kicad/pcbnew/router/pns_kicad_iface.cpp

1520 lines
41 KiB
C++

/*
* KiRouter - a push-and-(sometimes-)shove PCB router
*
* Copyright (C) 2013-2016 CERN
* Copyright (C) 2016-2020 KiCad Developers, see AUTHORS.txt for contributors.
* Author: Tomasz Wlostowski <tomasz.wlostowski@cern.ch>
*
* This program is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <undo_redo_container.h>
#include <class_board.h>
#include <board_connected_item.h>
#include <fp_text.h>
#include <class_module.h>
#include <class_track.h>
#include <class_zone.h>
#include <pcb_shape.h>
#include <pcb_text.h>
#include <board_commit.h>
#include <layers_id_colors_and_visibility.h>
#include <geometry/convex_hull.h>
#include <confirm.h>
#include <view/view.h>
#include <view/view_item.h>
#include <view/view_group.h>
#include <pcb_painter.h>
#include <geometry/shape.h>
#include <geometry/shape_line_chain.h>
#include <geometry/shape_arc.h>
#include <geometry/shape_simple.h>
#include <drc/drc_rule.h>
#include <drc/drc_engine.h>
#include <memory>
#include <advanced_config.h>
#include "tools/pcb_tool_base.h"
#include "pns_kicad_iface.h"
#include "pns_arc.h"
#include "pns_routing_settings.h"
#include "pns_sizes_settings.h"
#include "pns_item.h"
#include "pns_solid.h"
#include "pns_segment.h"
#include "pns_node.h"
#include "pns_router.h"
#include "pns_debug_decorator.h"
#include "router_preview_item.h"
typedef VECTOR2I::extended_type ecoord;
class PNS_PCBNEW_RULE_RESOLVER : public PNS::RULE_RESOLVER
{
public:
PNS_PCBNEW_RULE_RESOLVER( BOARD* aBoard, PNS::ROUTER_IFACE* aRouterIface );
virtual ~PNS_PCBNEW_RULE_RESOLVER();
virtual bool CollideHoles( const PNS::ITEM* aA, const PNS::ITEM* aB,
bool aNeedMTV, VECTOR2I* aMTV ) const override;
virtual int Clearance( const PNS::ITEM* aA, const PNS::ITEM* aB ) override;
virtual int DpCoupledNet( int aNet ) override;
virtual int DpNetPolarity( int aNet ) override;
virtual bool DpNetPair( const PNS::ITEM* aItem, int& aNetP, int& aNetN ) override;
virtual bool IsDiffPair( const PNS::ITEM* aA, const PNS::ITEM* aB ) override;
virtual bool QueryConstraint( PNS::CONSTRAINT_TYPE aType, const PNS::ITEM* aItemA, const PNS::ITEM* aItemB, int aLayer, PNS::CONSTRAINT* aConstraint ) override;
virtual wxString NetName( int aNet ) override;
private:
struct CLEARANCE_ENT
{
int coupledNet;
int dpClearance;
int clearance;
};
int holeRadius( const PNS::ITEM* aItem ) const;
int matchDpSuffix( const wxString& aNetName, wxString& aComplementNet, wxString& aBaseDpName );
PNS::ROUTER_IFACE* m_routerIface;
BOARD* m_board;
TRACK m_dummyTrack;
ARC m_dummyArc;
VIA m_dummyVia;
};
PNS_PCBNEW_RULE_RESOLVER::PNS_PCBNEW_RULE_RESOLVER( BOARD* aBoard,
PNS::ROUTER_IFACE* aRouterIface ) :
m_routerIface( aRouterIface ),
m_board( aBoard ),
m_dummyTrack( aBoard ),
m_dummyArc( aBoard ),
m_dummyVia( aBoard )
{
}
PNS_PCBNEW_RULE_RESOLVER::~PNS_PCBNEW_RULE_RESOLVER()
{
}
int PNS_PCBNEW_RULE_RESOLVER::holeRadius( const PNS::ITEM* aItem ) const
{
if( aItem->Kind() == PNS::ITEM::SOLID_T )
{
const D_PAD* pad = dynamic_cast<const D_PAD*>( aItem->Parent() );
if( pad && pad->GetDrillShape() == PAD_DRILL_SHAPE_CIRCLE )
return pad->GetDrillSize().x / 2;
}
else if( aItem->Kind() == PNS::ITEM::VIA_T )
{
const ::VIA* via = dynamic_cast<const ::VIA*>( aItem->Parent() );
if( via )
return via->GetDrillValue() / 2;
}
return 0;
}
bool PNS_PCBNEW_RULE_RESOLVER::CollideHoles( const PNS::ITEM* aA, const PNS::ITEM* aB,
bool aNeedMTV, VECTOR2I* aMTV ) const
{
VECTOR2I pos_a = aA->Shape()->Centre();
VECTOR2I pos_b = aB->Shape()->Centre();
// Holes with identical locations are allowable
if( pos_a == pos_b )
return false;
int radius_a = holeRadius( aA );
int radius_b = holeRadius( aB );
// Do both objects have holes?
