kicad/include/boost/polygon/detail/voronoi_predicates.hpp

1527 lines
63 KiB
C++

// Boost.Polygon library detail/voronoi_predicates.hpp header file
// Copyright Andrii Sydorchuk 2010-2012.
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// See http://www.boost.org for updates, documentation, and revision history.
#ifndef BOOST_POLYGON_DETAIL_VORONOI_PREDICATES
#define BOOST_POLYGON_DETAIL_VORONOI_PREDICATES
#include <utility>
#include "voronoi_robust_fpt.hpp"
namespace boost {
namespace polygon {
namespace detail {
// Predicate utilities. Operates with the coordinate types that could
// be converted to the 32-bit signed integer without precision loss.
template <typename CTYPE_TRAITS>
class voronoi_predicates {
public:
typedef typename CTYPE_TRAITS::int_type int_type;
typedef typename CTYPE_TRAITS::int_x2_type int_x2_type;
typedef typename CTYPE_TRAITS::uint_x2_type uint_x2_type;
typedef typename CTYPE_TRAITS::big_int_type big_int_type;
typedef typename CTYPE_TRAITS::fpt_type fpt_type;
typedef typename CTYPE_TRAITS::efpt_type efpt_type;
typedef typename CTYPE_TRAITS::ulp_cmp_type ulp_cmp_type;
typedef typename CTYPE_TRAITS::to_fpt_converter_type to_fpt_converter;
typedef typename CTYPE_TRAITS::to_efpt_converter_type to_efpt_converter;
enum {
ULPS = 64,
ULPSx2 = 128
};
template <typename Point>
static bool is_vertical(const Point& point1, const Point& point2) {
return point1.x() == point2.x();
}
template <typename Site>
static bool is_vertical(const Site& site) {
return is_vertical(site.point0(), site.point1());
}
// Compute robust cross_product: a1 * b2 - b1 * a2.
// It was mathematically proven that the result is correct
// with epsilon relative error equal to 1EPS.
static fpt_type robust_cross_product(int_x2_type a1_,
int_x2_type b1_,
int_x2_type a2_,
int_x2_type b2_) {
static to_fpt_converter to_fpt;
uint_x2_type a1 = static_cast<uint_x2_type>(is_neg(a1_) ? -a1_ : a1_);
uint_x2_type b1 = static_cast<uint_x2_type>(is_neg(b1_) ? -b1_ : b1_);
uint_x2_type a2 = static_cast<uint_x2_type>(is_neg(a2_) ? -a2_ : a2_);
uint_x2_type b2 = static_cast<uint_x2_type>(is_neg(b2_) ? -b2_ : b2_);
uint_x2_type l = a1 * b2;
uint_x2_type r = b1 * a2;
if (is_neg(a1_) ^ is_neg(b2_)) {
if (is_neg(a2_) ^ is_neg(b1_))
return (l > r) ? -to_fpt(l - r) : to_fpt(r - l);
else
return -to_fpt(l + r);
} else {
if (is_neg(a2_) ^ is_neg(b1_))
return to_fpt(l + r);
else
return (l < r) ? -to_fpt(r - l) : to_fpt(l - r);
}
}
typedef struct orientation_test {
public:
// Represents orientation test result.
enum Orientation {
RIGHT = -1,
COLLINEAR = 0,
LEFT = 1
};
// Value is a determinant of two vectors (e.g. x1 * y2 - x2 * y1).
// Return orientation based on the sign of the determinant.
template <typename T>
static Orientation eval(T value) {
if (is_zero(value)) return COLLINEAR;
return (is_neg(value)) ? RIGHT : LEFT;
}
static Orientation eval(int_x2_type dif_x1_,
int_x2_type dif_y1_,
int_x2_type dif_x2_,
int_x2_type dif_y2_) {
return eval(robust_cross_product(dif_x1_, dif_y1_, dif_x2_, dif_y2_));
}
template <typename Point>
static Orientation eval(const Point& point1,
const Point& point2,
const Point& point3) {
int_x2_type dx1 = static_cast<int_x2_type>(point1.x()) -
static_cast<int_x2_type>(point2.x());
int_x2_type dx2 = static_cast<int_x2_type>(point2.x()) -
static_cast<int_x2_type>(point3.x());
int_x2_type dy1 = static_cast<int_x2_type>(point1.y()) -
static_cast<int_x2_type>(point2.y());
int_x2_type dy2 = static_cast<int_x2_type>(point2.y()) -
static_cast<int_x2_type>(point3.y());
return eval(robust_cross_product(dx1, dy1, dx2, dy2));
}
} ot;
template <typename Point>
class point_comparison_predicate {
public:
typedef Point point_type;
bool operator()(const point_type& lhs, const point_type& rhs) const {
if (lhs.x() == rhs.x())
return lhs.y() < rhs.y();
return lhs.x() < rhs.x();
}
};
template <typename Site, typename Circle>
class event_comparison_predicate {
public:
typedef Site site_type;
typedef Circle circle_type;
bool operator()(const site_type& lhs, const site_type& rhs) const {
if (lhs.x0() != rhs.x0())
return lhs.x0() < rhs.x0();
if (!lhs.is_segment()) {
if (!rhs.is_segment())
return lhs.y0() < rhs.y0();
if (is_vertical(rhs))
return lhs.y0() <= rhs.y0();
return true;
} else {
if (is_vertical(rhs)) {
if (is_vertical(lhs))
return lhs.y0() < rhs.y0();
return false;
}
if (is_vertical(lhs))
return true;
if (lhs.y0() != rhs.y0())
return lhs.y0() < rhs.y0();
return ot::eval(lhs.point1(), lhs.point0(), rhs.point1()) == ot::LEFT;
}
}
bool operator()(const site_type& lhs, const circle_type& rhs) const {
typename ulp_cmp_type::Result xCmp =
ulp_cmp(to_fpt(lhs.x()), to_fpt(rhs.lower_x()), ULPS);
if (xCmp != ulp_cmp_type::EQUAL)
return xCmp == ulp_cmp_type::LESS;
typename ulp_cmp_type::Result yCmp =
ulp_cmp(to_fpt(lhs.y()), to_fpt(rhs.lower_y()), ULPS);
return yCmp == ulp_cmp_type::LESS;
}
bool operator()(const circle_type& lhs, const site_type& rhs) const {
typename ulp_cmp_type::Result xCmp =
ulp_cmp(to_fpt(lhs.lower_x()), to_fpt(rhs.x()), ULPS);
if (xCmp != ulp_cmp_type::EQUAL)
return xCmp == ulp_cmp_type::LESS;
typename ulp_cmp_type::Result yCmp =
ulp_cmp(to_fpt(lhs.lower_y()), to_fpt(rhs.y()), ULPS);
return yCmp == ulp_cmp_type::LESS;
}
bool operator()(const circle_type& lhs, const circle_type& rhs) const {
typename ulp_cmp_type::Result xCmp =
ulp_cmp(to_fpt(lhs.lower_x()), to_fpt(rhs.lower_x()), ULPSx2);
if (xCmp != ulp_cmp_type::EQUAL)
return xCmp == ulp_cmp_type::LESS;
typename ulp_cmp_type::Result yCmp =
ulp_cmp(to_fpt(lhs.lower_y()), to_fpt(rhs.lower_y()), ULPSx2);
return yCmp == ulp_cmp_type::LESS;
}
private:
ulp_cmp_type ulp_cmp;
to_fpt_converter to_fpt;
};
template <typename Site>
class distance_predicate {
public:
typedef Site site_type;
// Returns true if a horizontal line going through a new site intersects
// right arc at first, else returns false. If horizontal line goes
// through intersection point of the given two arcs returns false also.
