kicad/pcbnew/pcb_painter.cpp

1917 lines
64 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2013-2019 CERN
* Copyright (C) 2021 KiCad Developers, see AUTHORS.txt for contributors.
*
* @author Tomasz Wlostowski <tomasz.wlostowski@cern.ch>
* @author Maciej Suminski <maciej.suminski@cern.ch>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <board.h>
#include <board_design_settings.h>
#include <pcb_track.h>
#include <pcb_group.h>
#include <footprint.h>
#include <pad.h>
#include <pcb_shape.h>
#include <string_utils.h>
#include <zone.h>
#include <pcb_text.h>
#include <pcb_marker.h>
#include <pcb_dimension.h>
#include <pcb_target.h>
#include <advanced_config.h>
#include <layer_ids.h>
#include <pcb_painter.h>
#include <pcb_display_options.h>
#include <project/net_settings.h>
#include <settings/color_settings.h>
#include <settings/common_settings.h>
#include <convert_basic_shapes_to_polygon.h>
#include <gal/graphics_abstraction_layer.h>
#include <geometry/geometry_utils.h>
#include <geometry/shape_line_chain.h>
#include <geometry/shape_rect.h>
#include <geometry/shape_segment.h>
#include <geometry/shape_simple.h>
#include <geometry/shape_circle.h>
#include <bezier_curves.h>
#include <kiface_base.h>
#include <pgm_base.h>
#include "pcbnew_settings.h"
using namespace KIGFX;
PCB_RENDER_SETTINGS::PCB_RENDER_SETTINGS()
{
m_backgroundColor = COLOR4D( 0.0, 0.0, 0.0, 1.0 );
m_ZoneDisplayMode = ZONE_DISPLAY_MODE::SHOW_FILLED;
m_netColorMode = NET_COLOR_MODE::RATSNEST;
m_ContrastModeDisplay = HIGH_CONTRAST_MODE::NORMAL;
m_DrawIndividualViaLayers = false;
m_trackOpacity = 1.0;
m_viaOpacity = 1.0;
m_padOpacity = 1.0;
m_zoneOpacity = 1.0;
m_ForceClearanceDisplayOff = false;
m_ForcePadSketchModeOff = false;
m_ForcePadSketchModeOn = false;
SetDashLengthRatio( 12 ); // From ISO 128-2
SetGapLengthRatio( 3 ); // From ISO 128-2
update();
}
void PCB_RENDER_SETTINGS::LoadColors( const COLOR_SETTINGS* aSettings )
{
SetBackgroundColor( aSettings->GetColor( LAYER_PCB_BACKGROUND ) );
// Init board layers colors:
for( int i = 0; i < PCB_LAYER_ID_COUNT; i++ )
{
m_layerColors[i] = aSettings->GetColor( i );
// Guard: if the alpha channel is too small, the layer is not visible.
if( m_layerColors[i].a < 0.2 )
m_layerColors[i].a = 0.2;
}
// Init specific graphic layers colors:
for( int i = GAL_LAYER_ID_START; i < GAL_LAYER_ID_END; i++ )
m_layerColors[i] = aSettings->GetColor( i );
// Colors for layers that aren't theme-able
m_layerColors[LAYER_PAD_PLATEDHOLES] = aSettings->GetColor( LAYER_PCB_BACKGROUND );
m_layerColors[LAYER_VIA_NETNAMES] = COLOR4D( 0.2, 0.2, 0.2, 0.9 );
m_layerColors[LAYER_PAD_NETNAMES] = COLOR4D( 1.0, 1.0, 1.0, 0.9 );
m_layerColors[LAYER_PAD_FR] = aSettings->GetColor( F_Cu );
m_layerColors[LAYER_PAD_BK] = aSettings->GetColor( B_Cu );
m_layerColors[LAYER_PAD_FR_NETNAMES] = COLOR4D( 1.0, 1.0, 1.0, 0.9 );
m_layerColors[LAYER_PAD_BK_NETNAMES] = COLOR4D( 1.0, 1.0, 1.0, 0.9 );
// Netnames for copper layers
for( LSEQ cu = LSET::AllCuMask().CuStack(); cu; ++cu )
{
const COLOR4D lightLabel( 1.0, 1.0, 1.0, 0.7 );
const COLOR4D darkLabel = lightLabel.Inverted();
PCB_LAYER_ID layer = *cu;
if( m_layerColors[layer].GetBrightness() > 0.5 )
m_layerColors[GetNetnameLayer( layer )] = darkLabel;
else
m_layerColors[GetNetnameLayer( layer )] = lightLabel;
}
m_hiContrastFactor = 1.0f - Pgm().GetCommonSettings()->m_Appearance.hicontrast_dimming_factor;
update();
}
void PCB_RENDER_SETTINGS::LoadDisplayOptions( const PCB_DISPLAY_OPTIONS& aOptions )
{
m_hiContrastEnabled = aOptions.m_ContrastModeDisplay != HIGH_CONTRAST_MODE::NORMAL;
m_ZoneDisplayMode = aOptions.m_ZoneDisplayMode;
m_ContrastModeDisplay = aOptions.m_ContrastModeDisplay;
m_netColorMode = aOptions.m_NetColorMode;
m_trackOpacity = aOptions.m_TrackOpacity;
m_viaOpacity = aOptions.m_ViaOpacity;
m_padOpacity = aOptions.m_PadOpacity;
m_zoneOpacity = aOptions.m_ZoneOpacity;
}
COLOR4D PCB_RENDER_SETTINGS::GetColor( const VIEW_ITEM* aItem, int aLayer ) const
{
const EDA_ITEM* item = dynamic_cast<const EDA_ITEM*>( aItem );
const BOARD_CONNECTED_ITEM* conItem = dynamic_cast<const BOARD_CONNECTED_ITEM*> ( aItem );
int netCode = -1;
int originalLayer = aLayer;
// Marker shadows
if( aLayer == LAYER_MARKER_SHADOWS )
return m_backgroundColor.WithAlpha( 0.6 );
if( IsHoleLayer( aLayer ) && m_isPrinting )
{
// Careful that we don't end up with the same colour for the annular ring and the hole
// when printing in B&W.