if( radius_a > 0 && radius_b > 0 )
{
int holeToHoleMin = m_board->GetDesignSettings().m_HoleToHoleMin;
ecoord min_dist = holeToHoleMin + radius_a + radius_b;
ecoord min_dist_sq = min_dist * min_dist;
const VECTOR2I delta = pos_b - pos_a;
ecoord dist_sq = delta.SquaredEuclideanNorm();
if( dist_sq == 0 || dist_sq < min_dist_sq )
{
if( aNeedMTV )
*aMTV = delta.Resize( min_dist - sqrt( dist_sq ) + 3 ); // fixme: apparent rounding error
return true;
}
}
return false;
}
bool PNS_PCBNEW_RULE_RESOLVER::IsDiffPair( const PNS::ITEM* aA, const PNS::ITEM* aB )
{
int net_p, net_n;
if( !DpNetPair( aA, net_p, net_n ) )
return false;
if( aA->Net() == net_p && aB->Net() == net_n )
return true;
if( aB->Net() == net_p && aA->Net() == net_n )
return true;
return false;
}
bool PNS_PCBNEW_RULE_RESOLVER::QueryConstraint( PNS::CONSTRAINT_TYPE aType,
const PNS::ITEM* aItemA, const PNS::ITEM* aItemB,
int aLayer, PNS::CONSTRAINT* aConstraint )
{
std::shared_ptr<DRC_ENGINE> drcEngine = m_board->GetDesignSettings().m_DRCEngine;
if( !drcEngine )
return false;
DRC_CONSTRAINT_TYPE_T hostType;
switch ( aType )
{
case PNS::CONSTRAINT_TYPE::CT_CLEARANCE: hostType = CLEARANCE_CONSTRAINT; break;
case PNS::CONSTRAINT_TYPE::CT_WIDTH: hostType = TRACK_WIDTH_CONSTRAINT; break;
case PNS::CONSTRAINT_TYPE::CT_DIFF_PAIR_GAP: hostType = DIFF_PAIR_GAP_CONSTRAINT; break;
case PNS::CONSTRAINT_TYPE::CT_LENGTH: hostType = LENGTH_CONSTRAINT; break;
case PNS::CONSTRAINT_TYPE::CT_VIA_DIAMETER: hostType = VIA_DIAMETER_CONSTRAINT; break;
case PNS::CONSTRAINT_TYPE::CT_VIA_HOLE: hostType = HOLE_SIZE_CONSTRAINT; break;
default: return false; // should not happen
}
BOARD_ITEM* parentA = aItemA ? aItemA->Parent() : nullptr;
BOARD_ITEM* parentB = aItemB ? aItemB->Parent() : nullptr;
DRC_CONSTRAINT hostConstraint;
// A track being routed may not have a BOARD_ITEM associated yet.
if( !parentA )
{
switch( aItemA->Kind() )
{
case PNS::ITEM::ARC_T: parentA = &m_dummyArc; break;
case PNS::ITEM::VIA_T: parentA = &m_dummyVia; break;
case PNS::ITEM::SEGMENT_T: parentA = &m_dummyTrack; break;
case PNS::ITEM::LINE_T: parentA = &m_dummyTrack; break;
default: break;
}
if( parentA )
{
parentA->SetLayer( (PCB_LAYER_ID) aLayer );
static_cast<BOARD_CONNECTED_ITEM*>( parentA )->SetNetCode( aItemA->Net() );
}
}
if( aItemB && !parentB )
{
switch( aItemB->Kind() )
{
case PNS::ITEM::ARC_T: parentB = &m_dummyArc; break;
case PNS::ITEM::VIA_T: parentB = &m_dummyVia; break;
case PNS::ITEM::SEGMENT_T: parentB = &m_dummyTrack; break;
case PNS::ITEM::LINE_T: parentB = &m_dummyTrack; break;
default: break;
}
if( parentB )
{
parentB->SetLayer( (PCB_LAYER_ID) aLayer );
static_cast<BOARD_CONNECTED_ITEM*>( parentB )->SetNetCode( aItemB->Net() );
}
}
if( parentA )
{
hostConstraint = drcEngine->EvalRulesForItems( hostType, parentA, parentB,
(PCB_LAYER_ID) aLayer );
}
if( hostConstraint.IsNull() )
return false;
switch ( aType )
{
case PNS::CONSTRAINT_TYPE::CT_CLEARANCE:
case PNS::CONSTRAINT_TYPE::CT_WIDTH:
case PNS::CONSTRAINT_TYPE::CT_DIFF_PAIR_GAP:
case PNS::CONSTRAINT_TYPE::CT_VIA_DIAMETER:
case PNS::CONSTRAINT_TYPE::CT_VIA_HOLE:
aConstraint->m_Value = hostConstraint.GetValue();
aConstraint->m_RuleName = hostConstraint.GetName();
aConstraint->m_Type = aType;
return true;
default:
return false;
}
}
int PNS_PCBNEW_RULE_RESOLVER::Clearance( const PNS::ITEM* aA, const PNS::ITEM* aB )
{
PNS::CONSTRAINT constraint;
bool ok = false;
int rv = 0;
if( aB && IsDiffPair( aA, aB ) )
{
// for diff pairs, we use the gap value for shoving/dragging
if( QueryConstraint( PNS::CONSTRAINT_TYPE::CT_DIFF_PAIR_GAP, aA, aB, aA->Layer(),
&constraint ) )
{
rv = constraint.m_Value.Opt();
ok = true;
}
}
if( !ok )
{
if( QueryConstraint( PNS::CONSTRAINT_TYPE::CT_CLEARANCE, aA, aB, aA->Layer(),
&constraint ) )
{
rv = constraint.m_Value.Min();
ok = true;
}
}
// still no valid clearance rule? fall back to global minimum.
