
col_min = ux0 / RoutingMatrix.m_GridRouting;
if( ux0 > col_min * RoutingMatrix.m_GridRouting )
col_min++;
if( row_min < 0 )
row_min = 0;
if( row_max >= (RoutingMatrix.m_Nrows - 1) )
row_max = RoutingMatrix.m_Nrows - 1;
if( col_min < 0 )
col_min = 0;
if( col_max >= (RoutingMatrix.m_Ncols - 1) )
col_max = RoutingMatrix.m_Ncols - 1;
for( row = row_min; row <= row_max; row++ )
{
lgain = 256;
if( row < pmarge )
lgain = ( 256 * row ) / pmarge;
else if( row > row_max - pmarge )
lgain = ( 256 * ( row_max - row ) ) / pmarge;
for( col = col_min; col <= col_max; col++ )
{
// RoutingMatrix Dist map containt the "cost" of the cell
// at position (row, col)
// in autoplace this is the cost of the cell, when
// a footprint overlaps it, near a "master" footprint
// this cost is hight near the "master" footprint
// and decrease with the distance
cgain = 256;
LocalKeepOut = aKeepOut;
if( col < pmarge )
cgain = ( 256 * col ) / pmarge;
else if( col > col_max - pmarge )
cgain = ( 256 * ( col_max - col ) ) / pmarge;
cgain = ( cgain * lgain ) / 256;
if( cgain != 256 )
LocalKeepOut = ( LocalKeepOut * cgain ) / 256;
if( trace & 1 )
{
data = RoutingMatrix.GetDist( row, col, BOTTOM ) + LocalKeepOut;
RoutingMatrix.SetDist( row, col, BOTTOM, data );
}
if( trace & 2 )
{
data = RoutingMatrix.GetDist( row, col, TOP );
data = std::max( data, LocalKeepOut );
RoutingMatrix.SetDist( row, col, TOP, data );
}
}
}
}
// Sort routines
static bool Tri_PlaceModules( MODULE* ref, MODULE* compare )
{
double ff1, ff2;
ff1 = ref->GetArea() * ref->GetPadCount();
ff2 = compare->GetArea() * compare->GetPadCount();
return ff2 < ff1;
}
static bool sortFootprintsByRatsnestSize( MODULE* ref, MODULE* compare )
{
double ff1, ff2;
ff1 = ref->GetArea() * ref->GetFlag();
ff2 = compare->GetArea() * compare->GetFlag();
return ff2 < ff1;
}
/**
* Function PickModule
* find the "best" module place
* The criteria are:
* - Maximum ratsnest with modules already placed
* - Max size, and number of pads max
*/
static MODULE* PickModule( PCB_EDIT_FRAME* pcbframe, wxDC* DC )
{
MODULE* Module;
std::vector <MODULE*> moduleList;
// Build sorted footprints list (sort by decreasing size )
Module = pcbframe->GetBoard()->m_Modules;
for( ; Module != NULL; Module = Module->Next() )
{
Module->CalculateBoundingBox();
moduleList.push_back( Module );
}
sort( moduleList.begin(), moduleList.end(), Tri_PlaceModules );
for( unsigned kk = 0; kk < moduleList.size(); kk++ )
{
Module = moduleList[kk];
Module->SetFlag( 0 );
if( !Module->NeedsPlaced() )
continue;
pcbframe->GetBoard()->m_Status_Pcb &= ~RATSNEST_ITEM_LOCAL_OK;
pcbframe->SetMsgPanel( Module );
pcbframe->build_ratsnest_module( Module );
// Calculate external ratsnest.
for( unsigned ii = 0; ii < pcbframe->GetBoard()->m_LocalRatsnest.size(); ii++ )
{
if( ( pcbframe->GetBoard()->m_LocalRatsnest[ii].m_Status &
LOCAL_RATSNEST_ITEM ) == 0 )
Module->IncrementFlag();
}
}
pcbframe->GetBoard()->m_Status_Pcb &= ~RATSNEST_ITEM_LOCAL_OK;
sort( moduleList.begin(), moduleList.end(), sortFootprintsByRatsnestSize );
// Search for "best" module.
MODULE* bestModule = NULL;
MODULE* altModule = NULL;
for( unsigned ii = 0; ii < moduleList.size(); ii++ )
{
Module = moduleList[ii];
if( !Module->NeedsPlaced() )
continue;
altModule = Module;
if( Module->GetFlag() == 0 )
continue;
bestModule = Module;
break;
}
if( bestModule )
return bestModule;
else
return altModule;
}
/**
* Function propagate
* Used only in autoplace calculations
* Uses the routing matrix to fill the cells within the zone
* Search and mark cells within the zone, and agree with DRC options.