bool operator()(const site_type& left_site,
const site_type& right_site,
const site_type& new_site) const {
if (!left_site.is_segment()) {
if (!right_site.is_segment()) {
return pp(left_site, right_site, new_site);
} else {
return ps(left_site, right_site, new_site, false);
}
} else {
if (!right_site.is_segment()) {
return ps(right_site, left_site, new_site, true);
} else {
return ss(left_site, right_site, new_site);
}
}
}
private:
// Represents the result of the epsilon robust predicate. If the
// result is undefined some further processing is usually required.
enum kPredicateResult {
LESS = -1,
UNDEFINED = 0,
MORE = 1
};
typedef typename Site::point_type point_type;
// Robust predicate, avoids using high-precision libraries.
// Returns true if a horizontal line going through the new point site
// intersects right arc at first, else returns false. If horizontal line
// goes through intersection point of the given two arcs returns false.
bool pp(const site_type& left_site,
const site_type& right_site,
const site_type& new_site) const {
const point_type& left_point = left_site.point0();
const point_type& right_point = right_site.point0();
const point_type& new_point = new_site.point0();
if (left_point.x() > right_point.x()) {
if (new_point.y() <= left_point.y())
return false;
} else if (left_point.x() < right_point.x()) {
if (new_point.y() >= right_point.y())
return true;
} else {
return static_cast<int_x2_type>(left_point.y()) +
static_cast<int_x2_type>(right_point.y()) <
static_cast<int_x2_type>(new_point.y()) * 2;
}
fpt_type dist1 = find_distance_to_point_arc(left_site, new_point);
fpt_type dist2 = find_distance_to_point_arc(right_site, new_point);
// The undefined ulp range is equal to 3EPS + 3EPS <= 6ULP.
return dist1 < dist2;
}
bool ps(const site_type& left_site, const site_type& right_site,
const site_type& new_site, bool reverse_order) const {
kPredicateResult fast_res = fast_ps(
left_site, right_site, new_site, reverse_order);
if (fast_res != UNDEFINED)
return (fast_res == LESS);
fpt_type dist1 = find_distance_to_point_arc(
left_site, new_site.point0());
fpt_type dist2 = find_distance_to_segment_arc(
right_site, new_site.point0());
// The undefined ulp range is equal to 3EPS + 7EPS <= 10ULP.
return reverse_order ^ (dist1 < dist2);
}
bool ss(const site_type& left_site,
const site_type& right_site,
const site_type& new_site) const {
// Handle temporary segment sites.
if (left_site.point0() == right_site.point0() &&
left_site.point1() == right_site.point1()) {
return ot::eval(left_site.point0(),
left_site.point1(),
new_site.point0()) == ot::LEFT;
}
fpt_type dist1 = find_distance_to_segment_arc(
left_site, new_site.point0());
fpt_type dist2 = find_distance_to_segment_arc(
right_site, new_site.point0());
// The undefined ulp range is equal to 7EPS + 7EPS <= 14ULP.
return dist1 < dist2;
}
fpt_type find_distance_to_point_arc(
const site_type& site, const point_type& point) const {
fpt_type dx = to_fpt(site.x()) - to_fpt(point.x());
fpt_type dy = to_fpt(site.y()) - to_fpt(point.y());
// The relative error is at most 3EPS.
return (dx * dx + dy * dy) / (to_fpt(2.0) * dx);
}
fpt_type find_distance_to_segment_arc(
const site_type& site, const point_type& point) const {
if (is_vertical(site)) {
return (to_fpt(site.x()) - to_fpt(point.x())) * to_fpt(0.5);
} else {
const point_type& segment0 = site.point0(true);
const point_type& segment1 = site.point1(true);
fpt_type a1 = to_fpt(segment1.x()) - to_fpt(segment0.x());
fpt_type b1 = to_fpt(segment1.y()) - to_fpt(segment0.y());
fpt_type k = get_sqrt(a1 * a1 + b1 * b1);
// Avoid subtraction while computing k.
if (!is_neg(b1)) {
k = to_fpt(1.0) / (b1 + k);
} else {
k = (k - b1) / (a1 * a1);
}
// The relative error is at most 7EPS.