if( !ok )
{
rv = m_board->GetDesignSettings().m_MinClearance;
}
return rv;
}
bool PNS_KICAD_IFACE_BASE::inheritTrackWidth( PNS::ITEM* aItem, int* aInheritedWidth )
{
VECTOR2I p;
assert( aItem->Owner() != NULL );
switch( aItem->Kind() )
{
case PNS::ITEM::VIA_T:
p = static_cast<PNS::VIA*>( aItem )->Pos();
break;
case PNS::ITEM::SOLID_T:
p = static_cast<PNS::SOLID*>( aItem )->Pos();
break;
case PNS::ITEM::SEGMENT_T:
*aInheritedWidth = static_cast<PNS::SEGMENT*>( aItem )->Width();
return true;
default:
return false;
}
PNS::JOINT* jt = static_cast<PNS::NODE*>( aItem->Owner() )->FindJoint( p, aItem );
assert( jt != NULL );
int mval = INT_MAX;
PNS::ITEM_SET linkedSegs = jt->Links();
linkedSegs.ExcludeItem( aItem ).FilterKinds( PNS::ITEM::SEGMENT_T );
for( PNS::ITEM* item : linkedSegs.Items() )
{
int w = static_cast<PNS::SEGMENT*>( item )->Width();
mval = std::min( w, mval );
}
if( mval == INT_MAX )
return false;
*aInheritedWidth = mval;
return true;
}
bool PNS_KICAD_IFACE_BASE::ImportSizes( PNS::SIZES_SETTINGS& aSizes, PNS::ITEM* aStartItem, int aNet )
{
BOARD_DESIGN_SETTINGS& bds = m_board->GetDesignSettings();
PNS::CONSTRAINT constraint;
int trackWidth = bds.m_TrackMinWidth;
bool found = false;
if( bds.m_UseConnectedTrackWidth && aStartItem != nullptr )
{
found = inheritTrackWidth( aStartItem, &trackWidth );
}
if( !found && bds.UseNetClassTrack() && aStartItem )
{
if( m_ruleResolver->QueryConstraint( PNS::CONSTRAINT_TYPE::CT_WIDTH, aStartItem, nullptr,
aStartItem->Layer(), &constraint ) )
{
trackWidth = constraint.m_Value.OptThenMin();
found = true; // Note: allowed to override anything, including bds.m_TrackMinWidth
}
}
if( !found )
{
trackWidth = bds.GetCurrentTrackWidth();
}
aSizes.SetTrackWidth( trackWidth );
int viaDiameter = bds.m_ViasMinSize;
int viaDrill = bds.m_MinThroughDrill;
if( bds.UseNetClassVia() && aStartItem ) // netclass value
{
if( m_ruleResolver->QueryConstraint( PNS::CONSTRAINT_TYPE::CT_VIA_DIAMETER, aStartItem,
nullptr, aStartItem->Layer(), &constraint ) )
{
viaDiameter = constraint.m_Value.OptThenMin();
}
if( m_ruleResolver->QueryConstraint( PNS::CONSTRAINT_TYPE::CT_VIA_HOLE, aStartItem,
nullptr, aStartItem->Layer(), &constraint ) )
{
viaDrill = constraint.m_Value.OptThenMin();
}
}
else
{
viaDiameter = bds.GetCurrentViaSize();
viaDrill = bds.GetCurrentViaDrill();
}
aSizes.SetViaDiameter( viaDiameter );
aSizes.SetViaDrill( viaDrill );
int diffPairWidth = bds.m_TrackMinWidth;
int diffPairGap = bds.m_MinClearance;
int diffPairViaGap = bds.m_MinClearance;
if( bds.UseNetClassDiffPair() && aStartItem )
{
if( m_ruleResolver->QueryConstraint( PNS::CONSTRAINT_TYPE::CT_WIDTH, aStartItem,
nullptr, aStartItem->Layer(), &constraint ) )
{
diffPairWidth = constraint.m_Value.OptThenMin();
}
if( m_ruleResolver->QueryConstraint( PNS::CONSTRAINT_TYPE::CT_DIFF_PAIR_GAP, aStartItem,
nullptr, aStartItem->Layer(), &constraint ) )
{
diffPairGap = constraint.m_Value.OptThenMin();
diffPairViaGap = constraint.m_Value.OptThenMin();
}
}
else if( bds.UseCustomDiffPairDimensions() )
{
diffPairWidth = bds.GetCustomDiffPairWidth();
diffPairGap = bds.GetCustomDiffPairGap();
diffPairViaGap = bds.GetCustomDiffPairViaGap();
}
//printf( "DPWidth: %d gap %d\n", diffPairWidth, diffPairGap );
aSizes.SetDiffPairWidth( diffPairWidth );
aSizes.SetDiffPairGap( diffPairGap );
aSizes.SetDiffPairViaGap( diffPairViaGap );
aSizes.ClearLayerPairs();
return true;
}
int PNS_PCBNEW_RULE_RESOLVER::matchDpSuffix( const wxString& aNetName, wxString& aComplementNet,
wxString& aBaseDpName )
{
int rv = 0;
if( aNetName.EndsWith( "+" ) )
{
aComplementNet = "-";
rv = 1;
}
else if( aNetName.EndsWith( "P" ) )
{
aComplementNet = "N";
rv = 1;
}
else if( aNetName.EndsWith( "-" ) )
{
aComplementNet = "+";
rv = -1;
}
else if( aNetName.EndsWith( "N" ) )
{
aComplementNet = "P";
rv = -1;
}
// Match P followed by 2 digits
else if( aNetName.Right( 2 ).IsNumber() && aNetName.Right( 3 ).Left( 1 ) == "P" )
{
aComplementNet = "N" + aNetName.Right( 2 );
rv = 1;
}
// Match P followed by 1 digit
else if( aNetName.Right( 1 ).IsNumber() && aNetName.Right( 2 ).Left( 1 ) == "P" )
{
aComplementNet = "N" + aNetName.Right( 1 );
rv = 1;
}
// Match N followed by 2 digits
else if( aNetName.Right( 2 ).IsNumber() && aNetName.Right( 3 ).Left( 1 ) == "N" )
{
aComplementNet = "P" + aNetName.Right( 2 );
rv = -1;
}
