kicad/pcbnew/drc/drc_test_provider_diff_pair...

533 lines
16 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2004-2020 KiCad Developers.
*
* This program is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <common.h>
#include <board.h>
#include <track.h>
#include <drc/drc_engine.h>
#include <drc/drc_item.h>
#include <drc/drc_rule.h>
#include <drc/drc_test_provider.h>
#include <drc/drc_length_report.h>
#include <drc/drc_rtree.h>
#include <geometry/shape_segment.h>
#include <connectivity/connectivity_data.h>
#include <connectivity/from_to_cache.h>
#include <view/view_overlay.h>
/*
Differential pair gap/coupling test.
Errors generated:
- DRCE_DIFF_PAIR_GAP_OUT_OF_RANGE
- DRCE_DIFF_PAIR_UNCOUPLED_LENGTH_TOO_LONG
- DRCE_TOO_MANY_VIAS
Todo:
- arc support.
- improve recognition of coupled segments (now anything that's parallel is considered
coupled, causing DRC errors on meanders)
*/
namespace test {
class DRC_TEST_PROVIDER_DIFF_PAIR_COUPLING : public DRC_TEST_PROVIDER
{
public:
DRC_TEST_PROVIDER_DIFF_PAIR_COUPLING () :
m_board( nullptr )
{
}
virtual ~DRC_TEST_PROVIDER_DIFF_PAIR_COUPLING()
{
}
virtual bool Run() override;
virtual const wxString GetName() const override
{
return "diff_pair_coupling";
};
virtual const wxString GetDescription() const override
{
return "Tests differential pair coupling";
}
virtual int GetNumPhases() const override
{
return 1;
}
virtual std::set<DRC_CONSTRAINT_T> GetConstraintTypes() const override;
private:
BOARD* m_board;
};
};
static bool commonParallelProjection( SEG p, SEG n, SEG &pClip, SEG& nClip )
{
SEG n_proj_p( p.LineProject( n.A ), p.LineProject( n.B ) );
int64_t t_a = 0;
int64_t t_b = p.TCoef( p.B );
int64_t tproj_a = p.TCoef( n_proj_p.A );
int64_t tproj_b = p.TCoef( n_proj_p.B );
if( t_b < t_a )
std::swap( t_b, t_a );
if( tproj_b < tproj_a )
std::swap( tproj_b, tproj_a );
if( t_b <= tproj_a )
return false;
if( t_a >= tproj_b )
return false;
int64_t t[4] = { 0, p.TCoef( p.B ), p.TCoef( n_proj_p.A ), p.TCoef( n_proj_p.B ) };
std::vector<int64_t> tv( t, t + 4 );
std::sort( tv.begin(), tv.end() ); // fixme: awful and disgusting way of finding 2 midpoints
int64_t pLenSq = p.SquaredLength();
VECTOR2I dp = p.B - p.A;
pClip.A.x = p.A.x + rescale( (int64_t)dp.x, tv[1], pLenSq );
pClip.A.y = p.A.y + rescale( (int64_t)dp.y, tv[1], pLenSq );
pClip.B.x = p.A.x + rescale( (int64_t)dp.x, tv[2], pLenSq );
pClip.B.y = p.A.y + rescale( (int64_t)dp.y, tv[2], pLenSq );
nClip.A = n.LineProject( pClip.A );
nClip.B = n.LineProject( pClip.B );
return true;
}
struct DIFF_PAIR_KEY
{
bool operator<( const DIFF_PAIR_KEY& b ) const