return k * robust_cross_product(
static_cast<int_x2_type>(segment1.x()) -
static_cast<int_x2_type>(segment0.x()),
static_cast<int_x2_type>(segment1.y()) -
static_cast<int_x2_type>(segment0.y()),
static_cast<int_x2_type>(point.x()) -
static_cast<int_x2_type>(segment0.x()),
static_cast<int_x2_type>(point.y()) -
static_cast<int_x2_type>(segment0.y()));
}
}
kPredicateResult fast_ps(
const site_type& left_site, const site_type& right_site,
const site_type& new_site, bool reverse_order) const {
const point_type& site_point = left_site.point0();
const point_type& segment_start = right_site.point0(true);
const point_type& segment_end = right_site.point1(true);
const point_type& new_point = new_site.point0();
if (ot::eval(segment_start, segment_end, new_point) != ot::RIGHT)
return (!right_site.is_inverse()) ? LESS : MORE;
fpt_type dif_x = to_fpt(new_point.x()) - to_fpt(site_point.x());
fpt_type dif_y = to_fpt(new_point.y()) - to_fpt(site_point.y());
fpt_type a = to_fpt(segment_end.x()) - to_fpt(segment_start.x());
fpt_type b = to_fpt(segment_end.y()) - to_fpt(segment_start.y());
if (is_vertical(right_site)) {
if (new_point.y() < site_point.y() && !reverse_order)
return MORE;
else if (new_point.y() > site_point.y() && reverse_order)
return LESS;
return UNDEFINED;
} else {
typename ot::Orientation orientation = ot::eval(
static_cast<int_x2_type>(segment_end.x()) -
static_cast<int_x2_type>(segment_start.x()),
static_cast<int_x2_type>(segment_end.y()) -
static_cast<int_x2_type>(segment_start.y()),
static_cast<int_x2_type>(new_point.x()) -
static_cast<int_x2_type>(site_point.x()),
static_cast<int_x2_type>(new_point.y()) -
static_cast<int_x2_type>(site_point.y()));
if (orientation == ot::LEFT) {
if (!right_site.is_inverse())
return reverse_order ? LESS : UNDEFINED;
return reverse_order ? UNDEFINED : MORE;
}
}
fpt_type fast_left_expr = a * (dif_y + dif_x) * (dif_y - dif_x);
fpt_type fast_right_expr = (to_fpt(2.0) * b) * dif_x * dif_y;
typename ulp_cmp_type::Result expr_cmp =
ulp_cmp(fast_left_expr, fast_right_expr, 4);
if (expr_cmp != ulp_cmp_type::EQUAL) {
if ((expr_cmp == ulp_cmp_type::MORE) ^ reverse_order)
return reverse_order ? LESS : MORE;
return UNDEFINED;
}
return UNDEFINED;
}
private:
ulp_cmp_type ulp_cmp;
to_fpt_converter to_fpt;
};
template <typename Node>
class node_comparison_predicate {
public:
typedef Node node_type;
typedef typename Node::site_type site_type;
typedef typename site_type::coordinate_type coordinate_type;
typedef distance_predicate<site_type> distance_predicate_type;
// Compares nodes in the balanced binary search tree. Nodes are
// compared based on the y coordinates of the arcs intersection points.
// Nodes with less y coordinate of the intersection point go first.
// Comparison is only called during the new site events processing.
// That's why one of the nodes will always lie on the sweepline and may
// be represented as a straight horizontal line.
bool operator() (const node_type& node1,
const node_type& node2) const {
// Get x coordinate of the rightmost site from both nodes.
const site_type& site1 = get_comparison_site(node1);
const site_type& site2 = get_comparison_site(node2);
if (site1.x() < site2.x()) {
// The second node contains a new site.
return predicate_(node1.left_site(), node1.right_site(), site2);
} else if (site1.x() > site2.x()) {
// The first node contains a new site.
return !predicate_(node2.left_site(), node2.right_site(), site1);
} else {
// This checks were evaluated experimentally.
if (site1.sorted_index() == site2.sorted_index()) {
// Both nodes are new (inserted during same site event processing).
return get_comparison_y(node1) < get_comparison_y(node2);
} else if (site1.sorted_index() < site2.sorted_index()) {
std::pair<coordinate_type, int> y1 = get_comparison_y(node1, false);
std::pair<coordinate_type, int> y2 = get_comparison_y(node2, true);
if (y1.first != y2.first) return y1.first < y2.first;
return (!site1.is_segment()) ? (y1.second < 0) : false;
} else {
std::pair<coordinate_type, int> y1 = get_comparison_y(node1, true);
std::pair<coordinate_type, int> y2 = get_comparison_y(node2, false);
if (y1.first != y2.first) return y1.first < y2.first;
return (!site2.is_segment()) ? (y2.second > 0) : true;
}
}
}
private:
// Get the newer site.
const site_type& get_comparison_site(const node_type& node) const {
if (node.left_site().sorted_index() > node.right_site().sorted_index()) {
return node.left_site();
}
return node.right_site();
}
// Get comparison pair: y coordinate and direction of the newer site.