const PAD* pad = dynamic_cast<const PAD*>( item );
const PCB_VIA* via = dynamic_cast<const PCB_VIA*>( item );
int holeLayer = aLayer;
int annularRingLayer = UNDEFINED_LAYER;
if( pad && pad->GetAttribute() == PAD_ATTRIB::PTH )
annularRingLayer = LAYER_PADS_TH;
else if( via && via->GetViaType() == VIATYPE::MICROVIA )
annularRingLayer = LAYER_VIA_MICROVIA;
else if( via && via->GetViaType() == VIATYPE::BLIND_BURIED )
annularRingLayer = LAYER_VIA_BBLIND;
else if( via && via->GetViaType() == VIATYPE::THROUGH )
annularRingLayer = LAYER_VIA_THROUGH;
if( annularRingLayer != UNDEFINED_LAYER
&& m_layerColors[ holeLayer ] == m_layerColors[ annularRingLayer ] )
{
aLayer = LAYER_PCB_BACKGROUND;
}
}
// Zones should pull from the copper layer
if( item && ( item->Type() == PCB_ZONE_T || item->Type() == PCB_FP_ZONE_T ) )
{
if( IsZoneLayer( aLayer ) )
aLayer = aLayer - LAYER_ZONE_START;
}
// Hole walls should pull from the copper layer
if( aLayer == LAYER_PAD_HOLEWALLS )
aLayer = LAYER_PADS_TH;
else if( aLayer == LAYER_VIA_HOLEWALLS )
aLayer = LAYER_VIA_THROUGH;
// Normal path: get the layer base color
COLOR4D color = m_layerColors[aLayer];
if( !item )
return m_layerColors[aLayer];
// Selection disambiguation
if( item->IsBrightened() )
return color.Brightened( m_selectFactor ).WithAlpha( 0.8 );
// Normal selection
if( item->IsSelected() )
color = m_layerColorsSel[aLayer];
// Try to obtain the netcode for the item
if( conItem )
netCode = conItem->GetNetCode();
bool highlighted = m_highlightEnabled && m_highlightNetcodes.count( netCode );
bool selected = item->IsSelected();
// Apply net color overrides
if( conItem && m_netColorMode == NET_COLOR_MODE::ALL && IsNetCopperLayer( aLayer ) )
{
COLOR4D netColor = COLOR4D::UNSPECIFIED;
auto ii = m_netColors.find( netCode );
if( ii != m_netColors.end() )
netColor = ii->second;
if( netColor == COLOR4D::UNSPECIFIED )
{
auto jj = m_netclassColors.find( conItem->GetNetClassName() );
if( jj != m_netclassColors.end() )
netColor = jj->second;
}
if( netColor == COLOR4D::UNSPECIFIED )
{
netColor = color;
}
else if( selected )
{
// Selection brightening overrides highlighting
netColor.Brighten( m_selectFactor );
}
else if( m_highlightEnabled )
{
// Highlight brightens objects on all layers and darkens everything else for contrast
if( highlighted )
netColor.Brighten( m_highlightFactor );
else
netColor.Darken( 1.0 - m_highlightFactor );
}
color = netColor;
}
else if( !selected && m_highlightEnabled )
{
// Single net highlight mode
color = m_highlightNetcodes.count( netCode ) ? m_layerColorsHi[aLayer]
: m_layerColorsDark[aLayer];
}
// Apply high-contrast dimming
if( m_hiContrastEnabled && m_highContrastLayers.size() && !highlighted && !selected )
{
PCB_LAYER_ID primary = GetPrimaryHighContrastLayer();
bool isActive = m_highContrastLayers.count( aLayer );
switch( originalLayer )
{
case LAYER_PADS_TH:
if( !static_cast<const PAD*>( item )->FlashLayer( primary ) )
isActive = false;
break;
case LAYER_VIA_BBLIND:
case LAYER_VIA_MICROVIA:
// Target graphic is active if the via crosses the primary layer
if( static_cast<const PCB_VIA*>( item )->GetLayerSet().test( primary ) == 0 )
isActive = false;
break;
case LAYER_VIA_THROUGH:
if( !static_cast<const PCB_VIA*>( item )->FlashLayer( primary ) )
isActive = false;
break;
case LAYER_PAD_PLATEDHOLES:
case LAYER_PAD_HOLEWALLS:
case LAYER_NON_PLATEDHOLES:
// Pad holes are active is any physical layer is active
if( LSET::PhysicalLayersMask().test( primary ) == 0 )
isActive = false;
break;
case LAYER_VIA_HOLES:
case LAYER_VIA_HOLEWALLS:
if( static_cast<const PCB_VIA*>( item )->GetViaType() == VIATYPE::BLIND_BURIED
|| static_cast<const PCB_VIA*>( item )->GetViaType() == VIATYPE::MICROVIA )
{
// A blind or micro via's hole is active if it crosses the primary layer
if( static_cast<const PCB_VIA*>( item )->GetLayerSet().test( primary ) == 0 )
isActive = false;
}
else
{
// A through via's hole is active if any physical layer is active
if( LSET::PhysicalLayersMask().test( primary ) == 0 )
isActive = false;
}
break;
default:
break;
}
if( !isActive )
{
if( m_ContrastModeDisplay == HIGH_CONTRAST_MODE::HIDDEN || IsNetnameLayer( aLayer ) )
color = COLOR4D::CLEAR;
else
color = color.Mix( m_layerColors[LAYER_PCB_BACKGROUND], m_hiContrastFactor );
}
}
// Apply per-type opacity overrides
if( item->Type() == PCB_TRACE_T || item->Type() == PCB_ARC_T )
color.a *= m_trackOpacity;
else if( item->Type() == PCB_VIA_T )
color.a *= m_viaOpacity;
else if( item->Type() == PCB_PAD_T )
color.a *= m_padOpacity;
else if( item->Type() == PCB_ZONE_T || item->Type() == PCB_FP_ZONE_T )
color.a *= m_zoneOpacity;
// No special modifiers enabled
return color;
}
PCBNEW_SETTINGS* pcbconfig()
{
return dynamic_cast<PCBNEW_SETTINGS*>( Kiface().KifaceSettings() );
}
bool PCB_RENDER_SETTINGS::GetShowPageLimits() const
{
return pcbconfig()->m_ShowPageLimits;
}
PCB_PAINTER::PCB_PAINTER( GAL* aGal ) :
PAINTER( aGal ),
m_maxError( ARC_HIGH_DEF ),
m_holePlatingThickness( 0 )
{
}
int PCB_PAINTER::getLineThickness( int aActualThickness ) const
{
// if items have 0 thickness, draw them with the outline
// width, otherwise respect the set value (which, no matter
// how small will produce something)
if( aActualThickness == 0 )
return m_pcbSettings.m_outlineWidth;
return aActualThickness;
}
int PCB_PAINTER::getDrillShape( const PAD* aPad ) const
{
return aPad->GetDrillShape();
}
VECTOR2D PCB_PAINTER::getDrillSize( const PAD* aPad ) const
{
return VECTOR2D( aPad->GetDrillSize() );
}
int PCB_PAINTER::getDrillSize( const PCB_VIA* aVia ) const
{
return aVia->GetDrillValue();
}
bool PCB_PAINTER::Draw( const VIEW_ITEM* aItem, int aLayer )
{
const BOARD_ITEM* item = dynamic_cast<const BOARD_ITEM*>( aItem );
if( !item )
return false;
if( const BOARD* board = item->GetBoard() )
{
BOARD_DESIGN_SETTINGS& bds = board->GetDesignSettings();
m_maxError = bds.m_MaxError;
m_holePlatingThickness = bds.GetHolePlatingThickness();
if( item->GetParentFootprint() && !board->IsFootprintHolder() )
{
FOOTPRINT* parentFP = static_cast<FOOTPRINT*>( item->GetParentFootprint() );
if( item->GetLayerSet().count() > 1 )
{
// For multi-layer objects, exclude only those layers that are private
if( IsPcbLayer( aLayer ) && parentFP->GetPrivateLayers().test( aLayer ) )
return false;
}
else
{
// For single-layer objects, exclude all layers including ancillary layers
// such as holes, netnames, etc.
if( parentFP->GetPrivateLayers().test( item->GetLayer() ) )
return false;
}
}
}
else
{
m_maxError = ARC_HIGH_DEF;
m_holePlatingThickness = 0;
}
// the "cast" applied in here clarifies which overloaded draw() is called
switch( item->Type() )
{
case PCB_TRACE_T:
draw( static_cast<const PCB_TRACK*>( item ), aLayer );
break;
case PCB_ARC_T:
draw( static_cast<const PCB_ARC*>( item ), aLayer );
break;
case PCB_VIA_T:
draw( static_cast<const PCB_VIA*>( item ), aLayer );
break;
case PCB_PAD_T:
draw( static_cast<const PAD*>( item ), aLayer );
break;
case PCB_SHAPE_T:
case PCB_FP_SHAPE_T:
draw( static_cast<const PCB_SHAPE*>( item ), aLayer );
break;
case PCB_TEXT_T:
draw( static_cast<const PCB_TEXT*>( item ), aLayer );
break;
case PCB_FP_TEXT_T:
draw( static_cast<const FP_TEXT*>( item ), aLayer );
break;
case PCB_FOOTPRINT_T:
draw( static_cast<const FOOTPRINT*>( item ), aLayer );
break;
case PCB_GROUP_T:
draw( static_cast<const PCB_GROUP*>( item ), aLayer );
break;
case PCB_ZONE_T:
case PCB_FP_ZONE_T:
draw( static_cast<const ZONE*>( item ), aLayer );
break;
case PCB_DIM_ALIGNED_T:
case PCB_DIM_CENTER_T:
case PCB_DIM_RADIAL_T:
case PCB_DIM_ORTHOGONAL_T:
case PCB_DIM_LEADER_T:
case PCB_FP_DIM_ALIGNED_T:
case PCB_FP_DIM_CENTER_T:
case PCB_FP_DIM_RADIAL_T:
case PCB_FP_DIM_ORTHOGONAL_T:
case PCB_FP_DIM_LEADER_T:
draw( static_cast<const PCB_DIMENSION_BASE*>( item ), aLayer );
break;
case PCB_TARGET_T:
draw( static_cast<const PCB_TARGET*>( item ) );
break;
case PCB_MARKER_T:
draw( static_cast<const PCB_MARKER*>( item ), aLayer );
break;
default:
// Painter does not know how to draw the object
return false;
}
// Draw bounding boxes after drawing objects so they can be seen.
if( ADVANCED_CFG::GetCfg().m_DrawBoundingBoxes )
{
// Show bounding boxes of painted objects for debugging.