{
if( netP < b.netP )
{
return true;
}
else if( netP > b.netP )
{
return false;
}
else // netP == b.netP
{
if( netN < b.netN )
return true;
else if( netN > b.netN )
return false;
else
return parentRule < b.parentRule;
}
}
int netP, netN;
DRC_RULE* parentRule;
};
struct DIFF_PAIR_COUPLED_SEGMENTS
{
SEG coupledN;
SEG coupledP;
TRACK* parentN;
TRACK* parentP;
int computedGap;
PCB_LAYER_ID layer;
bool couplingOK;
DIFF_PAIR_COUPLED_SEGMENTS() :
parentN( nullptr ),
parentP( nullptr ),
computedGap( 0 ),
layer( UNDEFINED_LAYER ),
couplingOK( false )
{}
};
struct DIFF_PAIR_ITEMS
{
std::set<BOARD_CONNECTED_ITEM*> itemsP, itemsN;
std::vector<DIFF_PAIR_COUPLED_SEGMENTS> coupled;
int totalCoupled;
int totalLengthN;
int totalLengthP;
};
static void extractDiffPairCoupledItems( DIFF_PAIR_ITEMS& aDp, DRC_RTREE& aTree )
{
for( BOARD_CONNECTED_ITEM* itemP : aDp.itemsP )
{
TRACK* sp = dyn_cast<TRACK*>( itemP );
OPT<DIFF_PAIR_COUPLED_SEGMENTS> bestCoupled;
int bestGap = std::numeric_limits<int>::max();
if(!sp)
continue;
for ( BOARD_CONNECTED_ITEM* itemN : aDp.itemsN )
{
auto sn = dyn_cast<TRACK*> ( itemN );
if(!sn)
continue;
if( ( sn->GetLayerSet() & sp->GetLayerSet() ).none() )
continue;
SEG ssp ( sp->GetStart(), sp->GetEnd() );
SEG ssn ( sn->GetStart(), sn->GetEnd() );
// Segments that are == 1 IU in length are approximately parallel with everything and their
// parallel projection is < 1 IU, leading to bad distance calculations
if( ssp.SquaredLength() > 1 && ssn.SquaredLength() > 1 && ssp.ApproxParallel(ssn) )
{
DIFF_PAIR_COUPLED_SEGMENTS cpair;
bool coupled = commonParallelProjection( ssp, ssn, cpair.coupledP, cpair.coupledN );
if( coupled )
{
cpair.parentP = sp;
cpair.parentN = sn;
cpair.layer = sp->GetLayer();
int gap = (cpair.coupledP.A - cpair.coupledN.A).EuclideanNorm();
if( gap < bestGap )
{
bestGap = gap;
bestCoupled = cpair;
}
}
}
}
if( bestCoupled )
{
auto excludeSelf =
[&] ( BOARD_ITEM *aItem )
{
if( aItem == bestCoupled->parentN || aItem == bestCoupled->parentP )
{
return false;
}
if( aItem->Type() == PCB_TRACE_T || aItem->Type() == PCB_VIA_T )
{
auto bci = static_cast<BOARD_CONNECTED_ITEM*>( aItem );
if( bci->GetNetCode() == bestCoupled->parentN->GetNetCode()
|| bci->GetNetCode() == bestCoupled->parentP->GetNetCode() )
return false;
}
return true;
};
SHAPE_SEGMENT checkSegStart( bestCoupled->coupledP.A, bestCoupled->coupledN.A );
SHAPE_SEGMENT checkSegEnd( bestCoupled->coupledP.B, bestCoupled->coupledN.B );
// check if there's anyting in between the segments suspected to be coupled. If
// there's nothing, assume they are really coupled.