std::pair<coordinate_type, int> get_comparison_y(
const node_type& node, bool is_new_node = true) const {
if (node.left_site().sorted_index() ==
node.right_site().sorted_index()) {
return std::make_pair(node.left_site().y(), 0);
}
if (node.left_site().sorted_index() > node.right_site().sorted_index()) {
if (!is_new_node &&
node.left_site().is_segment() &&
is_vertical(node.left_site())) {
return std::make_pair(node.left_site().y1(), 1);
}
return std::make_pair(node.left_site().y(), 1);
}
return std::make_pair(node.right_site().y(), -1);
}
distance_predicate_type predicate_;
};
template <typename Site>
class circle_existence_predicate {
public:
typedef typename Site::point_type point_type;
typedef Site site_type;
bool ppp(const site_type& site1,
const site_type& site2,
const site_type& site3) const {
return ot::eval(site1.point0(), site2.point0(), site3.point0()) ==
ot::RIGHT;
}
bool pps(const site_type& site1,
const site_type& site2,
const site_type& site3,
int segment_index) const {
if (segment_index != 2) {
typename ot::Orientation orient1 = ot::eval(site1.point0(),
site2.point0(), site3.point0(true));
typename ot::Orientation orient2 = ot::eval(site1.point0(),
site2.point0(), site3.point1(true));
if (segment_index == 1 && site1.x0() >= site2.x0()) {
if (orient1 != ot::RIGHT)
return false;
} else if (segment_index == 3 && site2.x0() >= site1.x0()) {
if (orient2 != ot::RIGHT)
return false;
} else if (orient1 != ot::RIGHT && orient2 != ot::RIGHT) {
return false;
}
} else {
if (site3.point0(true) == site1.point0() &&
site3.point1(true) == site2.point0())
return false;
}
return true;
}
bool pss(const site_type& site1,
const site_type& site2,
const site_type& site3,
int point_index) const {
if (site2.point0() == site3.point0() &&
site2.point1() == site3.point1()) {
return false;
}
if (point_index == 2) {
if (!site2.is_inverse() && site3.is_inverse())
return false;
if (site2.is_inverse() == site3.is_inverse() &&
ot::eval(site2.point0(true),
site1.point0(),
site3.point1(true)) != ot::RIGHT)
return false;
}
return true;
}
bool sss(const site_type& site1,
const site_type& site2,
const site_type& site3) const {
if (site1.point0() == site2.point0() && site1.point1() == site2.point1())
return false;
if (site2.point0() == site3.point0() && site2.point1() == site3.point1())
return false;
return true;
}
};
template <typename Site, typename Circle>
class mp_circle_formation_functor {
public:
typedef typename Site::point_type point_type;
typedef Site site_type;
typedef Circle circle_type;
typedef robust_sqrt_expr<big_int_type, efpt_type, to_efpt_converter>
robust_sqrt_expr_type;
void ppp(const site_type& site1,
const site_type& site2,
const site_type& site3,
circle_type& circle,
bool recompute_c_x = true,
bool recompute_c_y = true,
bool recompute_lower_x = true) {
big_int_type dif_x[3], dif_y[3], sum_x[2], sum_y[2];
dif_x[0] = static_cast<int_x2_type>(site1.x()) -
static_cast<int_x2_type>(site2.x());
dif_x[1] = static_cast<int_x2_type>(site2.x()) -
static_cast<int_x2_type>(site3.x());
dif_x[2] = static_cast<int_x2_type>(site1.x()) -
static_cast<int_x2_type>(site3.x());
dif_y[0] = static_cast<int_x2_type>(site1.y()) -
static_cast<int_x2_type>(site2.y());
dif_y[1] = static_cast<int_x2_type>(site2.y()) -
static_cast<int_x2_type>(site3.y());
dif_y[2] = static_cast<int_x2_type>(site1.y()) -
static_cast<int_x2_type>(site3.y());
sum_x[0] = static_cast<int_x2_type>(site1.x()) +
static_cast<int_x2_type>(site2.x());
sum_x[1] = static_cast<int_x2_type>(site2.x()) +
static_cast<int_x2_type>(site3.x());
sum_y[0] = static_cast<int_x2_type>(site1.y()) +
static_cast<int_x2_type>(site2.y());
sum_y[1] = static_cast<int_x2_type>(site2.y()) +
static_cast<int_x2_type>(site3.y());
fpt_type inv_denom = to_fpt(0.5) / to_fpt(static_cast<big_int_type>(
dif_x[0] * dif_y[1] - dif_x[1] * dif_y[0]));
big_int_type numer1 = dif_x[0] * sum_x[0] + dif_y[0] * sum_y[0];
big_int_type numer2 = dif_x[1] * sum_x[1] + dif_y[1] * sum_y[1];
if (recompute_c_x || recompute_lower_x) {
big_int_type c_x = numer1 * dif_y[1] - numer2 * dif_y[0];
circle.x(to_fpt(c_x) * inv_denom);
if (recompute_lower_x) {
// Evaluate radius of the circle.
big_int_type sqr_r = (dif_x[0] * dif_x[0] + dif_y[0] * dif_y[0]) *
(dif_x[1] * dif_x[1] + dif_y[1] * dif_y[1]) *
(dif_x[2] * dif_x[2] + dif_y[2] * dif_y[2]);
fpt_type r = get_sqrt(to_fpt(sqr_r));
// If c_x >= 0 then lower_x = c_x + r,
// else lower_x = (c_x * c_x - r * r) / (c_x - r).
// To guarantee epsilon relative error.
if (!is_neg(circle.x())) {
if (!is_neg(inv_denom)) {
circle.lower_x(circle.x() + r * inv_denom);
} else {
circle.lower_x(circle.x() - r * inv_denom);
}
} else {
big_int_type numer = c_x * c_x - sqr_r;
fpt_type lower_x = to_fpt(numer) * inv_denom / (to_fpt(c_x) + r);
circle.lower_x(lower_x);
}
}
}
if (recompute_c_y) {
big_int_type c_y = numer2 * dif_x[0] - numer1 * dif_x[1];
circle.y(to_fpt(c_y) * inv_denom);
}
}
// Recompute parameters of the circle event using high-precision library.