// Match N followed by 1 digit
else if( aNetName.Right( 1 ).IsNumber() && aNetName.Right( 2 ).Left( 1 ) == "N" )
{
aComplementNet = "P" + aNetName.Right( 1 );
rv = -1;
}
if( rv != 0 )
{
aBaseDpName = aNetName.Left( aNetName.Length() - aComplementNet.Length() );
aComplementNet = aBaseDpName + aComplementNet;
}
return rv;
}
int PNS_PCBNEW_RULE_RESOLVER::DpCoupledNet( int aNet )
{
wxString refName = m_board->FindNet( aNet )->GetNetname();
wxString dummy, coupledNetName;
if( matchDpSuffix( refName, coupledNetName, dummy ) )
{
NETINFO_ITEM* net = m_board->FindNet( coupledNetName );
if( !net )
return -1;
return net->GetNet();
}
return -1;
}
wxString PNS_PCBNEW_RULE_RESOLVER::NetName( int aNet )
{
return m_board->FindNet( aNet )->GetNetname();
}
int PNS_PCBNEW_RULE_RESOLVER::DpNetPolarity( int aNet )
{
wxString refName = m_board->FindNet( aNet )->GetNetname();
wxString dummy1, dummy2;
return matchDpSuffix( refName, dummy1, dummy2 );
}
bool PNS_PCBNEW_RULE_RESOLVER::DpNetPair( const PNS::ITEM* aItem, int& aNetP, int& aNetN )
{
if( !aItem || !aItem->Parent() || !aItem->Parent()->IsConnected() )
return false;
BOARD_CONNECTED_ITEM* cItem = static_cast<BOARD_CONNECTED_ITEM*>( aItem->Parent() );
NETINFO_ITEM* netInfo = cItem->GetNet();
if( !netInfo )
return false;
wxString netNameP = netInfo->GetNetname();
wxString netNameN, netNameCoupled, netNameBase;
int r = matchDpSuffix( netNameP, netNameCoupled, netNameBase );
if( r == 0 )
{
return false;
}
else if( r == 1 )
{
netNameN = netNameCoupled;
}
else
{
netNameN = netNameP;
netNameP = netNameCoupled;
}
// wxLogTrace( "PNS","p %s n %s base %s\n", (const char *)netNameP.c_str(), (const char *)netNameN.c_str(), (const char *)netNameBase.c_str() );
NETINFO_ITEM* netInfoP = m_board->FindNet( netNameP );
NETINFO_ITEM* netInfoN = m_board->FindNet( netNameN );
//wxLogTrace( "PNS","ip %p in %p\n", netInfoP, netInfoN);
if( !netInfoP || !netInfoN )
return false;
aNetP = netInfoP->GetNet();
aNetN = netInfoN->GetNet();
return true;
}
class PNS_PCBNEW_DEBUG_DECORATOR: public PNS::DEBUG_DECORATOR
{
public:
PNS_PCBNEW_DEBUG_DECORATOR( KIGFX::VIEW* aView = NULL ): PNS::DEBUG_DECORATOR(),
m_view( NULL ), m_items( NULL )
{
SetView( aView );
}
~PNS_PCBNEW_DEBUG_DECORATOR()
{
Clear();
delete m_items;
}
void SetView( KIGFX::VIEW* aView )
{
Clear();
delete m_items;
m_items = NULL;
m_view = aView;
if( m_view == NULL )
return;
m_items = new KIGFX::VIEW_GROUP( m_view );
m_items->SetLayer( LAYER_SELECT_OVERLAY ) ;
m_view->Add( m_items );
}
void AddPoint( VECTOR2I aP, int aColor, const std::string aName = "") override
{
SHAPE_LINE_CHAIN l;
l.Append( aP - VECTOR2I( -50000, -50000 ) );
l.Append( aP + VECTOR2I( -50000, -50000 ) );
AddLine( l, aColor, 10000 );
l.Clear();
l.Append( aP - VECTOR2I( 50000, -50000 ) );
l.Append( aP + VECTOR2I( 50000, -50000 ) );
AddLine( l, aColor, 10000 );
}
void AddBox( BOX2I aB, int aColor, const std::string aName = "" ) override
{
SHAPE_LINE_CHAIN l;
VECTOR2I o = aB.GetOrigin();
VECTOR2I s = aB.GetSize();
l.Append( o );
l.Append( o.x + s.x, o.y );
l.Append( o.x + s.x, o.y + s.y );
l.Append( o.x, o.y + s.y );
l.Append( o );
AddLine( l, aColor, 10000 );
}
void AddSegment( SEG aS, int aColor, const std::string aName = "") override
{
SHAPE_LINE_CHAIN l;
l.Append( aS.A );
l.Append( aS.B );
AddLine( l, aColor, 10000 );
}
void AddDirections( VECTOR2D aP, int aMask, int aColor, const std::string aName = "") override
{
BOX2I b( aP - VECTOR2I( 10000, 10000 ), VECTOR2I( 20000, 20000 ) );
AddBox( b, aColor );
for( int i = 0; i < 8; i++ )
{
if( ( 1 << i ) & aMask )
{
VECTOR2I v = DIRECTION_45( ( DIRECTION_45::Directions ) i ).ToVector() * 100000;
AddSegment( SEG( aP, aP + v ), aColor );
}
}
}
void AddLine( const SHAPE_LINE_CHAIN& aLine, int aType, int aWidth, const std::string aName = "" ) override
{
if( !m_view )
return;
ROUTER_PREVIEW_ITEM* pitem = new ROUTER_PREVIEW_ITEM( NULL, m_view );
pitem->Line( aLine, aWidth, aType );
m_items->Add( pitem ); // Should not be needed, as m_items has been passed as a parent group in alloc;
m_view->Update( m_items );
}
void Clear() override
{
if( m_view && m_items )
{
m_items->FreeItems();
m_view->Update( m_items );
}
}
private:
KIGFX::VIEW* m_view;
KIGFX::VIEW_GROUP* m_items;
};
PNS::DEBUG_DECORATOR* PNS_KICAD_IFACE_BASE::GetDebugDecorator()
{
return m_debugDecorator;
}