if( !aTree.CheckColliding( &checkSegStart, sp->GetLayer(), 0, excludeSelf )
&& !aTree.CheckColliding( &checkSegEnd, sp->GetLayer(), 0, excludeSelf ) )
{
aDp.coupled.push_back( *bestCoupled );
}
}
}
}
bool test::DRC_TEST_PROVIDER_DIFF_PAIR_COUPLING::Run()
{
m_board = m_drcEngine->GetBoard();
std::map<DIFF_PAIR_KEY, DIFF_PAIR_ITEMS> dpRuleMatches;
auto evaluateDpConstraints =
[&]( BOARD_ITEM *item ) -> bool
{
DIFF_PAIR_KEY key;
BOARD_CONNECTED_ITEM* citem = static_cast<BOARD_CONNECTED_ITEM*>( item );
NETINFO_ITEM* refNet = citem->GetNet();
if( refNet && DRC_ENGINE::IsNetADiffPair( m_board, refNet, key.netP, key.netN ) )
{
drc_dbg( 10, "eval dp %p\n", item );
const DRC_CONSTRAINT_T constraintsToCheck[] = {
DIFF_PAIR_GAP_CONSTRAINT,
DIFF_PAIR_MAX_UNCOUPLED_CONSTRAINT
};
for( int i = 0; i < 2; i++ )
{
auto constraint = m_drcEngine->EvalRules( constraintsToCheck[ i ], item,
nullptr, item->GetLayer() );
if( constraint.IsNull() )
continue;
drc_dbg( 10, "cns %d item %p\n", constraintsToCheck[i], item );
key.parentRule = constraint.GetParentRule();
if( refNet->GetNetCode() == key.netN )
dpRuleMatches[key].itemsN.insert( citem );
else
dpRuleMatches[key].itemsP.insert( citem );
}
}
return true;
};
m_board->GetConnectivity()->GetFromToCache()->Rebuild( m_board );
forEachGeometryItem( { PCB_TRACE_T, PCB_VIA_T, PCB_ARC_T },
LSET::AllCuMask(), evaluateDpConstraints );
drc_dbg( 10, "dp rule matches %d\n", (int) dpRuleMatches.size() );
DRC_RTREE copperTree;
auto addToTree =
[&copperTree]( BOARD_ITEM *item ) -> bool
{
for( PCB_LAYER_ID layer : item->GetLayerSet().Seq() )
{
if( IsCopperLayer( layer ) )
copperTree.Insert( item, layer );
}
return true;
};
forEachGeometryItem( { PCB_TRACE_T, PCB_VIA_T, PCB_PAD_T, PCB_ZONE_T, PCB_ARC_T },
LSET::AllCuMask(), addToTree );
reportAux( wxString::Format( _("DPs evaluated:") ) );
for( auto& it : dpRuleMatches )
{
NETINFO_ITEM *niP = m_board->GetNetInfo().GetNetItem( it.first.netP );
NETINFO_ITEM *niN = m_board->GetNetInfo().GetNetItem( it.first.netN );
assert( niP );
assert( niN );
wxString nameP = niP->GetNetname();
wxString nameN = niN->GetNetname();
reportAux( wxString::Format( "Rule '%s', DP: (+) %s - (-) %s",
it.first.parentRule->m_Name, nameP, nameN ) );
extractDiffPairCoupledItems( it.second, copperTree );
it.second.totalCoupled = 0;
it.second.totalLengthN = 0;
it.second.totalLengthP = 0;
drc_dbg(10, " coupled prims : %d\n", (int) it.second.coupled.size() );
OPT<DRC_CONSTRAINT> gapConstraint =
it.first.parentRule->FindConstraint( DIFF_PAIR_GAP_CONSTRAINT );
OPT<DRC_CONSTRAINT> maxUncoupledConstraint =
it.first.parentRule->FindConstraint( DIFF_PAIR_MAX_UNCOUPLED_CONSTRAINT );
for( auto& item : it.second.itemsN )
{
// fixme: include vias
if( auto track = dyn_cast<TRACK*>( item ) )
it.second.totalLengthN += track->GetLength();
}
for( auto& item : it.second.itemsP )
{
// fixme: include vias
if( auto track = dyn_cast<TRACK*>( item ) )
it.second.totalLengthP += track->GetLength();
}
for( auto& cpair : it.second.coupled )
{
int length = cpair.coupledN.Length();
int gap = cpair.coupledN.Distance( cpair.coupledP );
gap -= cpair.parentN->GetWidth() / 2;
gap -= cpair.parentP->GetWidth() / 2;
cpair.computedGap = gap;
auto overlay = m_drcEngine->GetDebugOverlay();