void pps(const site_type& site1,
const site_type& site2,
const site_type& site3,
int segment_index,
circle_type& c_event,
bool recompute_c_x = true,
bool recompute_c_y = true,
bool recompute_lower_x = true) {
big_int_type cA[4], cB[4];
big_int_type line_a = static_cast<int_x2_type>(site3.point1(true).y()) -
static_cast<int_x2_type>(site3.point0(true).y());
big_int_type line_b = static_cast<int_x2_type>(site3.point0(true).x()) -
static_cast<int_x2_type>(site3.point1(true).x());
big_int_type segm_len = line_a * line_a + line_b * line_b;
big_int_type vec_x = static_cast<int_x2_type>(site2.y()) -
static_cast<int_x2_type>(site1.y());
big_int_type vec_y = static_cast<int_x2_type>(site1.x()) -
static_cast<int_x2_type>(site2.x());
big_int_type sum_x = static_cast<int_x2_type>(site1.x()) +
static_cast<int_x2_type>(site2.x());
big_int_type sum_y = static_cast<int_x2_type>(site1.y()) +
static_cast<int_x2_type>(site2.y());
big_int_type teta = line_a * vec_x + line_b * vec_y;
big_int_type denom = vec_x * line_b - vec_y * line_a;
big_int_type dif0 = static_cast<int_x2_type>(site3.point1().y()) -
static_cast<int_x2_type>(site1.y());
big_int_type dif1 = static_cast<int_x2_type>(site1.x()) -
static_cast<int_x2_type>(site3.point1().x());
big_int_type A = line_a * dif1 - line_b * dif0;
dif0 = static_cast<int_x2_type>(site3.point1().y()) -
static_cast<int_x2_type>(site2.y());
dif1 = static_cast<int_x2_type>(site2.x()) -
static_cast<int_x2_type>(site3.point1().x());
big_int_type B = line_a * dif1 - line_b * dif0;
big_int_type sum_AB = A + B;
if (is_zero(denom)) {
big_int_type numer = teta * teta - sum_AB * sum_AB;
big_int_type denom = teta * sum_AB;
cA[0] = denom * sum_x * 2 + numer * vec_x;
cB[0] = segm_len;
cA[1] = denom * sum_AB * 2 + numer * teta;
cB[1] = 1;
cA[2] = denom * sum_y * 2 + numer * vec_y;
fpt_type inv_denom = to_fpt(1.0) / to_fpt(denom);
if (recompute_c_x)
c_event.x(to_fpt(0.25) * to_fpt(cA[0]) * inv_denom);
if (recompute_c_y)
c_event.y(to_fpt(0.25) * to_fpt(cA[2]) * inv_denom);
if (recompute_lower_x) {
c_event.lower_x(to_fpt(0.25) * to_fpt(sqrt_expr_.eval2(cA, cB)) *
inv_denom / get_sqrt(to_fpt(segm_len)));
}
return;
}
big_int_type det = (teta * teta + denom * denom) * A * B * 4;
fpt_type inv_denom_sqr = to_fpt(1.0) / to_fpt(denom);
inv_denom_sqr *= inv_denom_sqr;
if (recompute_c_x || recompute_lower_x) {
cA[0] = sum_x * denom * denom + teta * sum_AB * vec_x;
cB[0] = 1;
cA[1] = (segment_index == 2) ? -vec_x : vec_x;
cB[1] = det;
if (recompute_c_x) {
c_event.x(to_fpt(0.5) * to_fpt(sqrt_expr_.eval2(cA, cB)) *
inv_denom_sqr);
}
}
if (recompute_c_y || recompute_lower_x) {
cA[2] = sum_y * denom * denom + teta * sum_AB * vec_y;
cB[2] = 1;
cA[3] = (segment_index == 2) ? -vec_y : vec_y;
cB[3] = det;
if (recompute_c_y) {
c_event.y(to_fpt(0.5) * to_fpt(sqrt_expr_.eval2(&cA[2], &cB[2])) *
inv_denom_sqr);
}
}
if (recompute_lower_x) {
cB[0] = cB[0] * segm_len;
cB[1] = cB[1] * segm_len;
cA[2] = sum_AB * (denom * denom + teta * teta);
cB[2] = 1;
cA[3] = (segment_index == 2) ? -teta : teta;
cB[3] = det;
c_event.lower_x(to_fpt(0.5) * to_fpt(sqrt_expr_.eval4(cA, cB)) *
inv_denom_sqr / get_sqrt(to_fpt(segm_len)));
}
}
// Recompute parameters of the circle event using high-precision library.
void pss(const site_type& site1,
const site_type& site2,
const site_type& site3,
int point_index,
circle_type& c_event,
bool recompute_c_x = true,
bool recompute_c_y = true,
bool recompute_lower_x = true) {
big_int_type a[2], b[2], c[2], cA[4], cB[4];
const point_type& segm_start1 = site2.point1(true);
const point_type& segm_end1 = site2.point0(true);
const point_type& segm_start2 = site3.point0(true);
const point_type& segm_end2 = site3.point1(true);
a[0] = static_cast<int_x2_type>(segm_end1.x()) -
static_cast<int_x2_type>(segm_start1.x());
b[0] = static_cast<int_x2_type>(segm_end1.y()) -
static_cast<int_x2_type>(segm_start1.y());
a[1] = static_cast<int_x2_type>(segm_end2.x()) -
static_cast<int_x2_type>(segm_start2.x());
b[1] = static_cast<int_x2_type>(segm_end2.y()) -
static_cast<int_x2_type>(segm_start2.y());
big_int_type orientation = a[1] * b[0] - a[0] * b[1];