PNS_KICAD_IFACE_BASE::PNS_KICAD_IFACE_BASE()
{
m_ruleResolver = nullptr;
m_board = nullptr;
m_world = nullptr;
m_debugDecorator = nullptr;
}
PNS_KICAD_IFACE::PNS_KICAD_IFACE()
{
m_tool = nullptr;
m_view = nullptr;
m_previewItems = nullptr;
m_dispOptions = nullptr;
}
PNS_KICAD_IFACE_BASE::~PNS_KICAD_IFACE_BASE()
{
}
PNS_KICAD_IFACE::~PNS_KICAD_IFACE()
{
delete m_ruleResolver;
delete m_debugDecorator;
if( m_previewItems )
{
m_previewItems->FreeItems();
delete m_previewItems;
}
}
std::unique_ptr<PNS::SOLID> PNS_KICAD_IFACE_BASE::syncPad( D_PAD* aPad )
{
LAYER_RANGE layers( 0, MAX_CU_LAYERS - 1 );
// ignore non-copper pads except for those with holes
if( ( aPad->GetLayerSet() & LSET::AllCuMask() ).none() && aPad->GetDrillSize().x == 0 )
return NULL;
switch( aPad->GetAttribute() )
{
case PAD_ATTRIB_PTH:
case PAD_ATTRIB_NPTH:
break;
case PAD_ATTRIB_CONN:
case PAD_ATTRIB_SMD:
{
LSET lmsk = aPad->GetLayerSet();
bool is_copper = false;
for( int i = 0; i < MAX_CU_LAYERS; i++ )
{
if( lmsk[i] )
{
is_copper = true;
if( aPad->GetAttribute() != PAD_ATTRIB_NPTH )
layers = LAYER_RANGE( i );
break;
}
}
if( !is_copper )
return NULL;
}
break;
default:
wxLogTrace( "PNS", "unsupported pad type 0x%x", aPad->GetAttribute() );
return NULL;
}
std::unique_ptr<PNS::SOLID> solid = std::make_unique<PNS::SOLID>();
if( aPad->GetDrillSize().x > 0 )
{
SHAPE_SEGMENT* slot = (SHAPE_SEGMENT*) aPad->GetEffectiveHoleShape()->Clone();
if( aPad->GetAttribute() != PAD_ATTRIB_NPTH )
{
BOARD_DESIGN_SETTINGS& bds = m_board->GetDesignSettings();
slot->SetWidth( slot->GetWidth() + bds.GetHolePlatingThickness() * 2 );
}
solid->SetAlternateShape( slot );
}
if( aPad->GetAttribute() == PAD_ATTRIB_NPTH )
solid->SetRoutable( false );
solid->SetLayers( layers );
solid->SetNet( aPad->GetNetCode() );
solid->SetParent( aPad );
solid->SetPadToDie( aPad->GetPadToDieLength() );
wxPoint wx_c = aPad->ShapePos();
wxPoint offset = aPad->GetOffset();
VECTOR2I c( wx_c.x, wx_c.y );
RotatePoint( &offset, aPad->GetOrientation() );
solid->SetPos( VECTOR2I( c.x - offset.x, c.y - offset.y ) );
solid->SetOffset( VECTOR2I( offset.x, offset.y ) );
auto shapes = std::dynamic_pointer_cast<SHAPE_COMPOUND>( aPad->GetEffectiveShape() );
if( shapes && shapes->Size() == 1 )
{
solid->SetShape( shapes->Clone() );
}
else
{
// Fixme (but not urgent). For complex pad shapes, we pass a single simple polygon to the
// router, otherwise it won't know how to correctly build walkaround 'hulls' for the pad
// primitives - it can recognize only simple shapes, but not COMPOUNDs made of multiple shapes.
// The proper way to fix this would be to implement SHAPE_COMPOUND::ConvertToSimplePolygon(),
// but the complexity of pad polygonization code (see D_PAD::GetEffectivePolygon), including approximation
// error handling makes me slightly scared to do it right now.
const std::shared_ptr<SHAPE_POLY_SET>& outline = aPad->GetEffectivePolygon();
SHAPE_SIMPLE* shape = new SHAPE_SIMPLE();
for( auto iter = outline->CIterate( 0 ); iter; iter++ )
shape->Append( *iter );
solid->SetShape( shape );
}
return solid;
}
std::unique_ptr<PNS::SEGMENT> PNS_KICAD_IFACE_BASE::syncTrack( TRACK* aTrack )
{
auto segment = std::make_unique<PNS::SEGMENT>( SEG( aTrack->GetStart(), aTrack->GetEnd() ),
aTrack->GetNetCode() );
segment->SetWidth( aTrack->GetWidth() );
segment->SetLayers( LAYER_RANGE( aTrack->GetLayer() ) );
segment->SetParent( aTrack );
if( aTrack->IsLocked() )
segment->Mark( PNS::MK_LOCKED );
return segment;
}
std::unique_ptr<PNS::ARC> PNS_KICAD_IFACE_BASE::syncArc( ARC* aArc )
{
auto arc = std::make_unique<PNS::ARC>( SHAPE_ARC( aArc->GetStart(), aArc->GetMid(), aArc->GetEnd(),
aArc->GetWidth() ),
aArc->GetNetCode() );
arc->SetLayers( LAYER_RANGE( aArc->GetLayer() ) );
arc->SetParent( aArc );
if( aArc->IsLocked() )
arc->Mark( PNS::MK_LOCKED );
return arc;
}
std::unique_ptr<PNS::VIA> PNS_KICAD_IFACE_BASE::syncVia( VIA* aVia )
{
std::vector<std::unique_ptr<PNS::VIA>> retval;
PCB_LAYER_ID top, bottom;
aVia->LayerPair( &top, &bottom );
auto via = std::make_unique<PNS::VIA>( aVia->GetPosition(),
LAYER_RANGE( aVia->TopLayer(), aVia->BottomLayer() ),
aVia->GetWidth(),
aVia->GetDrillValue(),
aVia->GetNetCode(),
aVia->GetViaType() );
via->SetParent( aVia );
if( aVia->IsLocked() )
via->Mark( PNS::MK_LOCKED );
return std::move( via );
}
