kicad/3d-viewer/3d_rendering/3d_render_raytracing/material.h

399 lines
11 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2015-2016 Mario Luzeiro <mrluzeiro@ua.pt>
* Copyright (C) 2015-2020 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
/**
* @file material.h
*/
#ifndef _MATERIAL_H_
#define _MATERIAL_H_
#include "ray.h"
#include "hitinfo.h"
#include "PerlinNoise.h"
/**
* A base class that can be used to derive procedurally generated materials.
*/
class PROCEDURAL_GENERATOR
{
public:
PROCEDURAL_GENERATOR();
virtual ~PROCEDURAL_GENERATOR()
{
}
/**
* Generate a 3D vector based on the ray and hit information depending on the implementation.
*
* @param aRay the camera ray that hits the object
* @param aHitInfo the hit information
* @return the result of the procedural
*/
virtual SFVEC3F Generate( const RAY& aRay, const HITINFO& aHitInfo ) const = 0;
};
class BOARD_NORMAL : public PROCEDURAL_GENERATOR
{
public:
BOARD_NORMAL() : PROCEDURAL_GENERATOR() { m_scale = 1.0f; }
BOARD_NORMAL( float aScale );
virtual ~BOARD_NORMAL()
{
}
SFVEC3F Generate( const RAY& aRay, const HITINFO& aHitInfo ) const override;
private:
float m_scale;
};
/**
* Procedural generation of the copper normals.
*/
class COPPER_NORMAL : public PROCEDURAL_GENERATOR
{
public:
COPPER_NORMAL() : PROCEDURAL_GENERATOR()
{
m_board_normal_generator = nullptr;
m_scale = 1.0f;
}
COPPER_NORMAL( float aScale, const PROCEDURAL_GENERATOR* aBoardNormalGenerator );
virtual ~COPPER_NORMAL()
{
}
SFVEC3F Generate( const RAY& aRay, const HITINFO& aHitInfo ) const override;
private:
const PROCEDURAL_GENERATOR* m_board_normal_generator;
float m_scale;
};
class PLATED_COPPER_NORMAL : public PROCEDURAL_GENERATOR
{
public:
PLATED_COPPER_NORMAL() : PROCEDURAL_GENERATOR()
{
m_scale = 1.0f;
}
PLATED_COPPER_NORMAL( float aScale )
{
m_scale = 1.0f / aScale;
}
virtual ~PLATED_COPPER_NORMAL()
{
}
SFVEC3F Generate( const RAY& aRay, const HITINFO& aHitInfo ) const override;
private:
float m_scale;
};
/**
* Procedural generation of the solder mask.
*/
class SOLDER_MASK_NORMAL : public PROCEDURAL_GENERATOR
{
public:
SOLDER_MASK_NORMAL() : PROCEDURAL_GENERATOR() { m_copper_normal_generator = nullptr; }
SOLDER_MASK_NORMAL( const PROCEDURAL_GENERATOR* aCopperNormalGenerator );
virtual ~SOLDER_MASK_NORMAL()
{
}
SFVEC3F Generate( const RAY& aRay, const HITINFO& aHitInfo ) const override;
private:
const PROCEDURAL_GENERATOR* m_copper_normal_generator;
};
/**
* Procedural generation of the plastic normals.
*/
class PLASTIC_NORMAL : public PROCEDURAL_GENERATOR
{
public:
PLASTIC_NORMAL() : PROCEDURAL_GENERATOR()
{
m_scale = 1.0f;
}
PLASTIC_NORMAL( float aScale );
virtual ~PLASTIC_NORMAL()
{
}
SFVEC3F Generate( const RAY& aRay, const HITINFO& aHitInfo ) const override;
private:
float m_scale;
};
/**
* Procedural generation of the shiny plastic normals.
*/
class PLASTIC_SHINE_NORMAL : public PROCEDURAL_GENERATOR
{
public:
PLASTIC_SHINE_NORMAL() : PROCEDURAL_GENERATOR()
{
m_scale = 1.0f;
}
PLASTIC_SHINE_NORMAL( float aScale );
virtual ~PLASTIC_SHINE_NORMAL()
{
}
// Imported from PROCEDURAL_GENERATOR
SFVEC3F Generate( const RAY& aRay, const HITINFO& aHitInfo ) const override;
private:
float m_scale;
};
/**
* Procedural generation of the shiny brushed metal.
*/
class BRUSHED_METAL_NORMAL : public PROCEDURAL_GENERATOR
{
public:
BRUSHED_METAL_NORMAL() : PROCEDURAL_GENERATOR()
{
m_scale = 1.0f;
}
BRUSHED_METAL_NORMAL( float aScale );
virtual ~BRUSHED_METAL_NORMAL()
{
}
SFVEC3F Generate( const RAY& aRay, const HITINFO& aHitInfo ) const override;
private:
float m_scale;
};
class SILK_SCREEN_NORMAL : public PROCEDURAL_GENERATOR
{
public:
SILK_SCREEN_NORMAL() : PROCEDURAL_GENERATOR()
{
m_scale = 1.0f;
}
SILK_SCREEN_NORMAL( float aScale );
virtual ~SILK_SCREEN_NORMAL()
{
}
SFVEC3F Generate( const RAY& aRay, const HITINFO& aHitInfo ) const override;
private:
float m_scale;
};
/**
* Base material class that can be used to derive other material implementations.