if (is_zero(orientation)) {
fpt_type denom = to_fpt(2.0) * to_fpt(
static_cast<big_int_type>(a[0] * a[0] + b[0] * b[0]));
c[0] = b[0] * (static_cast<int_x2_type>(segm_start2.x()) -
static_cast<int_x2_type>(segm_start1.x())) -
a[0] * (static_cast<int_x2_type>(segm_start2.y()) -
static_cast<int_x2_type>(segm_start1.y()));
big_int_type dx = a[0] * (static_cast<int_x2_type>(site1.y()) -
static_cast<int_x2_type>(segm_start1.y())) -
b[0] * (static_cast<int_x2_type>(site1.x()) -
static_cast<int_x2_type>(segm_start1.x()));
big_int_type dy = b[0] * (static_cast<int_x2_type>(site1.x()) -
static_cast<int_x2_type>(segm_start2.x())) -
a[0] * (static_cast<int_x2_type>(site1.y()) -
static_cast<int_x2_type>(segm_start2.y()));
cB[0] = dx * dy;
cB[1] = 1;
if (recompute_c_y) {
cA[0] = b[0] * ((point_index == 2) ? 2 : -2);
cA[1] = a[0] * a[0] * (static_cast<int_x2_type>(segm_start1.y()) +
static_cast<int_x2_type>(segm_start2.y())) -
a[0] * b[0] * (static_cast<int_x2_type>(segm_start1.x()) +
static_cast<int_x2_type>(segm_start2.x()) -
static_cast<int_x2_type>(site1.x()) * 2) +
b[0] * b[0] * (static_cast<int_x2_type>(site1.y()) * 2);
fpt_type c_y = to_fpt(sqrt_expr_.eval2(cA, cB));
c_event.y(c_y / denom);
}
if (recompute_c_x || recompute_lower_x) {
cA[0] = a[0] * ((point_index == 2) ? 2 : -2);
cA[1] = b[0] * b[0] * (static_cast<int_x2_type>(segm_start1.x()) +
static_cast<int_x2_type>(segm_start2.x())) -
a[0] * b[0] * (static_cast<int_x2_type>(segm_start1.y()) +
static_cast<int_x2_type>(segm_start2.y()) -
static_cast<int_x2_type>(site1.y()) * 2) +
a[0] * a[0] * (static_cast<int_x2_type>(site1.x()) * 2);
if (recompute_c_x) {
fpt_type c_x = to_fpt(sqrt_expr_.eval2(cA, cB));
c_event.x(c_x / denom);
}
if (recompute_lower_x) {
cA[2] = is_neg(c[0]) ? -c[0] : c[0];
cB[2] = a[0] * a[0] + b[0] * b[0];
fpt_type lower_x = to_fpt(sqrt_expr_.eval3(cA, cB));
c_event.lower_x(lower_x / denom);
}
}
return;
}
c[0] = b[0] * segm_end1.x() - a[0] * segm_end1.y();
c[1] = a[1] * segm_end2.y() - b[1] * segm_end2.x();
big_int_type ix = a[0] * c[1] + a[1] * c[0];
big_int_type iy = b[0] * c[1] + b[1] * c[0];
big_int_type dx = ix - orientation * site1.x();
big_int_type dy = iy - orientation * site1.y();
if (is_zero(dx) && is_zero(dy)) {
fpt_type denom = to_fpt(orientation);
fpt_type c_x = to_fpt(ix) / denom;
fpt_type c_y = to_fpt(iy) / denom;
c_event = circle_type(c_x, c_y, c_x);
return;
}
big_int_type sign = ((point_index == 2) ? 1 : -1) *
(is_neg(orientation) ? 1 : -1);
cA[0] = a[1] * -dx + b[1] * -dy;
cA[1] = a[0] * -dx + b[0] * -dy;
cA[2] = sign;
cA[3] = 0;
cB[0] = a[0] * a[0] + b[0] * b[0];
cB[1] = a[1] * a[1] + b[1] * b[1];
cB[2] = a[0] * a[1] + b[0] * b[1];
cB[3] = (a[0] * dy - b[0] * dx) * (a[1] * dy - b[1] * dx) * -2;
fpt_type temp = to_fpt(
sqrt_expr_evaluator_pss4<big_int_type, efpt_type>(cA, cB));
fpt_type denom = temp * to_fpt(orientation);
if (recompute_c_y) {
cA[0] = b[1] * (dx * dx + dy * dy) - iy * (dx * a[1] + dy * b[1]);
cA[1] = b[0] * (dx * dx + dy * dy) - iy * (dx * a[0] + dy * b[0]);
cA[2] = iy * sign;
fpt_type cy = to_fpt(
sqrt_expr_evaluator_pss4<big_int_type, efpt_type>(cA, cB));
c_event.y(cy / denom);
}
if (recompute_c_x || recompute_lower_x) {
cA[0] = a[1] * (dx * dx + dy * dy) - ix * (dx * a[1] + dy * b[1]);
cA[1] = a[0] * (dx * dx + dy * dy) - ix * (dx * a[0] + dy * b[0]);
cA[2] = ix * sign;
if (recompute_c_x) {
fpt_type cx = to_fpt(
sqrt_expr_evaluator_pss4<big_int_type, efpt_type>(cA, cB));
c_event.x(cx / denom);
}
if (recompute_lower_x) {
cA[3] = orientation * (dx * dx + dy * dy) * (is_neg(temp) ? -1 : 1);
fpt_type lower_x = to_fpt(
sqrt_expr_evaluator_pss4<big_int_type, efpt_type>(cA, cB));
c_event.lower_x(lower_x / denom);
}
}
}
// Recompute parameters of the circle event using high-precision library.
void sss(const site_type& site1,
const site_type& site2,
const site_type& site3,
circle_type& c_event,
bool recompute_c_x = true,
bool recompute_c_y = true,
bool recompute_lower_x = true) {
big_int_type a[3], b[3], c[3], cA[4], cB[4];
// cA - corresponds to the cross product.
// cB - corresponds to the squared length.