* Requirements:
* Start from an initial point, to fill zone
* The zone must have no "copper island"
* Algorithm:
* If the current cell has a neighbor flagged as "cell in the zone", it
* become a cell in the zone
* The first point in the zone is the starting point
* 4 searches within the matrix are made:
* 1 - Left to right and top to bottom
* 2 - Right to left and top to bottom
* 3 - bottom to top and Right to left
* 4 - bottom to top and Left to right
* Given the current cell, for each search, we consider the 2 neighbor cells
* the previous cell on the same line and the previous cell on the same column.
*
* This function can request some iterations
* Iterations are made until no cell is added to the zone.
* @return added cells count (i.e. which the attribute CELL_is_ZONE is set)
*/
int propagate()
{
int row, col;
long current_cell, old_cell_H;
std::vector<long> pt_cell_V;
int nbpoints = 0;
#define NO_CELL_ZONE (HOLE | CELL_is_EDGE | CELL_is_ZONE)
pt_cell_V.reserve( std::max( RoutingMatrix.m_Nrows, RoutingMatrix.m_Ncols ) );
fill( pt_cell_V.begin(), pt_cell_V.end(), 0 );
// Search from left to right and top to bottom.
for( row = 0; row < RoutingMatrix.m_Nrows; row++ )
{
old_cell_H = 0;
for( col = 0; col < RoutingMatrix.m_Ncols; col++ )
{
current_cell = RoutingMatrix.GetCell( row, col, BOTTOM ) & NO_CELL_ZONE;
if( current_cell == 0 ) // a free cell is found
{
if( (old_cell_H & CELL_is_ZONE) || (pt_cell_V[col] & CELL_is_ZONE) )
{
RoutingMatrix.OrCell( row, col, BOTTOM, CELL_is_ZONE );
current_cell = CELL_is_ZONE;
nbpoints++;
}
}
pt_cell_V[col] = old_cell_H = current_cell;
}
}
// Search from right to left and top to bottom/
fill( pt_cell_V.begin(), pt_cell_V.end(), 0 );
for( row = 0; row < RoutingMatrix.m_Nrows; row++ )
{
old_cell_H = 0;
for( col = RoutingMatrix.m_Ncols - 1; col >= 0; col-- )
{
current_cell = RoutingMatrix.GetCell( row, col, BOTTOM ) & NO_CELL_ZONE;
if( current_cell == 0 ) // a free cell is found
{
if( (old_cell_H & CELL_is_ZONE) || (pt_cell_V[col] & CELL_is_ZONE) )
{
RoutingMatrix.OrCell( row, col, BOTTOM, CELL_is_ZONE );
current_cell = CELL_is_ZONE;
nbpoints++;
}
}
pt_cell_V[col] = old_cell_H = current_cell;
}
}
// Search from bottom to top and right to left.
fill( pt_cell_V.begin(), pt_cell_V.end(), 0 );
for( col = RoutingMatrix.m_Ncols - 1; col >= 0; col-- )
{
old_cell_H = 0;
for( row = RoutingMatrix.m_Nrows - 1; row >= 0; row-- )
{
current_cell = RoutingMatrix.GetCell( row, col, BOTTOM ) & NO_CELL_ZONE;
if( current_cell == 0 ) // a free cell is found
{
if( (old_cell_H & CELL_is_ZONE) || (pt_cell_V[row] & CELL_is_ZONE) )
{
RoutingMatrix.OrCell( row, col, BOTTOM, CELL_is_ZONE );
current_cell = CELL_is_ZONE;
nbpoints++;
}
}
pt_cell_V[row] = old_cell_H = current_cell;
}
}
// Search from bottom to top and left to right.
fill( pt_cell_V.begin(), pt_cell_V.end(), 0 );
for( col = 0; col < RoutingMatrix.m_Ncols; col++ )
{
old_cell_H = 0;
for( row = RoutingMatrix.m_Nrows - 1; row >= 0; row-- )
{
current_cell = RoutingMatrix.GetCell( row, col, BOTTOM ) & NO_CELL_ZONE;
if( current_cell == 0 ) // a free cell is found
{
if( (old_cell_H & CELL_is_ZONE) || (pt_cell_V[row] & CELL_is_ZONE) )
{
RoutingMatrix.OrCell( row, col, BOTTOM, CELL_is_ZONE );
current_cell = CELL_is_ZONE;
nbpoints++;
}
}
pt_cell_V[row] = old_cell_H = current_cell;
}
}
return nbpoints;
}