*/
class MATERIAL
{
public:
static void SetDefaultNrRefractionsSamples( unsigned int aNrRefractions )
{
m_default_nrsamples_refractions = aNrRefractions;
}
static void SetDefaultNrReflectionsSamples( unsigned int aNrReflections )
{
m_default_nrsamples_reflections = aNrReflections;
}
static void SetDefaultRefractionsLevel( unsigned int aRefractionLevel )
{
m_default_refractions_recursive_levels = aRefractionLevel;
}
static void SetDefaultReflectionsLevel( unsigned int aReflectionLevel )
{
m_default_reflections_recursive_levels = aReflectionLevel;
}
MATERIAL();
MATERIAL( const SFVEC3F& aAmbient, const SFVEC3F& aEmissive, const SFVEC3F& aSpecular,
float aShinness, float aTransparency, float aReflection );
virtual ~MATERIAL() {}
const SFVEC3F& GetAmbientColor() const { return m_ambientColor; }
const SFVEC3F& GetEmissiveColor() const { return m_emissiveColor; }
const SFVEC3F& GetSpecularColor() const { return m_specularColor; }
float GetShinness() const { return m_shinness; }
float GetTransparency() const { return m_transparency; }
float GetReflection() const { return m_reflection; }
float GetAbsorvance() const { return m_absorbance; }
unsigned int GetNrRefractionsSamples() const { return m_refraction_nr_samples; }
unsigned int GetNrReflectionsSamples() const { return m_reflections_nr_samples; }
unsigned int GetReflectionsRecursiveLevel() const { return m_reflections_recursive_levels; }
unsigned int GetRefractionsRecursiveLevel() const { return m_refractions_recursive_levels; }
void SetAbsorvance( float aAbsorvanceFactor ) { m_absorbance = aAbsorvanceFactor; }
void SetNrRefractionsSamples( unsigned int aNrRefractions )
{
m_refraction_nr_samples = aNrRefractions;
}
void SetNrReflectionsSamples( unsigned int aNrReflections )
{
m_reflections_nr_samples = aNrReflections;
}
void SetReflectionsRecursiveLevel( unsigned int aReflectionsLevel )
{
m_reflections_recursive_levels = aReflectionsLevel;
}
void SetRefractionsRecursiveLevel( unsigned int aRefractionsLevel )
{
m_refractions_recursive_levels = aRefractionsLevel;
}
/**
* Set if the material can receive shadows.
*
* @param aCastShadows true yes it can, false not it cannot
*/
void SetCastShadows( bool aCastShadows ) { m_cast_shadows = aCastShadows; }
bool GetCastShadows() const { return m_cast_shadows; }
/**
* Shade an intersection point.
*
* @param aRay the camera ray that hits the object
* @param aHitInfo the hit information
* @param NdotL the dot product between Normal and Light
* @param aDiffuseObjColor diffuse object color
* @param aDirToLight a vector of the incident light direction
* @param aLightColor the light color
* @param aShadowAttenuationFactor 0.0f total in shadow, 1.0f completely not in shadow
* @return the resultant color
*/
virtual SFVEC3F Shade( const RAY& aRay, const HITINFO& aHitInfo, float NdotL,
const SFVEC3F& aDiffuseObjColor, const SFVEC3F& aDirToLight,
const SFVEC3F& aLightColor,
float aShadowAttenuationFactor ) const = 0;
void SetNormalPerturbator( const PROCEDURAL_GENERATOR* aPerturbator )
{
m_normal_perturbator = aPerturbator;
}
const PROCEDURAL_GENERATOR* GetNormalPerturbator() const { return m_normal_perturbator; }
void PerturbeNormal( SFVEC3F& aNormal, const RAY& aRay, const HITINFO& aHitInfo ) const;
protected:
SFVEC3F m_ambientColor;
// NOTE: we will not use diffuse color material here,
// because it will be stored in object, since there are objects (i.e: triangles)
// that can have per vertex color
SFVEC3F m_emissiveColor;
SFVEC3F m_specularColor;
float m_shinness;
///< 1.0 is completely transparent, 0.0 completely opaque.
float m_transparency;
float m_absorbance; ///< absorbance factor for the transparent material.
float m_reflection; ///< 1.0 completely reflective, 0.0 no reflective.
bool m_cast_shadows; ///< true if this object will block the light.
///< Number of rays that will be interpolated for this material if it is a transparent.
unsigned int m_refraction_nr_samples;
///< Number of rays that will be interpolated for this material if it is reflective.
unsigned int m_reflections_nr_samples;
///< Number of levels it allows for refraction recursiveness.
unsigned int m_refractions_recursive_levels;
///< Number of levels it allows for reflection recursiveness.
unsigned int m_reflections_recursive_levels;
const PROCEDURAL_GENERATOR* m_normal_perturbator;
private:
static int m_default_nrsamples_refractions;
static int m_default_nrsamples_reflections;
static int m_default_refractions_recursive_levels;
static int m_default_reflections_recursive_levels;
};
/// Blinn Phong based material
/// https://en.wikipedia.org/wiki/Blinn%E2%80%93Phong_shading_model
class BLINN_PHONG_MATERIAL : public MATERIAL
{
public:
BLINN_PHONG_MATERIAL() : MATERIAL() {}
BLINN_PHONG_MATERIAL( const SFVEC3F& aAmbient, const SFVEC3F& aEmissive,
const SFVEC3F& aSpecular, float aShinness, float aTransparency,
float aReflection ) :
MATERIAL( aAmbient, aEmissive, aSpecular, aShinness, aTransparency, aReflection ) {}
// Imported from MATERIAL
SFVEC3F Shade( const RAY& aRay, const HITINFO& aHitInfo, float NdotL,
const SFVEC3F& aDiffuseObjColor, const SFVEC3F& aDirToLight,
const SFVEC3F& aLightColor, float aShadowAttenuationFactor ) const override;
};
#endif // _MATERIAL_H_