bool PNS_KICAD_IFACE_BASE::syncZone( PNS::NODE* aWorld, ZONE_CONTAINER* aZone,
SHAPE_POLY_SET* aBoardOutline )
{
SHAPE_POLY_SET poly;
// TODO handle no-via restriction
if( !aZone->GetIsRuleArea() || !aZone->GetDoNotAllowTracks() )
return false;
LSET layers = aZone->GetLayerSet();
EDA_UNITS units = EDA_UNITS::MILLIMETRES; // TODO: get real units
for( int layer = F_Cu; layer <= B_Cu; layer++ )
{
if( ! layers[ layer ] )
continue;
aZone->BuildSmoothedPoly( poly, ToLAYER_ID( layer ), aBoardOutline );
poly.CacheTriangulation();
if( !poly.IsTriangulationUpToDate() )
{
KIDIALOG dlg( nullptr, wxString::Format( _( "%s is malformed." ),
aZone->GetSelectMenuText( units ) ),
KIDIALOG::KD_WARNING );
dlg.ShowDetailedText( wxString::Format( _( "This zone cannot be handled by the track "
"layout tool.\n"
"Please verify it is not a "
"self-intersecting polygon." ) ) );
dlg.DoNotShowCheckbox( __FILE__, __LINE__ );
dlg.ShowModal();
return false;
}
for( int outline = 0; outline < poly.OutlineCount(); outline++ )
{
const SHAPE_POLY_SET::TRIANGULATED_POLYGON* tri = poly.TriangulatedPolygon( outline );
for( size_t i = 0; i < tri->GetTriangleCount(); i++)
{
VECTOR2I a, b, c;
tri->GetTriangle( i, a, b, c );
SHAPE_SIMPLE* triShape = new SHAPE_SIMPLE;
triShape->Append( a );
triShape->Append( b );
triShape->Append( c );
std::unique_ptr<PNS::SOLID> solid = std::make_unique<PNS::SOLID>();
solid->SetLayer( layer );
solid->SetNet( -1 );
solid->SetParent( aZone );
solid->SetShape( triShape );
solid->SetRoutable( false );
aWorld->Add( std::move( solid ) );
}
}
}
return true;
}
bool PNS_KICAD_IFACE_BASE::syncTextItem( PNS::NODE* aWorld, EDA_TEXT* aText, PCB_LAYER_ID aLayer )
{
if( !IsCopperLayer( aLayer ) )
return false;
int textWidth = aText->GetEffectiveTextPenWidth();
std::vector<wxPoint> textShape;
aText->TransformTextShapeToSegmentList( textShape );
if( textShape.size() < 2 )
return false;
for( size_t jj = 0; jj < textShape.size(); jj += 2 )
{
VECTOR2I start( textShape[jj] );
VECTOR2I end( textShape[jj+1] );
std::unique_ptr<PNS::SOLID> solid = std::make_unique<PNS::SOLID>();
solid->SetLayer( aLayer );
solid->SetNet( -1 );
solid->SetParent( dynamic_cast<BOARD_ITEM*>( aText ) );
solid->SetShape( new SHAPE_SEGMENT( start, end, textWidth ) );
solid->SetRoutable( false );
aWorld->Add( std::move( solid ) );
}
return true;
/* A coarser (but faster) method:
*
SHAPE_POLY_SET outline;
SHAPE_SIMPLE* shape = new SHAPE_SIMPLE();
aText->TransformBoundingBoxWithClearanceToPolygon( &outline, 0 );
for( auto iter = outline.CIterate( 0 ); iter; iter++ )
shape->Append( *iter );
solid->SetShape( shape );
solid->SetLayer( aLayer );
solid->SetNet( -1 );
solid->SetParent( nullptr );
solid->SetRoutable( false );
aWorld->Add( std::move( solid ) );
return true;
*/
}
bool PNS_KICAD_IFACE_BASE::syncGraphicalItem( PNS::NODE* aWorld, PCB_SHAPE* aItem )
{
if( aItem->GetLayer() != Edge_Cuts && !IsCopperLayer( aItem->GetLayer() ) )
return false;
// TODO: where do we handle filled polygons on copper layers?
if( aItem->GetShape() == S_POLYGON && aItem->IsPolygonFilled() )
return false;
for( SHAPE* shape : aItem->MakeEffectiveShapes() )
{
std::unique_ptr<PNS::SOLID> solid = std::make_unique<PNS::SOLID>();
if( aItem->GetLayer() == Edge_Cuts )
solid->SetLayers( LAYER_RANGE( F_Cu, B_Cu ) );
else
solid->SetLayer( aItem->GetLayer() );
solid->SetNet( -1 );
solid->SetParent( aItem );
solid->SetShape( shape );
solid->SetRoutable( false );
aWorld->Add( std::move( solid ) );
}
return true;
}
void PNS_KICAD_IFACE_BASE::SetBoard( BOARD* aBoard )
{
m_board = aBoard;
wxLogTrace( "PNS", "m_board = %p", m_board );
}
bool PNS_KICAD_IFACE::IsAnyLayerVisible( const LAYER_RANGE& aLayer ) const
{
if( !m_view )
return false;
for( int i = aLayer.Start(); i <= aLayer.End(); i++ )
if( m_view->IsLayerVisible( i ) )
return true;
return false;
}
bool PNS_KICAD_IFACE::IsOnLayer( const PNS::ITEM* aItem, int aLayer ) const
{
/// Default is all layers
if( aLayer < 0 )
return true;
if( aItem->Parent() )
{
switch( aItem->Parent()->Type() )
{
case PCB_VIA_T:
{
const VIA* via = static_cast<const VIA*>( aItem->Parent() );
return via->FlashLayer( static_cast<PCB_LAYER_ID>( aLayer ));
}
case PCB_PAD_T:
{
const D_PAD* pad = static_cast<const D_PAD*>( aItem->Parent() );
return pad->FlashLayer( static_cast<PCB_LAYER_ID>( aLayer ));
}
default:
break;
}
}
return aItem->Layers().Overlaps( aLayer );