EDA_RECT box = item->GetBoundingBox();
m_gal->SetIsFill( false );
m_gal->SetIsStroke( true );
if( item->Type() == PCB_FOOTPRINT_T )
{
m_gal->SetStrokeColor( item->IsSelected() ? COLOR4D( 1.0, 0.2, 0.2, 1 ) :
COLOR4D( MAGENTA ) );
}
else
{
m_gal->SetStrokeColor( item->IsSelected() ? COLOR4D( 1.0, 0.2, 0.2, 1 ) :
COLOR4D( 0.4, 0.4, 0.4, 1 ) );
}
m_gal->SetLineWidth( 1 );
m_gal->DrawRectangle( box.GetOrigin(), box.GetEnd() );
if( item->Type() == PCB_FOOTPRINT_T )
{
m_gal->SetStrokeColor( item->IsSelected() ? COLOR4D( 1.0, 0.2, 0.2, 1 ) :
COLOR4D( CYAN ) );
const FOOTPRINT* fp = static_cast<const FOOTPRINT*>( item );
if( fp )
{
SHAPE_POLY_SET convex = fp->GetBoundingHull();
m_gal->DrawPolyline( convex.COutline( 0 ) );
}
}
}
return true;
}
void PCB_PAINTER::draw( const PCB_TRACK* aTrack, int aLayer )
{
VECTOR2I start( aTrack->GetStart() );
VECTOR2I end( aTrack->GetEnd() );
int width = aTrack->GetWidth();
COLOR4D color = m_pcbSettings.GetColor( aTrack, aLayer );
if( IsNetnameLayer( aLayer ) )
{
if( pcbconfig()->m_Display.m_DisplayNetNamesMode < 2 )
return;
if( aTrack->GetNetCode() <= NETINFO_LIST::UNCONNECTED )
return;
// When drawing netnames, clip the track to the viewport
BOX2D viewport;
VECTOR2D screenSize = m_gal->GetScreenPixelSize();
const MATRIX3x3D& matrix = m_gal->GetScreenWorldMatrix();
viewport.SetOrigin( VECTOR2D( matrix * VECTOR2D( 0, 0 ) ) );
viewport.SetEnd( VECTOR2D( matrix * screenSize ) );
EDA_RECT clipBox( viewport.Normalize() );
ClipLine( &clipBox, start.x, start.y, end.x, end.y );
VECTOR2I line = ( end - start );
double length = line.EuclideanNorm();
// Check if the track is long enough to have a netname displayed
if( length < 6 * width )
return;
const wxString& netName = UnescapeString( aTrack->GetShortNetname() );
double textSize = width;
double penWidth = width / 12.0;
VECTOR2D textPosition = start + line / 2.0; // center of the track
double textOrientation;
if( end.y == start.y ) // horizontal
{
textOrientation = 0;
textPosition.y += penWidth;
}
else if( end.x == start.x ) // vertical
{
textOrientation = M_PI / 2;
textPosition.x += penWidth;
}
else
{
textOrientation = -atan( line.y / line.x );
textPosition.x += penWidth / 1.4;
textPosition.y += penWidth / 1.4;
}
m_gal->SetIsStroke( true );
m_gal->SetIsFill( false );
m_gal->SetStrokeColor( color );
m_gal->SetLineWidth( penWidth );
m_gal->SetFontBold( false );
m_gal->SetFontItalic( false );
m_gal->SetFontUnderlined( false );
m_gal->SetTextMirrored( false );
m_gal->SetGlyphSize( VECTOR2D( textSize * 0.55, textSize * 0.55 ) );
m_gal->SetHorizontalJustify( GR_TEXT_H_ALIGN_CENTER );
m_gal->SetVerticalJustify( GR_TEXT_V_ALIGN_CENTER );
m_gal->BitmapText( netName, textPosition, textOrientation );
return;
}
else if( IsCopperLayer( aLayer ) )
{
// Draw a regular track
bool outline_mode = !pcbconfig()->m_Display.m_DisplayPcbTrackFill;
m_gal->SetStrokeColor( color );
m_gal->SetFillColor( color );
m_gal->SetIsStroke( outline_mode );
m_gal->SetIsFill( not outline_mode );
m_gal->SetLineWidth( m_pcbSettings.m_outlineWidth );
m_gal->DrawSegment( start, end, width );
}
// Clearance lines
if( pcbconfig()->m_Display.m_ShowTrackClearanceMode == SHOW_TRACK_CLEARANCE_WITH_VIA_ALWAYS
&& !m_pcbSettings.m_ForceClearanceDisplayOff )
{
int clearance = aTrack->GetOwnClearance( m_pcbSettings.GetActiveLayer() );
m_gal->SetLineWidth( m_pcbSettings.m_outlineWidth );
m_gal->SetIsFill( false );
m_gal->SetIsStroke( true );
m_gal->SetStrokeColor( color );
m_gal->DrawSegment( start, end, width + clearance * 2 );
}
}
void PCB_PAINTER::draw( const PCB_ARC* aArc, int aLayer )
{
VECTOR2D center( aArc->GetCenter() );
int width = aArc->GetWidth();
COLOR4D color = m_pcbSettings.GetColor( aArc, aLayer );
double radius = aArc->GetRadius();
double start_angle = DECIDEG2RAD( aArc->GetArcAngleStart() );
double angle = DECIDEG2RAD( aArc->GetAngle() );
if( IsNetnameLayer( aLayer ) )
{
// Ummm, yeah. Anyone fancy implementing text on a path?
return;
}
else if( IsCopperLayer( aLayer ) )
{
// Draw a regular track
bool outline_mode = !pcbconfig()->m_Display.m_DisplayPcbTrackFill;
m_gal->SetStrokeColor( color );
m_gal->SetFillColor( color );
m_gal->SetIsStroke( outline_mode );
m_gal->SetIsFill( not outline_mode );
m_gal->SetLineWidth( m_pcbSettings.m_outlineWidth );
m_gal->DrawArcSegment( center, radius, start_angle, start_angle + angle, width, m_maxError );
}
// Clearance lines
if( pcbconfig()->m_Display.m_ShowTrackClearanceMode >= SHOW_TRACK_CLEARANCE_WHILE_ROUTING
&& !m_pcbSettings.m_ForceClearanceDisplayOff )
{
int clearance = aArc->GetOwnClearance( m_pcbSettings.GetActiveLayer() );
m_gal->SetLineWidth( m_pcbSettings.m_outlineWidth );
m_gal->SetIsFill( false );
m_gal->SetIsStroke( true );
m_gal->SetStrokeColor( color );
m_gal->DrawArcSegment( center, radius, start_angle, start_angle + angle,
width + clearance * 2, m_maxError );
}
// Debug only: enable this code only to test the TransformArcToPolygon function
// and display the polygon outline created by it.
// arcs on F_Cu are approximated with ERROR_INSIDE, others with ERROR_OUTSIDE
#if 0
SHAPE_POLY_SET cornerBuffer;
ERROR_LOC errorloc = aLayer == F_Cu ? ERROR_LOC::ERROR_INSIDE : ERROR_LOC::ERROR_OUTSIDE;
TransformArcToPolygon( cornerBuffer, aArc->GetStart(), aArc->GetMid(), aArc->GetEnd(), width,
m_maxError, errorloc );
m_gal->SetLineWidth( m_pcbSettings.m_outlineWidth );
m_gal->SetIsFill( false );
m_gal->SetIsStroke( true );
m_gal->SetStrokeColor( COLOR4D( 0, 0, 1.0, 1.0 ) );
m_gal->DrawPolygon( cornerBuffer );
#endif
// Debug only: enable this code only to test the SHAPE_ARC::ConvertToPolyline function
// and display the polyline created by it.