a[0] = static_cast<int_x2_type>(site1.x1(true)) -
static_cast<int_x2_type>(site1.x0(true));
a[1] = static_cast<int_x2_type>(site2.x1(true)) -
static_cast<int_x2_type>(site2.x0(true));
a[2] = static_cast<int_x2_type>(site3.x1(true)) -
static_cast<int_x2_type>(site3.x0(true));
b[0] = static_cast<int_x2_type>(site1.y1(true)) -
static_cast<int_x2_type>(site1.y0(true));
b[1] = static_cast<int_x2_type>(site2.y1(true)) -
static_cast<int_x2_type>(site2.y0(true));
b[2] = static_cast<int_x2_type>(site3.y1(true)) -
static_cast<int_x2_type>(site3.y0(true));
c[0] = static_cast<int_x2_type>(site1.x0(true)) *
static_cast<int_x2_type>(site1.y1(true)) -
static_cast<int_x2_type>(site1.y0(true)) *
static_cast<int_x2_type>(site1.x1(true));
c[1] = static_cast<int_x2_type>(site2.x0(true)) *
static_cast<int_x2_type>(site2.y1(true)) -
static_cast<int_x2_type>(site2.y0(true)) *
static_cast<int_x2_type>(site2.x1(true));
c[2] = static_cast<int_x2_type>(site3.x0(true)) *
static_cast<int_x2_type>(site3.y1(true)) -
static_cast<int_x2_type>(site3.y0(true)) *
static_cast<int_x2_type>(site3.x1(true));
for (int i = 0; i < 3; ++i)
cB[i] = a[i] * a[i] + b[i] * b[i];
for (int i = 0; i < 3; ++i) {
int j = (i+1) % 3;
int k = (i+2) % 3;
cA[i] = a[j] * b[k] - a[k] * b[j];
}
fpt_type denom = to_fpt(sqrt_expr_.eval3(cA, cB));
if (recompute_c_y) {
for (int i = 0; i < 3; ++i) {
int j = (i+1) % 3;
int k = (i+2) % 3;
cA[i] = b[j] * c[k] - b[k] * c[j];
}
fpt_type c_y = to_fpt(sqrt_expr_.eval3(cA, cB));
c_event.y(c_y / denom);
}
if (recompute_c_x || recompute_lower_x) {
cA[3] = 0;
for (int i = 0; i < 3; ++i) {
int j = (i+1) % 3;
int k = (i+2) % 3;
cA[i] = a[j] * c[k] - a[k] * c[j];
if (recompute_lower_x) {
cA[3] = cA[3] + cA[i] * b[i];
}
}
if (recompute_c_x) {
fpt_type c_x = to_fpt(sqrt_expr_.eval3(cA, cB));
c_event.x(c_x / denom);
}
if (recompute_lower_x) {
cB[3] = 1;
fpt_type lower_x = to_fpt(sqrt_expr_.eval4(cA, cB));
c_event.lower_x(lower_x / denom);
}
}
}
private:
// Evaluates A[3] + A[0] * sqrt(B[0]) + A[1] * sqrt(B[1]) +
// A[2] * sqrt(B[3] * (sqrt(B[0] * B[1]) + B[2])).
template <typename _int, typename _fpt>
_fpt sqrt_expr_evaluator_pss4(_int *A, _int *B) {
_int cA[4], cB[4];
if (is_zero(A[3])) {
_fpt lh = sqrt_expr_.eval2(A, B);
cA[0] = 1;
cB[0] = B[0] * B[1];
cA[1] = B[2];
cB[1] = 1;
_fpt rh = sqrt_expr_.eval1(A+2, B+3) *
get_sqrt(sqrt_expr_.eval2(cA, cB));
if ((!is_neg(lh) && !is_neg(rh)) || (!is_pos(lh) && !is_pos(rh)))
return lh + rh;
cA[0] = A[0] * A[0] * B[0] + A[1] * A[1] * B[1] -
A[2] * A[2] * B[3] * B[2];
cB[0] = 1;
cA[1] = A[0] * A[1] * 2 - A[2] * A[2] * B[3];
cB[1] = B[0] * B[1];
_fpt numer = sqrt_expr_.eval2(cA, cB);
return numer / (lh - rh);
}
cA[0] = 1;
cB[0] = B[0] * B[1];
cA[1] = B[2];
cB[1] = 1;
_fpt rh = sqrt_expr_.eval1(A+2, B+3) * get_sqrt(sqrt_expr_.eval2(cA, cB));
cA[0] = A[0];
cB[0] = B[0];
cA[1] = A[1];
cB[1] = B[1];
cA[2] = A[3];
cB[2] = 1;
_fpt lh = sqrt_expr_.eval3(cA, cB);
if ((!is_neg(lh) && !is_neg(rh)) || (!is_pos(lh) && !is_pos(rh)))
return lh + rh;
cA[0] = A[3] * A[0] * 2;
cA[1] = A[3] * A[1] * 2;
cA[2] = A[0] * A[0] * B[0] + A[1] * A[1] * B[1] +
A[3] * A[3] - A[2] * A[2] * B[2] * B[3];
cA[3] = A[0] * A[1] * 2 - A[2] * A[2] * B[3];
cB[3] = B[0] * B[1];
_fpt numer = sqrt_expr_evaluator_pss3<_int, _fpt>(cA, cB);
return numer / (lh - rh);
}
template <typename _int, typename _fpt>
// Evaluates A[0] * sqrt(B[0]) + A[1] * sqrt(B[1]) +
// A[2] + A[3] * sqrt(B[0] * B[1]).
// B[3] = B[0] * B[1].
