kicad/libs/kimath/include/geometry/shape_index.h

381 lines
9.8 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2013 CERN
* @author Jacobo Aragunde Pérez
* @author Tomasz Wlostowski <tomasz.wlostowski@cern.ch>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#ifndef __SHAPE_INDEX_H
#define __SHAPE_INDEX_H
#include <vector>
#include <geometry/rtree.h>
#include <geometry/shape.h>
#include <math/box2.h>
/**
* shapeFunctor template function
*
* It is used by SHAPE_INDEX to get a SHAPE* from another type.
* By default relies on T::GetShape() method, should be specialized if the T object
* doesn't allow that method.
* @param aItem generic T object
* @return a SHAPE* object equivalent to object.
*/
template <class T>
static const SHAPE* shapeFunctor( T aItem )
{
return aItem->Shape();
}
/**
* boundingBox template method
*
* It is used by SHAPE_INDEX to get the bounding box of a generic T object.
* By default relies on T::BBox() method, should be specialized if the T object
* doesn't allow that method.
* @param aObject generic T object
* @return a BOX2I object containing the bounding box of the T object.
*/
template <class T>
BOX2I boundingBox( T aObject )
{
return shapeFunctor( aObject )->BBox();
}
/**
* acceptVisitor template method
*
* It is used by SHAPE_INDEX to implement Accept().
* By default relies on V::operation() redefinition, should be specialized if V class
* doesn't have its () operation defined to accept T objects.
* @param aObject generic T object
* @param aVisitor V visitor object
*/
template <class T, class V>
void acceptVisitor( T aObject, V aVisitor )
{
aVisitor( aObject );
}
/**
* collide template method
*
* It is used by SHAPE_INDEX to implement Query().
* By default relies on T::Collide(U) method, should be specialized if the T object
* doesn't allow that method.
* @param aObject generic T object
* @param aAnotherObject generic U object
* @param aMinDistance minimum collision distance
* @return if object and anotherObject collide
*/
template <class T, class U>
bool collide( T aObject, U aAnotherObject, int aMinDistance )
{
return shapeFunctor( aObject )->Collide( aAnotherObject, aMinDistance );
}
template <class T, class V>
bool queryCallback( T aShape, void* aContext )
{
V* visitor = (V*) aContext;
acceptVisitor<T, V>( aShape, *visitor );
return true;
}
template <class T = SHAPE*>
class SHAPE_INDEX
{
public:
class Iterator
{
private:
typedef typename RTree<T, int, 2, double>::Iterator RTreeIterator;
RTreeIterator iterator;
/**
* Function Init()
*
* Setup the internal tree iterator.
* @param aTree pointer to a RTREE object
*/
void Init( RTree<T, int, 2, double>* aTree )
{
aTree->GetFirst( iterator );
}
public:
/**
* Iterator constructor
*
* Creates an iterator for the index object
* @param aIndex SHAPE_INDEX object to iterate
*/
Iterator( SHAPE_INDEX* aIndex )
{
Init( aIndex->m_tree );
}
/**
* Operator * (prefix)
*
* Returns the next data element.
*/
T operator*()
{
return *iterator;
}
/**
* Operator ++ (prefix)
*
* Shifts the iterator to the next element.
*/
bool operator++()
{
return ++iterator;
}
/**
* Operator ++ (postfix)
*
* Shifts the iterator to the next element.
*/
bool operator++( int )
{
return ++iterator;
}
/**
* Function IsNull()
*
* Checks if the iterator has reached the end.
* @return true if it is in an invalid position (data finished)
*/
bool IsNull()
{
return iterator.IsNull();
}
/**
* Function IsNotNull()
*
* Checks if the iterator has not reached the end.
* @return true if it is in an valid position (data not finished)
*/
bool IsNotNull()
{
return iterator.IsNotNull();
}
/**
* Function Next()
*
* Returns the current element of the iterator and moves to the next
* position.
* @return SHAPE object pointed by the iterator before moving to the next position.