#if 0
SHAPE_ARC arc( aArc->GetCenter(), aArc->GetStart(), aArc->GetAngle() / 10.0, aArc->GetWidth() );
SHAPE_LINE_CHAIN arcSpine = arc.ConvertToPolyline( m_maxError );
m_gal->SetLineWidth( m_pcbSettings.m_outlineWidth );
m_gal->SetIsFill( false );
m_gal->SetIsStroke( true );
m_gal->SetStrokeColor( COLOR4D( 0.3, 0.2, 0.5, 1.0 ) );
for( int idx = 1; idx < arcSpine.PointCount(); idx++ )
m_gal->DrawSegment( arcSpine.CPoint( idx-1 ), arcSpine.CPoint( idx ), aArc->GetWidth() );
#endif
}
void PCB_PAINTER::draw( const PCB_VIA* aVia, int aLayer )
{
COLOR4D color = m_pcbSettings.GetColor( aVia, aLayer );
VECTOR2D center( aVia->GetStart() );
if( color == COLOR4D::CLEAR )
return;
// Draw description layer
if( IsNetnameLayer( aLayer ) )
{
VECTOR2D position( center );
// Is anything that we can display enabled?
if( pcbconfig()->m_Display.m_DisplayNetNamesMode == 0
|| pcbconfig()->m_Display.m_DisplayNetNamesMode == 2
|| aVia->GetNetname().empty() )
{
return;
}
double maxSize = PCB_RENDER_SETTINGS::MAX_FONT_SIZE;
double size = aVia->GetWidth();
// Font size limits
if( size > maxSize )
size = maxSize;
m_gal->Save();
m_gal->Translate( position );
// Default font settings
m_gal->ResetTextAttributes();
m_gal->SetStrokeColor( m_pcbSettings.GetColor( nullptr, aLayer ) );
// Set the text position to the pad shape position (the pad position is not the best place)
VECTOR2D textpos( 0.0, 0.0 );
wxString netname = UnescapeString( aVia->GetShortNetname() );
// approximate the size of net name text:
double tsize = 1.5 * size / std::max( PrintableCharCount( netname ), 1 );
tsize = std::min( tsize, size );
// Use a smaller text size to handle interline, pen size..
tsize *= 0.7;
VECTOR2D namesize( tsize, tsize );
m_gal->SetGlyphSize( namesize );
m_gal->SetLineWidth( namesize.x / 12.0 );
m_gal->BitmapText( netname, textpos, 0.0 );
m_gal->Restore();
return;
}
else if( aLayer == LAYER_VIA_HOLEWALLS )
{
m_gal->SetIsFill( false );
m_gal->SetIsStroke( true );
m_gal->SetStrokeColor( color );
m_gal->SetLineWidth( m_holePlatingThickness );
m_gal->DrawCircle( center, ( getDrillSize( aVia ) + m_holePlatingThickness ) / 2.0 );
return;
}
bool outline_mode = !pcbconfig()->m_Display.m_DisplayViaFill;
if( outline_mode )
{
m_gal->SetIsStroke( true );
m_gal->SetIsFill( false );
m_gal->SetLineWidth( m_pcbSettings.m_outlineWidth );
m_gal->SetStrokeColor( color );
}
else
{
m_gal->SetIsFill( true );
m_gal->SetIsStroke( false );
m_gal->SetFillColor( color );
}
if( aLayer == LAYER_VIA_HOLES )
{
m_gal->DrawCircle( center, getDrillSize( aVia ) / 2.0 );
}
else if( aLayer == LAYER_VIA_THROUGH || m_pcbSettings.m_DrawIndividualViaLayers )
{
m_gal->DrawCircle( center, aVia->GetWidth() / 2.0 );
}
else if( aLayer == LAYER_VIA_BBLIND || aLayer == LAYER_VIA_MICROVIA )
{
// Outer circles of blind/buried and micro-vias are drawn in a special way to indicate the
// top and bottom layers
PCB_LAYER_ID layerTop, layerBottom;
aVia->LayerPair( &layerTop, &layerBottom );
double radius = aVia->GetWidth() / 2.0;
if( !outline_mode )
m_gal->SetLineWidth( ( aVia->GetWidth() - aVia->GetDrillValue() ) / 2.0 );
m_gal->DrawArc( center, radius, M_PI * -0.375, M_PI * 0.375 );
m_gal->DrawArc( center, radius, M_PI * 0.625, M_PI * 1.375 );
if( outline_mode )
m_gal->SetStrokeColor( m_pcbSettings.GetColor( aVia, layerTop ) );
else
m_gal->SetFillColor( m_pcbSettings.GetColor( aVia, layerTop ) );
m_gal->DrawArc( center, radius, M_PI * 1.375, M_PI * 1.625 );
if( outline_mode )
m_gal->SetStrokeColor( m_pcbSettings.GetColor( aVia, layerBottom ) );
else
m_gal->SetFillColor( m_pcbSettings.GetColor( aVia, layerBottom ) );
m_gal->DrawArc( center, radius, M_PI * 0.375, M_PI * 0.625 );
}
// Clearance lines
if( pcbconfig()->m_Display.m_ShowTrackClearanceMode == SHOW_TRACK_CLEARANCE_WITH_VIA_ALWAYS
&& aLayer != LAYER_VIA_HOLES
&& !m_pcbSettings.m_ForceClearanceDisplayOff )
{
PCB_LAYER_ID activeLayer = m_pcbSettings.GetActiveLayer();
double radius;
if( aVia->FlashLayer( activeLayer ) )
radius = aVia->GetWidth() / 2.0;
else
radius = getDrillSize( aVia ) / 2.0 + m_holePlatingThickness;
m_gal->SetLineWidth( m_pcbSettings.m_outlineWidth );
m_gal->SetIsFill( false );
m_gal->SetIsStroke( true );
m_gal->SetStrokeColor( color );
m_gal->DrawCircle( center, radius + aVia->GetOwnClearance( activeLayer ) );
}
}
void PCB_PAINTER::draw( const PAD* aPad, int aLayer )
{
COLOR4D color = m_pcbSettings.GetColor( aPad, aLayer );
if( IsNetnameLayer( aLayer ) )
{
// Is anything that we can display enabled?
bool displayNetname = ( pcbconfig()->m_Display.m_DisplayNetNamesMode == 1
|| pcbconfig()->m_Display.m_DisplayNetNamesMode == 3 )
&& !aPad->GetNetname().empty();
bool displayPadNumber = pcbconfig()->m_Display.m_DisplayPadNum;
if( displayNetname || displayPadNumber )
{
EDA_RECT padBBox = aPad->GetBoundingBox();
VECTOR2D position = padBBox.Centre();
VECTOR2D padsize = VECTOR2D( padBBox.GetSize() );
if( aPad->GetShape() != PAD_SHAPE::CUSTOM )
{
// Don't allow a 45º rotation to bloat a pad's bounding box unnecessarily
double limit = std::min( aPad->GetSize().x, aPad->GetSize().y ) * 1.1;
if( padsize.x > limit && padsize.y > limit )
{
padsize.x = limit;
padsize.y = limit;
}
}
double maxSize = PCB_RENDER_SETTINGS::MAX_FONT_SIZE;
double size = padsize.y;
m_gal->Save();
m_gal->Translate( position );
// Keep the size ratio for the font, but make it smaller
if( padsize.x < padsize.y )
{
m_gal->Rotate( DECIDEG2RAD( -900.0 ) );
size = padsize.x;
std::swap( padsize.x, padsize.y );
}
// Font size limits
if( size > maxSize )
size = maxSize;
// Default font settings
m_gal->SetHorizontalJustify( GR_TEXT_H_ALIGN_CENTER );
m_gal->SetVerticalJustify( GR_TEXT_V_ALIGN_CENTER );
m_gal->SetFontBold( false );
m_gal->SetFontItalic( false );
m_gal->SetFontUnderlined( false );
m_gal->SetTextMirrored( false );
m_gal->SetStrokeColor( m_pcbSettings.GetColor( aPad, aLayer ) );
m_gal->SetIsStroke( true );
m_gal->SetIsFill( false );
// We have already translated the GAL to be centered at the center of the pad's
// bounding box
VECTOR2D textpos( 0.0, 0.0 );
// Divide the space, to display both pad numbers and netnames and set the Y text
// position to display 2 lines
if( displayNetname && displayPadNumber )
{
size = size / 2.5;
textpos.y = size / 1.7;
}
if( displayNetname )
{
wxString netname = UnescapeString( aPad->GetShortNetname() );
wxString pinType = aPad->GetPinType();
// If the pad is actually not connected (unique pad in the net),
// shorten the displayed netname (actual name not useful)
// Can happen if the pad netname is edited inside the board editor, therefore
// having a netname not coming from schematic
if( netname.StartsWith( "unconnected-(" ) )
{
if( pinType == wxT( "no_connect" ) || pinType.EndsWith( wxT( "+no_connect" ) ) )
netname = "x";
else if( pinType == wxT( "free" ) )
netname = "*";
}
// approximate the size of net name text:
double tsize = 1.5 * padsize.x / std::max( PrintableCharCount( netname ), 1 );
tsize = std::min( tsize, size );
// Use a smaller text size to handle interline, pen size...