}
bool PNS_KICAD_IFACE::IsItemVisible( const PNS::ITEM* aItem ) const
{
// by default, all items are visible (new ones created by the router have parent == NULL
// as they have not been committed yet to the BOARD)
if( !m_view || !aItem->Parent() )
return true;
BOARD_ITEM* item = aItem->Parent();
bool isOnVisibleLayer = true;
RENDER_SETTINGS* settings = m_view->GetPainter()->GetSettings();
if( settings->GetHighContrast() )
isOnVisibleLayer = item->IsOnLayer( settings->GetPrimaryHighContrastLayer() );
if( m_view->IsVisible( item ) && isOnVisibleLayer
&& item->ViewGetLOD( item->GetLayer(), m_view ) < m_view->GetScale() )
{
return true;
}
// Items hidden in the router are not hidden on the board
if( m_hiddenItems.find( item ) != m_hiddenItems.end() )
return true;
return false;
}
void PNS_KICAD_IFACE_BASE::SyncWorld( PNS::NODE *aWorld )
{
int worstPadClearance = 0;
m_world = aWorld;
if( !m_board )
{
wxLogTrace( "PNS", "No board attached, aborting sync." );
return;
}
for( BOARD_ITEM* gitem : m_board->Drawings() )
{
if ( gitem->Type() == PCB_SHAPE_T )
{
syncGraphicalItem( aWorld, static_cast<PCB_SHAPE*>( gitem ) );
}
else if( gitem->Type() == PCB_TEXT_T )
{
syncTextItem( aWorld, static_cast<PCB_TEXT*>( gitem ), gitem->GetLayer() );
}
}
SHAPE_POLY_SET buffer;
SHAPE_POLY_SET* boardOutline = nullptr;
if( m_board->GetBoardPolygonOutlines( buffer ) )
boardOutline = &buffer;
for( ZONE_CONTAINER* zone : m_board->Zones() )
{
syncZone( aWorld, zone, boardOutline );
}
for( MODULE* module : m_board->Modules() )
{
for( D_PAD* pad : module->Pads() )
{
if( std::unique_ptr<PNS::SOLID> solid = syncPad( pad ) )
aWorld->Add( std::move( solid ) );
worstPadClearance = std::max( worstPadClearance, pad->GetLocalClearance() );
}
syncTextItem( aWorld, &module->Reference(), module->Reference().GetLayer() );
syncTextItem( aWorld, &module->Value(), module->Value().GetLayer() );
for( MODULE_ZONE_CONTAINER* zone : module->Zones() )
syncZone( aWorld, zone, boardOutline );
if( module->IsNetTie() )
continue;
for( BOARD_ITEM* mgitem : module->GraphicalItems() )
{
if( mgitem->Type() == PCB_FP_SHAPE_T )
{
syncGraphicalItem( aWorld, static_cast<PCB_SHAPE*>( mgitem ) );
}
else if( mgitem->Type() == PCB_FP_TEXT_T )
{
syncTextItem( aWorld, static_cast<FP_TEXT*>( mgitem ), mgitem->GetLayer() );
}
}
}
for( TRACK* t : m_board->Tracks() )
{
KICAD_T type = t->Type();
if( type == PCB_TRACE_T )
{
if( auto segment = syncTrack( t ) )
aWorld->Add( std::move( segment ) );
}
else if( type == PCB_ARC_T )
{
if( auto arc = syncArc( static_cast<ARC*>( t ) ) )
aWorld->Add( std::move( arc ) );
}
else if( type == PCB_VIA_T )
{
if( auto via = syncVia( static_cast<VIA*>( t ) ) )
aWorld->Add( std::move( via ) );
}
}
int worstRuleClearance = m_board->GetDesignSettings().GetBiggestClearanceValue();
delete m_ruleResolver;
m_ruleResolver = new PNS_PCBNEW_RULE_RESOLVER( m_board, this );
aWorld->SetRuleResolver( m_ruleResolver );
aWorld->SetMaxClearance( 4 * std::max(worstPadClearance, worstRuleClearance ) );
}
void PNS_KICAD_IFACE::EraseView()
{
for( auto item : m_hiddenItems )
m_view->SetVisible( item, true );
m_hiddenItems.clear();
if( m_previewItems )
{
m_previewItems->FreeItems();
m_view->Update( m_previewItems );
}
if( m_debugDecorator )
m_debugDecorator->Clear();
}
void PNS_KICAD_IFACE_BASE::SetDebugDecorator( PNS::DEBUG_DECORATOR *aDec )
{
m_debugDecorator = aDec;
}
void PNS_KICAD_IFACE::DisplayItem( const PNS::ITEM* aItem, int aColor, int aClearance, bool aEdit )
{
wxLogTrace( "PNS", "DisplayItem %p", aItem );
ROUTER_PREVIEW_ITEM* pitem = new ROUTER_PREVIEW_ITEM( aItem, m_view );
if( aColor >= 0 )
pitem->SetColor( KIGFX::COLOR4D( aColor ) );
if( aClearance >= 0 )
{
pitem->SetClearance( aClearance );
switch( m_dispOptions->m_ShowTrackClearanceMode )
{
case PCB_DISPLAY_OPTIONS::DO_NOT_SHOW_CLEARANCE:
pitem->ShowTrackClearance( false );
pitem->ShowViaClearance( false );
break;
case PCB_DISPLAY_OPTIONS::SHOW_CLEARANCE_ALWAYS:
case PCB_DISPLAY_OPTIONS::SHOW_CLEARANCE_NEW_AND_EDITED_TRACKS_AND_VIA_AREAS:
pitem->ShowTrackClearance( true );
pitem->ShowViaClearance( true );
break;
case PCB_DISPLAY_OPTIONS::SHOW_CLEARANCE_NEW_TRACKS_AND_VIA_AREAS:
pitem->ShowTrackClearance( !aEdit );
pitem->ShowViaClearance( !aEdit );
break;
case PCB_DISPLAY_OPTIONS::SHOW_CLEARANCE_NEW_TRACKS:
pitem->ShowTrackClearance( !aEdit );