if( overlay )
{
overlay->SetIsFill(false);
overlay->SetIsStroke(true);
overlay->SetStrokeColor( RED );
overlay->SetLineWidth( 100000 );
overlay->Line( cpair.coupledP );
overlay->SetStrokeColor( BLUE );
overlay->Line( cpair.coupledN );
}
drc_dbg( 10, " len %d gap %d l %d\n", length, gap,
cpair.parentP->GetLayer() );
if( gapConstraint )
{
auto val = gapConstraint->GetValue();
bool insideRange = true;
if( val.HasMin() && gap < val.Min() )
insideRange = false;
if( val.HasMax() && gap > val.Max() )
insideRange = false;
// if(val.HasMin() && val.HasMax() )
// drc_dbg(10, "Vmin %d vmax %d\n", val.Min(), val.Max() );
cpair.couplingOK = insideRange;
}
else
{
cpair.couplingOK = true;
}
if( cpair.couplingOK )
it.second.totalCoupled += length;
}
int totalLen = std::max( it.second.totalLengthN, it.second.totalLengthP );
reportAux( wxString::Format( " - coupled length: %s, total length: %s",
MessageTextFromValue( userUnits(), it.second.totalCoupled ),
MessageTextFromValue( userUnits(), totalLen ) ) );
int totalUncoupled = totalLen - it.second.totalCoupled;
bool uncoupledViolation = false;
if( maxUncoupledConstraint )
{
auto val = maxUncoupledConstraint->GetValue();
if ( val.HasMax() && totalUncoupled > val.Max() )
{
auto drce = DRC_ITEM::Create( DRCE_DIFF_PAIR_UNCOUPLED_LENGTH_TOO_LONG );
m_msg = wxString::Format( _( "(%s maximum uncoupled length: %s; actual: %s)" ),
maxUncoupledConstraint->GetParentRule()->m_Name,
MessageTextFromValue( userUnits(), val.Max() ),
MessageTextFromValue( userUnits(), totalUncoupled ) );
drce->SetErrorMessage( drce->GetErrorText() + wxS( " " ) + m_msg );
for( BOARD_CONNECTED_ITEM* offendingTrack : it.second.itemsP )
drce->AddItem( offendingTrack );
for( BOARD_CONNECTED_ITEM* offendingTrack : it.second.itemsN )
drce->AddItem( offendingTrack );
uncoupledViolation = true;
drce->SetViolatingRule( maxUncoupledConstraint->GetParentRule() );
reportViolation( drce, ( *it.second.itemsP.begin() )->GetPosition() );
}
}
if ( gapConstraint && ( uncoupledViolation || !maxUncoupledConstraint ) )
{
for( auto& cpair : it.second.coupled )
{
if( !cpair.couplingOK )
{
auto val = gapConstraint->GetValue();
auto drcItem = DRC_ITEM::Create( DRCE_DIFF_PAIR_GAP_OUT_OF_RANGE );
m_msg = drcItem->GetErrorText() + " (" +
gapConstraint->GetParentRule()->m_Name + " ";
if( val.HasMin() )
m_msg += wxString::Format( _( "minimum gap: %s; " ),
MessageTextFromValue( userUnits(), val.Min() ) );
if( val.HasMax() )
m_msg += wxString::Format( _( "maximum gap: %s; " ),
MessageTextFromValue( userUnits(), val.Max() ) );
m_msg += wxString::Format( _( "actual: %s)" ),
MessageTextFromValue( userUnits(), cpair.computedGap ) );
drcItem->SetErrorMessage( m_msg );
drcItem->AddItem( cpair.parentP );
drcItem->AddItem( cpair.parentN );
drcItem->SetViolatingRule( gapConstraint->GetParentRule() );
reportViolation( drcItem, cpair.parentP->GetPosition() );
}
}
}
}
reportRuleStatistics();
return true;
}
std::set<DRC_CONSTRAINT_T> test::DRC_TEST_PROVIDER_DIFF_PAIR_COUPLING::GetConstraintTypes() const
{
return { DIFF_PAIR_GAP_CONSTRAINT, DIFF_PAIR_MAX_UNCOUPLED_CONSTRAINT };
}
namespace detail
{
static DRC_REGISTER_TEST_PROVIDER<test::DRC_TEST_PROVIDER_DIFF_PAIR_COUPLING> dummy;
}