tsize *= 0.7;
VECTOR2D namesize( tsize, tsize );
m_gal->SetGlyphSize( namesize );
m_gal->SetLineWidth( namesize.x / 12.0 );
m_gal->BitmapText( netname, textpos, 0.0 );
}
if( displayPadNumber )
{
const wxString& padNumber = aPad->GetNumber();
textpos.y = -textpos.y;
// approximate the size of the pad number text:
double tsize = 1.5 * padsize.x / std::max( PrintableCharCount( padNumber ), 1 );
tsize = std::min( tsize, size );
// Use a smaller text size to handle interline, pen size...
tsize *= 0.7;
tsize = std::min( tsize, size );
VECTOR2D numsize( tsize, tsize );
m_gal->SetGlyphSize( numsize );
m_gal->SetLineWidth( numsize.x / 12.0 );
m_gal->BitmapText( padNumber, textpos, 0.0 );
}
m_gal->Restore();
}
return;
}
else if( aLayer == LAYER_PAD_HOLEWALLS )
{
m_gal->SetIsFill( false );
m_gal->SetIsStroke( true );
m_gal->SetLineWidth( m_holePlatingThickness );
m_gal->SetStrokeColor( color );
const SHAPE_SEGMENT* seg = aPad->GetEffectiveHoleShape();
int holeSize = seg->GetWidth() + m_holePlatingThickness;
if( seg->GetSeg().A == seg->GetSeg().B ) // Circular hole
m_gal->DrawCircle( seg->GetSeg().A, holeSize / 2 );
else
m_gal->DrawSegment( seg->GetSeg().A, seg->GetSeg().B, holeSize );
return;
}
bool outline_mode = !pcbconfig()->m_Display.m_DisplayPadFill;
if( m_pcbSettings.m_ForcePadSketchModeOff )
outline_mode = false;
else if( m_pcbSettings.m_ForcePadSketchModeOn )
outline_mode = true;
if( outline_mode )
{
// Outline mode
m_gal->SetIsFill( false );
m_gal->SetIsStroke( true );
m_gal->SetLineWidth( m_pcbSettings.m_outlineWidth );
m_gal->SetStrokeColor( color );
}
else
{
// Filled mode
m_gal->SetIsFill( true );
m_gal->SetIsStroke( false );
m_gal->SetFillColor( color );
}
if( aLayer == LAYER_PAD_PLATEDHOLES || aLayer == LAYER_NON_PLATEDHOLES )
{
const SHAPE_SEGMENT* seg = aPad->GetEffectiveHoleShape();
if( seg->GetSeg().A == seg->GetSeg().B ) // Circular hole
m_gal->DrawCircle( seg->GetSeg().A, getDrillSize( aPad ).x / 2 );
else
m_gal->DrawSegment( seg->GetSeg().A, seg->GetSeg().B, seg->GetWidth() );
}
else
{
wxSize pad_size = aPad->GetSize();
wxSize margin;
switch( aLayer )
{
case F_Mask:
case B_Mask:
margin.x = margin.y = aPad->GetSolderMaskExpansion();
break;
case F_Paste:
case B_Paste:
margin = aPad->GetSolderPasteMargin();
break;
default:
margin.x = margin.y = 0;
break;
}
std::unique_ptr<PAD> dummyPad;
std::shared_ptr<SHAPE_COMPOUND> shapes;
// Drawing components of compound shapes in outline mode produces a mess.
bool simpleShapes = !outline_mode;
if( simpleShapes )
{
if( ( margin.x != margin.y && aPad->GetShape() != PAD_SHAPE::CUSTOM )
|| ( aPad->GetShape() == PAD_SHAPE::ROUNDRECT && ( margin.x < 0 || margin.y < 0 ) ) )
{
// Our algorithms below (polygon inflation in particular) can't handle differential
// inflation along separate axes. So for those cases we build a dummy pad instead,
// and inflate it.
// Margin is added to both sides. If the total margin is larger than the pad
// then don't display this layer
if( pad_size.x + 2 * margin.x <= 0 || pad_size.y + 2 * margin.y <= 0 )
return;
dummyPad.reset( static_cast<PAD*>( aPad->Duplicate() ) );
int initial_radius = dummyPad->GetRoundRectCornerRadius();
dummyPad->SetSize( pad_size + margin + margin );
if( dummyPad->GetShape() == PAD_SHAPE::ROUNDRECT )
{
// To keep the right margin around the corners, we need to modify the corner radius.
// We must have only one radius correction, so use the smallest absolute margin.
int radius_margin = std::max( margin.x, margin.y ); // radius_margin is < 0
dummyPad->SetRoundRectCornerRadius( std::max( initial_radius + radius_margin, 0 ) );
}
shapes = std::dynamic_pointer_cast<SHAPE_COMPOUND>( dummyPad->GetEffectiveShape() );
margin.x = margin.y = 0;
}
else
{
shapes = std::dynamic_pointer_cast<SHAPE_COMPOUND>( aPad->GetEffectiveShape() );
}
if( aPad->GetShape() == PAD_SHAPE::CUSTOM && ( margin.x || margin.y ) )
{
// We can't draw as shapes because we don't know which edges are internal and which
// are external (so we don't know when to apply the margin and when not to).
simpleShapes = false;
}
for( const SHAPE* shape : shapes->Shapes() )
{
if( !simpleShapes )
break;
switch( shape->Type() )
{
case SH_SEGMENT:
case SH_CIRCLE:
case SH_RECT:
case SH_SIMPLE:
// OK so far
break;
default:
// Not OK
simpleShapes = false;
break;
}
}
}
if( simpleShapes )
{
for( const SHAPE* shape : shapes->Shapes() )
{
switch( shape->Type() )
{
case SH_SEGMENT:
{
const SHAPE_SEGMENT* seg = (const SHAPE_SEGMENT*) shape;
int effectiveWidth = seg->GetWidth() + 2 * margin.x;
if( effectiveWidth > 0 )
m_gal->DrawSegment( seg->GetSeg().A, seg->GetSeg().B, effectiveWidth );
break;
}
case SH_CIRCLE:
{
const SHAPE_CIRCLE* circle = (const SHAPE_CIRCLE*) shape;
int effectiveRadius = circle->GetRadius() + margin.x;
if( effectiveRadius > 0 )
m_gal->DrawCircle( circle->GetCenter(), effectiveRadius );
break;
}
case SH_RECT:
{
const SHAPE_RECT* r = (const SHAPE_RECT*) shape;
VECTOR2I pos = r->GetPosition();
VECTOR2I effectiveMargin = margin;
if( effectiveMargin.x < 0 )
{
// A negative margin just produces a smaller rect.