*/
T Next()
{
T object = *iterator;
++iterator;
return object;
}
};
SHAPE_INDEX();
~SHAPE_INDEX();
/**
* Function Add()
*
* Adds a SHAPE to the index.
* @param aShape is the new SHAPE.
*/
void Add( T aShape );
/**
* Adds a shape with alternate BBox
* @param aShape Shape (Item) to add
* @param aBbox alternate bounding box. This should be a subset of the item's bbox
*/
void Add( T aShape, const BOX2I& aBbox );
/**
* Function Remove()
*
* Removes a SHAPE to the index.
* @param aShape is the new SHAPE.
*/
void Remove( T aShape );
/**
* Function RemoveAll()
*
* Removes all the contents of the index.
*/
void RemoveAll();
/**
* Function Accept()
*
* Accepts a visitor for every SHAPE object contained in this INDEX.
* @param aVisitor Visitor object to be run
*/
template <class V>
void Accept( V aVisitor )
{
Iterator iter = this->Begin();
while( !iter.IsNull() )
{
T shape = *iter;
acceptVisitor( shape, aVisitor );
iter++;
}
}
/**
* Function Reindex()
*
* Rebuilds the index. This should be used if the geometry of the objects
* contained by the index has changed.
*/
void Reindex();
/**
* Function Query()
*
* Runs a callback on every SHAPE object contained in the bounding box of (shape).
* @param aShape shape to search against
* @param aMinDistance distance threshold
* @param aVisitor object to be invoked on every object contained in the search area.
*/
template <class V>
int Query( const SHAPE *aShape, int aMinDistance, V& aVisitor, bool aExact )
{
BOX2I box = aShape->BBox();
box.Inflate( aMinDistance );
int min[2] = { box.GetX(), box.GetY() };
int max[2] = { box.GetRight(), box.GetBottom() };
return this->m_tree->Search( min, max, aVisitor );
}
/**
* Function Begin()
*
* Creates an iterator for the current index object
* @return iterator
*/
Iterator Begin();
private:
RTree<T, int, 2, double>* m_tree;
};
/*
* Class members implementation
*/
template <class T>
SHAPE_INDEX<T>::SHAPE_INDEX()
{
this->m_tree = new RTree<T, int, 2, double>();
}
template <class T>
SHAPE_INDEX<T>::~SHAPE_INDEX()
{
delete this->m_tree;
}
template <class T>
void SHAPE_INDEX<T>::Add( T aShape, const BOX2I& aBbox )
{
int min[2] = { aBbox.GetX(), aBbox.GetY() };
int max[2] = { aBbox.GetRight(), aBbox.GetBottom() };
this->m_tree->Insert( min, max, aShape );
}
template <class T>
void SHAPE_INDEX<T>::Add( T aShape )
{
BOX2I box = boundingBox( aShape );
int min[2] = { box.GetX(), box.GetY() };
int max[2] = { box.GetRight(), box.GetBottom() };
this->m_tree->Insert( min, max, aShape );
}
template <class T>
void SHAPE_INDEX<T>::Remove( T aShape )
{
BOX2I box = boundingBox( aShape );
int min[2] = { box.GetX(), box.GetY() };
int max[2] = { box.GetRight(), box.GetBottom() };
this->m_tree->Remove( min, max, aShape );
}
template <class T>
void SHAPE_INDEX<T>::RemoveAll()
{
this->m_tree->RemoveAll();
}
template <class T>
void SHAPE_INDEX<T>::Reindex()
{
RTree<T, int, 2, double>* newTree;
newTree = new RTree<T, int, 2, double>();
Iterator iter = this->Begin();
while( !iter.IsNull() )
{
T shape = *iter;
BOX2I box = boundingBox( shape );
int min[2] = { box.GetX(), box.GetY() };
int max[2] = { box.GetRight(), box.GetBottom() };
newTree->Insert( min, max, shape );
iter++;
}
delete this->m_tree;
this->m_tree = newTree;
}
template <class T>
typename SHAPE_INDEX<T>::Iterator SHAPE_INDEX<T>::Begin()
{
return Iterator( this );
}
#endif