kicad/pcbnew/zone_filling_algorithm.cpp

359 lines
13 KiB
C++

/* filling_zone_algorithm:
* Algos used to fill a zone defined by a polygon and a filling starting point
*/
#include <algorithm> // sort
#include "fctsys.h"
#include "common.h"
#include "pcbnew.h"
#include "autorout.h"
#include "zones.h"
#include "cell.h"
#include "trigo.h"
#include "protos.h"
/* Local functions */
/* Local variables */
/***********************************************************/
int ZONE_CONTAINER::BuildFilledPolysListData( BOARD* aPcb )
/***********************************************************/
/** function BuildFilledPolysListData
* Build m_FilledPolysList data from real outlines (m_Poly)
* in order to have drawable (and plottable) filled polygons
* drawable filled polygons are polygons without hole
* @param aPcb: the current board (can be NULL for non copper zones)
* @return number of polygons
* This function does not add holes for pads and tracks but calls
* AddClearanceAreasPolygonsToPolysList() to do that for copper layers
*/
{
m_FilledPolysList.clear();
/* convert outlines + holes to outlines without holes (adding extra segments if necessary)
* m_Poly data is expected normalized, i.e. NormalizeAreaOutlines was used after building this zone
*/
if( GetNumCorners() <= 2 ) // malformed zone. Kbool does not like it ...
return 0;
m_Poly->MakeKboolPoly( -1, -1, NULL, true );
int count = 0;
while( m_Poly->GetKboolEngine()->StartPolygonGet() )
{
CPolyPt corner( 0, 0, false );
while( m_Poly->GetKboolEngine()->PolygonHasMorePoints() )
{
corner.x = (int) m_Poly->GetKboolEngine()->GetPolygonXPoint();
corner.y = (int) m_Poly->GetKboolEngine()->GetPolygonYPoint();
corner.end_contour = false;
m_FilledPolysList.push_back( corner );
count++;
}
corner.end_contour = true;
m_FilledPolysList.pop_back();
m_FilledPolysList.push_back( corner );
m_Poly->GetKboolEngine()->EndPolygonGet();
}
m_Poly->FreeKboolEngine();
/* For copper layers, we now must add holes in the Polygon list.
* holes are pads and tracks with their clearance area
*/
if( IsOnCopperLayer() )
AddClearanceAreasPolygonsToPolysList( aPcb );
if ( m_FillMode ) // if fill mode uses segments, create them:
Fill_Zone_Areas_With_Segments( (WinEDA_PcbFrame*) aPcb->m_PcbFrame );
return count;
}
// Sort function to build filled zones
static bool SortByXValues( const int& a, const int &b)
{
return a < b;
}
/***********************************************************************************/
int ZONE_CONTAINER::Fill_Zone_Areas_With_Segments( WinEDA_PcbFrame* aFrame )
/***********************************************************************************/
/** Function Fill_Zone_Areas_With_Segments()
* Fill sub areas in a zone with segments with m_ZoneMinThickness width
* A scan is made line per line, on the whole filled areas, with a step of m_ZoneMinThickness.