VECTOR2I effectiveSize = r->GetSize() + effectiveMargin;
if( effectiveSize.x > 0 && effectiveSize.y > 0 )
m_gal->DrawRectangle( pos - effectiveMargin, pos + effectiveSize );
}
else if( effectiveMargin.x > 0 )
{
// A positive margin produces a larger rect, but with rounded corners
m_gal->DrawRectangle( r->GetPosition(), r->GetPosition() + r->GetSize() );
// Use segments to produce the margin with rounded corners
m_gal->DrawSegment( pos,
pos + VECTOR2I( r->GetWidth(), 0 ),
effectiveMargin.x * 2 );
m_gal->DrawSegment( pos + VECTOR2I( r->GetWidth(), 0 ),
pos + r->GetSize(),
effectiveMargin.x * 2 );
m_gal->DrawSegment( pos + r->GetSize(),
pos + VECTOR2I( 0, r->GetHeight() ),
effectiveMargin.x * 2 );
m_gal->DrawSegment( pos + VECTOR2I( 0, r->GetHeight() ),
pos,
effectiveMargin.x * 2 );
}
else
{
m_gal->DrawRectangle( r->GetPosition(), r->GetPosition() + r->GetSize() );
}
break;
}
case SH_SIMPLE:
{
const SHAPE_SIMPLE* poly = static_cast<const SHAPE_SIMPLE*>( shape );
if( margin.x < 0 ) // The poly shape must be deflated
{
int numSegs = GetArcToSegmentCount( -margin.x, m_maxError, 360.0 );
SHAPE_POLY_SET outline;
outline.NewOutline();
for( int ii = 0; ii < poly->PointCount(); ++ii )
outline.Append( poly->CPoint( ii ) );
outline.Deflate( -margin.x, numSegs );
m_gal->DrawPolygon( outline );
}
else
{
m_gal->DrawPolygon( poly->Vertices() );
}
// Now add on a rounded margin (using segments) if the margin > 0
if( margin.x > 0 )
{
for( size_t ii = 0; ii < poly->GetSegmentCount(); ++ii )
{
SEG seg = poly->GetSegment( ii );
m_gal->DrawSegment( seg.A, seg.B, margin.x * 2 );
}
}
break;
}
default:
// Better not get here; we already pre-flighted the shapes...
break;
}
}
}
else
{
// This is expensive. Avoid if possible.
SHAPE_POLY_SET polySet;
aPad->TransformShapeWithClearanceToPolygon( polySet, ToLAYER_ID( aLayer ), margin.x,
m_maxError, ERROR_INSIDE );
m_gal->DrawPolygon( polySet );
}
}
if( pcbconfig()->m_Display.m_DisplayPadClearance
&& ( aLayer == LAYER_PAD_FR || aLayer == LAYER_PAD_BK || aLayer == LAYER_PADS_TH )
&& !m_pcbSettings.m_ForceClearanceDisplayOff )
{
/* Showing the clearance area is not obvious.
* - A pad can be removed from some copper layers.
* - For non copper layers, what is the clearance area?
* So for copper layers, the clearance area is the shape if the pad is flashed on this
* layer and the hole clearance area for other copper layers.
* For other layers, use the pad shape, although one can use an other criteria,
* depending on the non copper layer.
*/
int activeLayer = m_pcbSettings.GetActiveLayer();
bool flashActiveLayer = true;
if( IsCopperLayer( activeLayer ) )
flashActiveLayer = aPad->FlashLayer( activeLayer );
if( flashActiveLayer || aPad->GetDrillSize().x )
{
m_gal->SetLineWidth( m_pcbSettings.m_outlineWidth );
m_gal->SetIsStroke( true );
m_gal->SetIsFill( false );
m_gal->SetStrokeColor( color );
int clearance = aPad->GetOwnClearance( m_pcbSettings.GetActiveLayer() );
if( flashActiveLayer && clearance > 0 )
{
auto shape = std::dynamic_pointer_cast<SHAPE_COMPOUND>( aPad->GetEffectiveShape() );
if( shape && shape->Size() == 1 && shape->Shapes()[0]->Type() == SH_SEGMENT )
{
const SHAPE_SEGMENT* seg = (SHAPE_SEGMENT*) shape->Shapes()[0];
m_gal->DrawSegment( seg->GetSeg().A, seg->GetSeg().B,
seg->GetWidth() + 2 * clearance );
}
else if( shape && shape->Size() == 1 && shape->Shapes()[0]->Type() == SH_CIRCLE )
{
const SHAPE_CIRCLE* circle = (SHAPE_CIRCLE*) shape->Shapes()[0];
m_gal->DrawCircle( circle->GetCenter(), circle->GetRadius() + clearance );
}
else
{
SHAPE_POLY_SET polySet;
// Use ERROR_INSIDE because it avoids Clipper and is therefore much faster.
aPad->TransformShapeWithClearanceToPolygon( polySet, ToLAYER_ID( aLayer ),
clearance, m_maxError, ERROR_INSIDE );
m_gal->DrawPolygon( polySet );
}
}
else if( aPad->GetEffectiveHoleShape() && clearance > 0 )
{
clearance += m_holePlatingThickness;
const SHAPE_SEGMENT* seg = aPad->GetEffectiveHoleShape();
m_gal->DrawSegment( seg->GetSeg().A, seg->GetSeg().B,
seg->GetWidth() + 2 * clearance );
}
}
}
}
void PCB_PAINTER::draw( const PCB_SHAPE* aShape, int aLayer )
{
const COLOR4D& color = m_pcbSettings.GetColor( aShape, aShape->GetLayer() );
bool outline_mode = !pcbconfig()->m_Display.m_DisplayGraphicsFill;
int thickness = getLineThickness( aShape->GetWidth() );
PLOT_DASH_TYPE lineStyle = aShape->GetStroke().GetPlotStyle();
if( outline_mode )
{
m_gal->SetIsFill( false );
m_gal->SetIsStroke( true );
m_gal->SetLineWidth( m_pcbSettings.m_outlineWidth );
}
m_gal->SetFillColor( color );
m_gal->SetStrokeColor( color );
if( lineStyle <= PLOT_DASH_TYPE::FIRST_TYPE )
{
switch( aShape->GetShape() )
{
case SHAPE_T::SEGMENT:
if( outline_mode )
{
m_gal->DrawSegment( aShape->GetStart(), aShape->GetEnd(), thickness );
}
else
{
m_gal->SetIsFill( true );
m_gal->SetIsStroke( false );
m_gal->DrawSegment( aShape->GetStart(), aShape->GetEnd(), thickness );
}
break;
case SHAPE_T::RECT:
{
std::vector<wxPoint> pts = aShape->GetRectCorners();
if( outline_mode )
{
m_gal->DrawSegment( pts[0], pts[1], thickness );
m_gal->DrawSegment( pts[1], pts[2], thickness );
m_gal->DrawSegment( pts[2], pts[3], thickness );
m_gal->DrawSegment( pts[3], pts[0], thickness );
}
else
{
m_gal->SetIsFill( true );
m_gal->SetIsStroke( false );
if( thickness > 0 )
{
m_gal->DrawSegment( pts[0], pts[1], thickness );
m_gal->DrawSegment( pts[1], pts[2], thickness );
m_gal->DrawSegment( pts[2], pts[3], thickness );
m_gal->DrawSegment( pts[3], pts[0], thickness );
}
if( aShape->IsFilled() )
{
SHAPE_POLY_SET poly;
poly.NewOutline();
for( const wxPoint& pt : pts )
poly.Append( pt );
m_gal->DrawPolygon( poly );
}
}
break;
}
case SHAPE_T::ARC:
{
double startAngle;
double endAngle;
aShape->CalcArcAngles( startAngle, endAngle );
if( outline_mode )
{
m_gal->DrawArcSegment( aShape->GetCenter(), aShape->GetRadius(),
DEG2RAD( startAngle ), DEG2RAD( endAngle ), thickness,
m_maxError );
}
else
{
m_gal->SetIsFill( true );
m_gal->SetIsStroke( false );
m_gal->DrawArcSegment( aShape->GetCenter(), aShape->GetRadius(),
DEG2RAD( startAngle ), DEG2RAD( endAngle ), thickness,
m_maxError );
}
break;
}
case SHAPE_T::CIRCLE:
if( outline_mode )
{
m_gal->DrawCircle( aShape->GetStart(), aShape->GetRadius() - thickness / 2 );
m_gal->DrawCircle( aShape->GetStart(), aShape->GetRadius() + thickness / 2 );
}
else
{
m_gal->SetIsFill( aShape->IsFilled() );
m_gal->SetIsStroke( thickness > 0 );
m_gal->SetLineWidth( thickness );
m_gal->DrawCircle( aShape->GetStart(), aShape->GetRadius() );
}
break;
case SHAPE_T::POLY:
{
SHAPE_POLY_SET& shape = const_cast<PCB_SHAPE*>( aShape )->GetPolyShape();
const FOOTPRINT* parentFootprint = aShape->GetParentFootprint();
if( shape.OutlineCount() == 0 )
break;
if( parentFootprint )
{
m_gal->Save();
m_gal->Translate( parentFootprint->GetPosition() );
m_gal->Rotate( -parentFootprint->GetOrientationRadians() );
}
if( outline_mode )
{
for( int ii = 0; ii < shape.Outline( 0 ).SegmentCount(); ++ii )
{
SEG seg = shape.Outline( 0 ).Segment( ii );
m_gal->DrawSegment( seg.A, seg.B, thickness );
}
}
else
{
m_gal->SetIsFill( true );
m_gal->SetIsStroke( false );
if( thickness > 0 )
{
for( int ii = 0; ii < shape.Outline( 0 ).SegmentCount(); ++ii )
{
SEG seg = shape.Outline( 0 ).Segment( ii );
m_gal->DrawSegment( seg.A, seg.B, thickness );
}
}
if( aShape->IsFilled() )
{
// On Opengl, a not convex filled polygon is usually drawn by using triangles
// as primitives. CacheTriangulation() can create basic triangle primitives to
// draw the polygon solid shape on Opengl. GLU tessellation is much slower,
// so currently we are using our tessellation.