pitem->ShowViaClearance( false );
break;
}
}
m_previewItems->Add( pitem );
m_view->Update( m_previewItems );
}
void PNS_KICAD_IFACE::DisplayRatline( const SHAPE_LINE_CHAIN& aRatline, int aColor )
{
ROUTER_PREVIEW_ITEM* pitem = new ROUTER_PREVIEW_ITEM( nullptr, m_view );
pitem->Line( aRatline, 10000, aColor );
m_previewItems->Add( pitem );
m_view->Update( m_previewItems );
}
void PNS_KICAD_IFACE::HideItem( PNS::ITEM* aItem )
{
BOARD_ITEM* parent = aItem->Parent();
if( parent )
{
if( m_view->IsVisible( parent ) )
m_hiddenItems.insert( parent );
m_view->SetVisible( parent, false );
m_view->Update( parent, KIGFX::APPEARANCE );
}
}
void PNS_KICAD_IFACE_BASE::RemoveItem( PNS::ITEM* aItem )
{
}
void PNS_KICAD_IFACE::RemoveItem( PNS::ITEM* aItem )
{
BOARD_ITEM* parent = aItem->Parent();
if ( aItem->OfKind(PNS::ITEM::SOLID_T) )
{
D_PAD* pad = static_cast<D_PAD*>( parent );
VECTOR2I pos = static_cast<PNS::SOLID*>( aItem )->Pos();
m_moduleOffsets[ pad ].p_old = pos;
return;
}
if( parent )
{
m_commit->Remove( parent );
}
}
void PNS_KICAD_IFACE_BASE::AddItem( PNS::ITEM* aItem )
{
}
void PNS_KICAD_IFACE::AddItem( PNS::ITEM* aItem )
{
BOARD_CONNECTED_ITEM* newBI = NULL;
switch( aItem->Kind() )
{
case PNS::ITEM::ARC_T:
{
auto arc = static_cast<PNS::ARC*>( aItem );
ARC* new_arc = new ARC( m_board, static_cast<const SHAPE_ARC*>( arc->Shape() ) );
new_arc->SetWidth( arc->Width() );
new_arc->SetLayer( ToLAYER_ID( arc->Layers().Start() ) );
new_arc->SetNetCode( std::max<int>( 0, arc->Net() ) );
newBI = new_arc;
break;
}
case PNS::ITEM::SEGMENT_T:
{
PNS::SEGMENT* seg = static_cast<PNS::SEGMENT*>( aItem );
TRACK* track = new TRACK( m_board );
const SEG& s = seg->Seg();
track->SetStart( wxPoint( s.A.x, s.A.y ) );
track->SetEnd( wxPoint( s.B.x, s.B.y ) );
track->SetWidth( seg->Width() );
track->SetLayer( ToLAYER_ID( seg->Layers().Start() ) );
track->SetNetCode( seg->Net() > 0 ? seg->Net() : 0 );
newBI = track;
break;
}
case PNS::ITEM::VIA_T:
{
VIA* via_board = new VIA( m_board );
PNS::VIA* via = static_cast<PNS::VIA*>( aItem );
via_board->SetPosition( wxPoint( via->Pos().x, via->Pos().y ) );
via_board->SetWidth( via->Diameter() );
via_board->SetDrill( via->Drill() );
via_board->SetNetCode( via->Net() > 0 ? via->Net() : 0 );
via_board->SetViaType( via->ViaType() ); // MUST be before SetLayerPair()
via_board->SetLayerPair( ToLAYER_ID( via->Layers().Start() ),
ToLAYER_ID( via->Layers().End() ) );
newBI = via_board;
break;
}
case PNS::ITEM::SOLID_T:
{
D_PAD* pad = static_cast<D_PAD*>( aItem->Parent() );
VECTOR2I pos = static_cast<PNS::SOLID*>( aItem )->Pos();
m_moduleOffsets[ pad ].p_new = pos;
return;
}
default:
break;
}
if( newBI )
{
//newBI->SetLocalRatsnestVisible( m_dispOptions->m_ShowGlobalRatsnest );
aItem->SetParent( newBI );
newBI->ClearFlags();
m_commit->Add( newBI );
}
}
void PNS_KICAD_IFACE::Commit()
{
std::set<MODULE*> processedMods;
EraseView();
for( auto mo : m_moduleOffsets )
{
auto offset = mo.second.p_new - mo.second.p_old;
auto mod = mo.first->GetParent();
VECTOR2I p_orig = mod->GetPosition();
VECTOR2I p_new = p_orig + offset;
if( processedMods.find( mod ) != processedMods.end() )
continue;
processedMods.insert( mod );
m_commit->Modify( mod );
mod->SetPosition( wxPoint( p_new.x, p_new.y ));
}
m_moduleOffsets.clear();
m_commit->Push( _( "Interactive Router" ) );
m_commit = std::make_unique<BOARD_COMMIT>( m_tool );
}
void PNS_KICAD_IFACE::SetView( KIGFX::VIEW* aView )
{
wxLogTrace( "PNS", "SetView %p", aView );
if( m_previewItems )
{
m_previewItems->FreeItems();
delete m_previewItems;
}
m_view = aView;
m_previewItems = new KIGFX::VIEW_GROUP( m_view );
m_previewItems->SetLayer( LAYER_SELECT_OVERLAY ) ;
if(m_view)
m_view->Add( m_previewItems );
delete m_debugDecorator;
auto dec = new PNS_PCBNEW_DEBUG_DECORATOR();
m_debugDecorator = dec;
if( ADVANCED_CFG::GetCfg().m_ShowRouterDebugGraphics )
dec->SetView( m_view );
}
void PNS_KICAD_IFACE::UpdateNet( int aNetCode )
{
wxLogTrace( "PNS", "Update-net %d", aNetCode );
}
PNS::RULE_RESOLVER* PNS_KICAD_IFACE_BASE::GetRuleResolver()
{
return m_ruleResolver;
}
void PNS_KICAD_IFACE::SetHostTool( PCB_TOOL_BASE* aTool )
{
m_tool = aTool;
m_commit = std::make_unique<BOARD_COMMIT>( m_tool );
}
void PNS_KICAD_IFACE::SetDisplayOptions( const PCB_DISPLAY_OPTIONS* aDispOptions )
{
m_dispOptions = aDispOptions;
}