* all intersecting points with the horizontal infinite line and polygons to fill are calculated
* a list of SEGZONE items is built, line per line
* @param aFrame = reference to the main frame
* @return number of segments created
*/
{
int ics, ice;
int count = 0;
std::vector <int> x_coordinates;
bool error = false;
int istart, iend; // index od the starting and the endif corner of one filled area in m_FilledPolysList
int margin = m_ZoneMinThickness * 2 / 10;
margin = max (2, margin);
int step = m_ZoneMinThickness - margin;
step = max(step, 2);
// Read all filled areas in m_FilledPolysList
istart = 0;
int end_list = m_FilledPolysList.size()-1;
for( int ic = 0; ic <= end_list; ic++ )
{
CPolyPt* corner = &m_FilledPolysList[ic];
if ( corner->end_contour || (ic == end_list) )
{
iend = ic;
EDA_Rect rect = CalculateSubAreaBoundaryBox( istart, iend );
// Calculate the y limits of the zone
int refy = rect.GetY();
int endy = rect.GetBottom();
for( ; refy < endy; refy += step )
{
// find all intersection points of an infinite line with polyline sides
x_coordinates.clear();
for( ics = istart, ice = iend; ics <= iend; ice = ics, ics++ )
{
if ( m_FilledPolysList[ice].utility )
continue;
int seg_startX = m_FilledPolysList[ics].x;
int seg_startY = m_FilledPolysList[ics].y;
int seg_endX = m_FilledPolysList[ice].x;
int seg_endY = m_FilledPolysList[ice].y;
/* Trivial cases: skip if ref above or below the segment to test */
if( ( seg_startY > refy ) && (seg_endY > refy ) )
continue;
// segment below ref point, or its Y end pos on Y coordinate ref point: skip
if( ( seg_startY <= refy ) && (seg_endY <= refy ) )
continue;
/* at this point refy is between seg_startY and seg_endY
* see if an horizontal line at Y = refy is intersecting this segment
*/
// calculate the x position of the intersection of this segment and the infinite line
// this is more easier if we move the X,Y axis origin to the segment start point:
seg_endX -= seg_startX;
seg_endY -= seg_startY;
double newrefy = (double) (refy - seg_startY);
double intersec_x;
if ( seg_endY == 0 ) // horizontal segment on the same line: skip
continue;
// Now calculate the x intersection coordinate of the horizontal line at y = newrefy
// and the segment from (0,0) to (seg_endX,seg_endY)
// with the horizontal line at the new refy position
// the line slope is slope = seg_endY/seg_endX; and inv_slope = seg_endX/seg_endY
// and the x pos relative to the new origin is intersec_x = refy/slope = refy * inv_slope
// Note: because horizontal segments are already tested and skipped, slope exists (seg_end_y not O)
double inv_slope = (double)seg_endX / seg_endY;
intersec_x = newrefy * inv_slope;
x_coordinates.push_back((int) intersec_x + seg_startX);
}
// A line scan is finished: build list of segments
// Sort intersection points by increasing x value:
// So 2 consecutive points are the ends of a segment
sort( x_coordinates.begin(), x_coordinates.end(), SortByXValues );
// Create segments
if ( !error && ( x_coordinates.size() & 1 ) != 0 )
{ // An even number of coordinates is expected, because a segment has 2 ends.
// An if this algorithm always works, it must always find an even count.
wxString msg = wxT("Fill Zone: odd number of points at y = ");
msg << refy;
wxMessageBox(msg );
error = true;
}
if ( error ) break;
int iimax = x_coordinates.size()-1;
for (int ii = 0; ii < iimax; ii +=2 )
{
wxPoint seg_start, seg_end;
count++;
seg_start.x = x_coordinates[ii];
seg_start.y = refy;
seg_end.x = x_coordinates[ii+1];
seg_end.y = refy;
SEGZONE* segment = new SEGZONE( aFrame->GetBoard() );
segment->m_Start = seg_start;
segment->m_End = seg_end;
segment->SetNet( GetNet() );
segment->m_TimeStamp = m_TimeStamp;
segment->m_Width = m_ZoneMinThickness;
segment->SetLayer( GetLayer() );
aFrame->GetBoard()->Add( segment );
}
} //End examine segments in one area
if ( error ) break;
istart = iend + 1; // istart points the first corner of the next area
} // End find one end of outline
if ( error ) break;
} // End examine all areas
return count;
}
/********************************************/
int Propagation( WinEDA_PcbFrame* frame )
/********************************************/
/** Function Propagation()
* Used now only in autoplace calculations
* Uses the routing matrix to fill the cells within the zone
* Search and mark cells within the zone, and agree with DRC options.
* Requirements:
* Start from an initial point, to fill zone
* The zone must have no "copper island"
* Algorithm:
* If the current cell has a neightbour flagged as "cell in the zone", it
* become a cell in the zone
* The first point in the zone is the starting point
* 4 searches within the matrix are made:
* 1 - Left to right and top to bottom
* 2 - Right to left and top to bottom
* 3 - bottom to top and Right to left
* 4 - bottom to top and Left to right
* Given the current cell, for each search, we consider the 2 neightbour cells
* the previous cell on the same line and the previous cell on the same column.