if( m_gal->IsOpenGlEngine() && !shape.IsTriangulationUpToDate() )
shape.CacheTriangulation();
m_gal->DrawPolygon( shape );
}
}
if( parentFootprint )
m_gal->Restore();
break;
}
case SHAPE_T::BEZIER:
if( outline_mode )
{
std::vector<VECTOR2D> output;
std::vector<VECTOR2D> pointCtrl;
pointCtrl.push_back( aShape->GetStart() );
pointCtrl.push_back( aShape->GetBezierC1() );
pointCtrl.push_back( aShape->GetBezierC2() );
pointCtrl.push_back( aShape->GetEnd() );
BEZIER_POLY converter( pointCtrl );
converter.GetPoly( output, thickness );
for( unsigned ii = 0; ii + 1 < output.size(); ++ii )
m_gal->DrawSegment( output[ii], output[ii+1], thickness );
}
else
{
m_gal->SetIsFill( aShape->IsFilled() );
m_gal->SetIsStroke( thickness > 0 );
m_gal->SetLineWidth( thickness );
// Use thickness as filter value to convert the curve to polyline when the curve
// is not supported
m_gal->DrawCurve( VECTOR2D( aShape->GetStart() ),
VECTOR2D( aShape->GetBezierC1() ),
VECTOR2D( aShape->GetBezierC2() ),
VECTOR2D( aShape->GetEnd() ), thickness );
}
break;
case SHAPE_T::LAST:
break;
}
}
else
{
if( !outline_mode )
{
m_gal->SetIsFill( true );
m_gal->SetIsStroke( false );
}
std::vector<SHAPE*> shapes = aShape->MakeEffectiveShapes( true );
for( SHAPE* shape : shapes )
{
STROKE_PARAMS::Stroke( shape, lineStyle, thickness, &m_pcbSettings,
[&]( const wxPoint& a, const wxPoint& b )
{
m_gal->DrawSegment( a, b, thickness );
} );
}
for( SHAPE* shape : shapes )
delete shape;
}
}
void PCB_PAINTER::draw( const PCB_TEXT* aText, int aLayer )
{
wxString shownText( aText->GetShownText() );
if( shownText.Length() == 0 )
return;
const COLOR4D& color = m_pcbSettings.GetColor( aText, aText->GetLayer() );
VECTOR2D position( aText->GetTextPos().x, aText->GetTextPos().y );
bool outline_mode = !pcbconfig()->m_Display.m_DisplayTextFill;
if( outline_mode )
m_gal->SetLineWidth( m_pcbSettings.m_outlineWidth );
else
m_gal->SetLineWidth( getLineThickness( aText->GetEffectiveTextPenWidth() ) );
m_gal->SetStrokeColor( color );
m_gal->SetIsFill( false );
m_gal->SetIsStroke( true );
m_gal->SetTextAttributes( aText );
m_gal->StrokeText( shownText, position, aText->GetTextAngle().AsRadians() );
}
void PCB_PAINTER::draw( const FP_TEXT* aText, int aLayer )
{
wxString shownText( aText->GetShownText() );
if( shownText.Length() == 0 )
return;
const COLOR4D& color = m_pcbSettings.GetColor( aText, aLayer );
VECTOR2D position( aText->GetTextPos().x, aText->GetTextPos().y );
bool outline_mode = !pcbconfig()->m_Display.m_DisplayTextFill;
if( outline_mode )
m_gal->SetLineWidth( m_pcbSettings.m_outlineWidth );
else
m_gal->SetLineWidth( getLineThickness( aText->GetEffectiveTextPenWidth() ) );
m_gal->SetStrokeColor( color );
m_gal->SetIsFill( false );
m_gal->SetIsStroke( true );
m_gal->SetTextAttributes( aText );
m_gal->StrokeText( shownText, position, aText->GetDrawRotation().AsRadians() );
// Draw the umbilical line
if( aText->IsSelected() )
{
m_gal->SetLineWidth( m_pcbSettings.m_outlineWidth );
m_gal->SetStrokeColor( m_pcbSettings.GetColor( nullptr, LAYER_ANCHOR ) );
m_gal->DrawLine( position, aText->GetParent()->GetPosition() );
}
}
void PCB_PAINTER::draw( const FOOTPRINT* aFootprint, int aLayer )
{
if( aLayer == LAYER_ANCHOR )
{
const COLOR4D color = m_pcbSettings.GetColor( aFootprint, aLayer );
// Keep the size and width constant, not related to the scale because the anchor
// is just a marker on screen
double anchorSize = 5.0 / m_gal->GetWorldScale(); // 5 pixels size
double anchorThickness = 1.0 / m_gal->GetWorldScale(); // 1 pixels width
// Draw anchor
m_gal->SetIsFill( false );
m_gal->SetIsStroke( true );
m_gal->SetStrokeColor( color );
m_gal->SetLineWidth( anchorThickness );
VECTOR2D center = aFootprint->GetPosition();
m_gal->DrawLine( center - VECTOR2D( anchorSize, 0 ), center + VECTOR2D( anchorSize, 0 ) );
m_gal->DrawLine( center - VECTOR2D( 0, anchorSize ), center + VECTOR2D( 0, anchorSize ) );
}
}
void PCB_PAINTER::draw( const PCB_GROUP* aGroup, int aLayer )
{
if( aLayer == LAYER_ANCHOR )
{
if( aGroup->IsSelected() && !( aGroup->GetParent() && aGroup->GetParent()->IsSelected() ) )
{
// Selected on our own; draw enclosing box
}
else if( aGroup->IsEntered() )
{
// Entered group; draw enclosing box
}
else
{
// Neither selected nor entered; draw nothing at the group level (ie: only draw
// its members)
return;
}
const COLOR4D color = m_pcbSettings.GetColor( aGroup, LAYER_ANCHOR );
EDA_RECT bbox = aGroup->GetBoundingBox();
m_gal->SetStrokeColor( color );
m_gal->SetLineWidth( m_pcbSettings.m_outlineWidth * 2.0f );
wxPoint topLeft = bbox.GetPosition();
wxPoint width = wxPoint( bbox.GetWidth(), 0 );
wxPoint height = wxPoint( 0, bbox.GetHeight() );
m_gal->DrawLine( topLeft, topLeft + width );
m_gal->DrawLine( topLeft + width, topLeft + width + height );
m_gal->DrawLine( topLeft + width + height, topLeft + height );
m_gal->DrawLine( topLeft + height, topLeft );
wxString name = aGroup->GetName();
if( name.IsEmpty() )
return;
int ptSize = 12;
int scaledSize = abs( KiROUND( m_gal->GetScreenWorldMatrix().GetScale().x * ptSize ) );
int unscaledSize = Mils2iu( ptSize );
// Scale by zoom a bit, but not too much
int textSize = ( scaledSize + ( unscaledSize * 2 ) ) / 3;
int penWidth = textSize / 10;
wxPoint textOffset = wxPoint( width.x / 2, - KiROUND( textSize * 0.5 ) );
wxPoint titleHeight = wxPoint( 0, KiROUND( textSize * 2.0 ) );
if( PrintableCharCount( name ) * textSize < bbox.GetWidth() )
{
m_gal->DrawLine( topLeft, topLeft - titleHeight );
m_gal->DrawLine( topLeft - titleHeight, topLeft + width - titleHeight );
m_gal->DrawLine( topLeft + width - titleHeight, topLeft + width );
m_gal->SetFontBold( false );
m_gal->SetFontItalic( true );
m_gal->SetFontUnderlined( false );
m_gal->SetTextMirrored( m_gal->IsFlippedX() );
m_gal->SetHorizontalJustify( GR_TEXT_H_ALIGN_CENTER );
m_gal->SetVerticalJustify( GR_TEXT_V_ALIGN_BOTTOM );
m_gal->SetIsFill( false );
m_gal->SetGlyphSize( VECTOR2D( textSize, textSize ) );
m_gal->SetLineWidth( penWidth );
m_gal->StrokeText( aGroup->GetName(), topLeft + textOffset, 0.0 );
}
}
}
void PCB_PAINTER::draw( const ZONE* aZone, int aLayer )
{
/*
* aLayer will be the virtual zone layer (LAYER_ZONE_START, ... in GAL_LAYER_ID)
* This is used for draw ordering in the GAL.
* The color for the zone comes from the associated copper layer ( aLayer - LAYER_ZONE_START )
* and the visibility comes from the combination of that copper layer and LAYER_ZONES
*/
wxASSERT( IsZoneLayer( aLayer ) );
PCB_LAYER_ID layer = static_cast<PCB_LAYER_ID>( aLayer - LAYER_ZONE_START );
if( !aZone->IsOnLayer( layer ) )
return;
COLOR4D color = m_pcbSettings.GetColor( aZone, layer );
std::deque<VECTOR2D> corners;
ZONE_DISPLAY_MODE displayMode = m_pcbSettings.m_ZoneDisplayMode;
// Draw the outline
const SHAPE_POLY_SET* outline = aZone->Outline();
if( !m_pcbSettings.m_isPrinting && outline && outline->OutlineCount() > 0 )
{
m_gal->SetStrokeColor( color.a > 0.0 ? color.WithAlpha( 1.0 ) : color );
m_gal->SetIsFill( false );
m_gal->SetIsStroke( true );
m_gal->SetLineWidth( m_pcbSettings.m_outlineWidth );
// Draw each contour (main contour and holes)
/* This line:
* m_gal->DrawPolygon( *outline );
* should be enough, but currently does not work to draw holes contours in a complex polygon
* so each contour is draw as a simple polygon
*/
// Draw the main contour
m_gal->DrawPolyline( outline->COutline( 0 ) );
// Draw holes
int holes_count = outline->HoleCount( 0 );
for( int ii = 0; ii < holes_count; ++ii )
m_gal->DrawPolyline( outline->CHole( 0, ii ) );
// Draw hatch lines
for( const SEG& hatchLine : aZone->GetHatchLines() )
m_gal->DrawLine( hatchLine.A, hatchLine.B );
}
// Draw the filling
if( displayMode == ZONE_DISPLAY_MODE::SHOW_FILLED
|| displayMode == ZONE_DISPLAY_MODE::SHOW_FRACTURE_BORDERS
|| displayMode == ZONE_DISPLAY_MODE::SHOW_TRIANGULATION )
{
const SHAPE_POLY_SET& polySet = aZone->GetFilledPolysList( layer );
if( polySet.OutlineCount() == 0 ) // Nothing to draw
return;
// Set up drawing options
int outline_thickness = 0;
if( aZone->GetFilledPolysUseThickness( layer ) )
outline_thickness = aZone->GetMinThickness();
m_gal->SetStrokeColor( color );
m_gal->SetFillColor( color );
m_gal->SetLineWidth( outline_thickness );
if( displayMode == ZONE_DISPLAY_MODE::SHOW_FILLED )
{
m_gal->SetIsFill( true );
m_gal->SetIsStroke( outline_thickness > 0 );
}
else
{
m_gal->SetIsFill( false );
m_gal->SetIsStroke( true );
}
m_gal->DrawPolygon( polySet, displayMode == ZONE_DISPLAY_MODE::SHOW_TRIANGULATION );
}
}
void PCB_PAINTER::draw( const PCB_DIMENSION_BASE* aDimension, int aLayer )
{
const COLOR4D& strokeColor = m_pcbSettings.GetColor( aDimension, aLayer );
m_gal->SetStrokeColor( strokeColor );
m_gal->SetIsFill( false );
m_gal->SetIsStroke( true );
bool outline_mode = !pcbconfig()->m_Display.m_DisplayGraphicsFill;
if( outline_mode )
m_gal->SetLineWidth( m_pcbSettings.m_outlineWidth );
else
m_gal->SetLineWidth( getLineThickness( aDimension->GetLineThickness() ) );
// Draw dimension shapes
// TODO(JE) lift this out
for( const std::shared_ptr<SHAPE>& shape : aDimension->GetShapes() )
{
switch( shape->Type() )
{
case SH_SEGMENT:
{
const SEG& seg = static_cast<const SHAPE_SEGMENT*>( shape.get() )->GetSeg();
m_gal->DrawLine( seg.A, seg.B );
break;
}
case SH_CIRCLE:
{
int radius = static_cast<const SHAPE_CIRCLE*>( shape.get() )->GetRadius();
m_gal->DrawCircle( shape->Centre(), radius );
break;
}
default:
break;
}
}
// Draw text
const PCB_TEXT& text = aDimension->Text();
VECTOR2D position( text.GetTextPos().x, text.GetTextPos().y );
if( outline_mode )
m_gal->SetLineWidth( m_pcbSettings.m_outlineWidth );
else
m_gal->SetLineWidth( getLineThickness( text.GetEffectiveTextPenWidth() ) );
m_gal->SetTextAttributes( &text );
m_gal->StrokeText( text.GetShownText(), position, text.GetTextAngle().AsRadians() );
}
void PCB_PAINTER::draw( const PCB_TARGET* aTarget )
{
const COLOR4D& strokeColor = m_pcbSettings.GetColor( aTarget, aTarget->GetLayer() );
VECTOR2D position( aTarget->GetPosition() );
double size, radius;
m_gal->SetLineWidth( getLineThickness( aTarget->GetWidth() ) );
m_gal->SetStrokeColor( strokeColor );
m_gal->SetIsFill( false );
m_gal->SetIsStroke( true );
m_gal->Save();
m_gal->Translate( position );
if( aTarget->GetShape() )
{
// shape x
m_gal->Rotate( M_PI / 4.0 );
size = 2.0 * aTarget->GetSize() / 3.0;
radius = aTarget->GetSize() / 2.0;
}
else
{
// shape +
size = aTarget->GetSize() / 2.0;
radius = aTarget->GetSize() / 3.0;
}
m_gal->DrawLine( VECTOR2D( -size, 0.0 ), VECTOR2D( size, 0.0 ) );
m_gal->DrawLine( VECTOR2D( 0.0, -size ), VECTOR2D( 0.0, size ) );
m_gal->DrawCircle( VECTOR2D( 0.0, 0.0 ), radius );
m_gal->Restore();
}
void PCB_PAINTER::draw( const PCB_MARKER* aMarker, int aLayer )
{
bool isShadow = aLayer == LAYER_MARKER_SHADOWS;
// Don't paint shadows for invisible markers.
// It would be nice to do this through layer dependencies but we can't do an "or" there today
if( isShadow && aMarker->GetBoard()
&& !aMarker->GetBoard()->IsElementVisible( aMarker->GetColorLayer() ) )
{
return;
}
const_cast<PCB_MARKER*>( aMarker )->SetZoom( 1.0 / sqrt( m_gal->GetZoomFactor() ) );
SHAPE_LINE_CHAIN polygon;
aMarker->ShapeToPolygon( polygon );
COLOR4D color = m_pcbSettings.GetColor( aMarker, isShadow ? LAYER_MARKER_SHADOWS
: aMarker->GetColorLayer() );
m_gal->Save();
m_gal->Translate( aMarker->GetPosition() );
if( isShadow )
{
m_gal->SetStrokeColor( color );
m_gal->SetIsStroke( true );
m_gal->SetLineWidth( aMarker->MarkerScale() );
}
else
{
m_gal->SetFillColor( color );
m_gal->SetIsFill( true );
}
m_gal->DrawPolygon( polygon );
m_gal->Restore();
}
const double PCB_RENDER_SETTINGS::MAX_FONT_SIZE = Millimeter2iu( 10.0 );