*
* This funtion can request some iterations
* Iterations are made until no cell is added to the zone.
* @return: added cells count (i.e. which the attribute CELL_is_ZONE is set)
*/
{
int row, col, nn;
long current_cell, old_cell_H;
int long* pt_cell_V;
int nbpoints = 0;
#define NO_CELL_ZONE (HOLE | CELL_is_EDGE | CELL_is_ZONE)
wxString msg;
Affiche_1_Parametre( frame, 57, wxT( "Detect" ), msg, CYAN );
Affiche_1_Parametre( frame, -1, wxEmptyString, wxT( "1" ), CYAN );
// Alloc memory to handle 1 line or 1 colunmn on the routing matrix
nn = MAX( Nrows, Ncols ) * sizeof(*pt_cell_V);
pt_cell_V = (long*) MyMalloc( nn );
/* search 1 : from left to right and top to bottom */
memset( pt_cell_V, 0, nn );
for( row = 0; row < Nrows; row++ )
{
old_cell_H = 0;
for( col = 0; col < Ncols; col++ )
{
current_cell = GetCell( row, col, BOTTOM ) & NO_CELL_ZONE;
if( current_cell == 0 ) /* a free cell is found */
{
if( (old_cell_H & CELL_is_ZONE)
|| (pt_cell_V[col] & CELL_is_ZONE) )
{
OrCell( row, col, BOTTOM, CELL_is_ZONE );
current_cell = CELL_is_ZONE;
nbpoints++;
}
}
pt_cell_V[col] = old_cell_H = current_cell;
}
}
/* search 2 : from right to left and top to bottom */
Affiche_1_Parametre( frame, -1, wxEmptyString, wxT( "2" ), CYAN );
memset( pt_cell_V, 0, nn );
for( row = 0; row < Nrows; row++ )
{
old_cell_H = 0;
for( col = Ncols - 1; col >= 0; col-- )
{
current_cell = GetCell( row, col, BOTTOM ) & NO_CELL_ZONE;
if( current_cell == 0 ) /* a free cell is found */
{
if( (old_cell_H & CELL_is_ZONE)
|| (pt_cell_V[col] & CELL_is_ZONE) )
{
OrCell( row, col, BOTTOM, CELL_is_ZONE );
current_cell = CELL_is_ZONE;
nbpoints++;
}
}
pt_cell_V[col] = old_cell_H = current_cell;
}
}
/* search 3 : from bottom to top and right to left balayage */
Affiche_1_Parametre( frame, -1, wxEmptyString, wxT( "3" ), CYAN );
memset( pt_cell_V, 0, nn );
for( col = Ncols - 1; col >= 0; col-- )
{
old_cell_H = 0;
for( row = Nrows - 1; row >= 0; row-- )
{
current_cell = GetCell( row, col, BOTTOM ) & NO_CELL_ZONE;
if( current_cell == 0 ) /* a free cell is found */
{
if( (old_cell_H & CELL_is_ZONE)
|| (pt_cell_V[row] & CELL_is_ZONE) )
{
OrCell( row, col, BOTTOM, CELL_is_ZONE );
current_cell = CELL_is_ZONE;
nbpoints++;
}
}
pt_cell_V[row] = old_cell_H = current_cell;
}
}
/* search 4 : from bottom to top and left to right */
Affiche_1_Parametre( frame, -1, wxEmptyString, wxT( "4" ), CYAN );
memset( pt_cell_V, 0, nn );
for( col = 0; col < Ncols; col++ )
{
old_cell_H = 0;
for( row = Nrows - 1; row >= 0; row-- )
{
current_cell = GetCell( row, col, BOTTOM ) & NO_CELL_ZONE;
if( current_cell == 0 ) /* a free cell is found */
{
if( (old_cell_H & CELL_is_ZONE)
|| (pt_cell_V[row] & CELL_is_ZONE) )
{
OrCell( row, col, BOTTOM, CELL_is_ZONE );
current_cell = CELL_is_ZONE;
nbpoints++;
}
}
pt_cell_V[row] = old_cell_H = current_cell;
}
}
MyFree( pt_cell_V );
return nbpoints;
}