_fpt sqrt_expr_evaluator_pss3(_int *A, _int *B) {
_int cA[2], cB[2];
_fpt lh = sqrt_expr_.eval2(A, B);
_fpt rh = sqrt_expr_.eval2(A+2, B+2);
if ((!is_neg(lh) && !is_neg(rh)) || (!is_pos(lh) && !is_pos(rh)))
return lh + rh;
cA[0] = A[0] * A[0] * B[0] + A[1] * A[1] * B[1] -
A[2] * A[2] - A[3] * A[3] * B[0] * B[1];
cB[0] = 1;
cA[1] = (A[0] * A[1] - A[2] * A[3]) * 2;
cB[1] = B[3];
_fpt numer = sqrt_expr_.eval2(cA, cB);
return numer / (lh - rh);
}
robust_sqrt_expr_type sqrt_expr_;
to_fpt_converter to_fpt;
};
template <typename Site, typename Circle>
class lazy_circle_formation_functor {
public:
typedef robust_fpt<fpt_type> robust_fpt_type;
typedef robust_dif<robust_fpt_type> robust_dif_type;
typedef typename Site::point_type point_type;
typedef Site site_type;
typedef Circle circle_type;
typedef mp_circle_formation_functor<site_type, circle_type>
exact_circle_formation_functor_type;
void ppp(const site_type& site1,
const site_type& site2,
const site_type& site3,
circle_type& c_event) {
fpt_type dif_x1 = to_fpt(site1.x()) - to_fpt(site2.x());
fpt_type dif_x2 = to_fpt(site2.x()) - to_fpt(site3.x());
fpt_type dif_y1 = to_fpt(site1.y()) - to_fpt(site2.y());
fpt_type dif_y2 = to_fpt(site2.y()) - to_fpt(site3.y());
fpt_type orientation = robust_cross_product(
static_cast<int_x2_type>(site1.x()) -
static_cast<int_x2_type>(site2.x()),
static_cast<int_x2_type>(site2.x()) -
static_cast<int_x2_type>(site3.x()),
static_cast<int_x2_type>(site1.y()) -
static_cast<int_x2_type>(site2.y()),
static_cast<int_x2_type>(site2.y()) -
static_cast<int_x2_type>(site3.y()));
robust_fpt_type inv_orientation(to_fpt(0.5) / orientation, to_fpt(2.0));
fpt_type sum_x1 = to_fpt(site1.x()) + to_fpt(site2.x());
fpt_type sum_x2 = to_fpt(site2.x()) + to_fpt(site3.x());
fpt_type sum_y1 = to_fpt(site1.y()) + to_fpt(site2.y());
fpt_type sum_y2 = to_fpt(site2.y()) + to_fpt(site3.y());
fpt_type dif_x3 = to_fpt(site1.x()) - to_fpt(site3.x());
fpt_type dif_y3 = to_fpt(site1.y()) - to_fpt(site3.y());
robust_dif_type c_x, c_y;
c_x += robust_fpt_type(dif_x1 * sum_x1 * dif_y2, to_fpt(2.0));
c_x += robust_fpt_type(dif_y1 * sum_y1 * dif_y2, to_fpt(2.0));
c_x -= robust_fpt_type(dif_x2 * sum_x2 * dif_y1, to_fpt(2.0));
c_x -= robust_fpt_type(dif_y2 * sum_y2 * dif_y1, to_fpt(2.0));
c_y += robust_fpt_type(dif_x2 * sum_x2 * dif_x1, to_fpt(2.0));
c_y += robust_fpt_type(dif_y2 * sum_y2 * dif_x1, to_fpt(2.0));
c_y -= robust_fpt_type(dif_x1 * sum_x1 * dif_x2, to_fpt(2.0));
c_y -= robust_fpt_type(dif_y1 * sum_y1 * dif_x2, to_fpt(2.0));
robust_dif_type lower_x(c_x);
lower_x -= robust_fpt_type(get_sqrt(
(dif_x1 * dif_x1 + dif_y1 * dif_y1) *
(dif_x2 * dif_x2 + dif_y2 * dif_y2) *
(dif_x3 * dif_x3 + dif_y3 * dif_y3)), to_fpt(5.0));
c_event = circle_type(
c_x.dif().fpv() * inv_orientation.fpv(),
c_y.dif().fpv() * inv_orientation.fpv(),
lower_x.dif().fpv() * inv_orientation.fpv());
bool recompute_c_x = c_x.dif().ulp() > ULPS;
bool recompute_c_y = c_y.dif().ulp() > ULPS;
bool recompute_lower_x = lower_x.dif().ulp() > ULPS;
if (recompute_c_x || recompute_c_y || recompute_lower_x) {
exact_circle_formation_functor_.ppp(
site1, site2, site3, c_event,
recompute_c_x, recompute_c_y, recompute_lower_x);
}
}
void pps(const site_type& site1,
const site_type& site2,
const site_type& site3,
int segment_index,
circle_type& c_event) {
fpt_type line_a = to_fpt(site3.point1(true).y()) -
to_fpt(site3.point0(true).y());
fpt_type line_b = to_fpt(site3.point0(true).x()) -
to_fpt(site3.point1(true).x());
fpt_type vec_x = to_fpt(site2.y()) - to_fpt(site1.y());
fpt_type vec_y = to_fpt(site1.x()) - to_fpt(site2.x());
robust_fpt_type teta(robust_cross_product(
static_cast<int_x2_type>(site3.point1(true).y()) -
static_cast<int_x2_type>(site3.point0(true).y()),
static_cast<int_x2_type>(site3.point0(true).x()) -
static_cast<int_x2_type>(site3.point1(true).x()),
static_cast<int_x2_type>(site2.x()) -
static_cast<int_x2_type>(site1.x()),
static_cast<int_x2_type>(site2.y()) -
static_cast<int_x2_type>(site1.y())), to_fpt(1.0));
robust_fpt_type A(robust_cross_product(
static_cast<int_x2_type>(site3.point1(true).y()) -
static_cast<int_x2_type>(site3.point0(true).y()),
static_cast<int_x2_type>(site3.point0(true).x()) -
static_cast<int_x2_type>(site3.point1(true).x()),
static_cast<int_x2_type>(site3.point1().y()) -
static_cast<int_x2_type>(site1.y()),
static_cast<int_x2_type>(site1.x()) -
static_cast<int_x2_type>(site3.point1().x())), to_fpt(1.0));
robust_fpt_type B(robust_cross_product(
static_cast<int_x2_type>(site3.point1(true).y()) -
static_cast<int_x2_type>(site3.point0(true).y()),
static_cast<int_x2_type>(site3.point0(true).x()) -
static_cast<int_x2_type>(site3.point1(true).x()),
static_cast<int_x2_type>(site3.point1().y()) -
static_cast<int_x2_type>(site2.y()),
static_cast<int_x2_type>(site2.x()) -
static_cast<int_x2_type>(site3.point1().x())), to_fpt(1.0));
robust_fpt_type denom(robust_cross_product(
static_cast<int_x2_type>(site2.y()) -
static_cast<int_x2_type>(site1.y()),
static_cast<int_x2_type>(site1.x()) -
static_cast<int_x2_type>(site2.x()),
static_cast<int_x2_type>(site3.point1(true).y()) -
static_cast<int_x2_type>(site3.point0(true).y()),
static_cast<int_x2_type>(site3.point0(true).x()) -
static_cast<int_x2_type>(site3.point1(true).x())), to_fpt(1.0));
robust_fpt_type inv_segm_len(to_fpt(1.0) /
get_sqrt(line_a * line_a + line_b * line_b), to_fpt(3.0));
robust_dif_type t;
if (ot::eval(denom) == ot::COLLINEAR) {
t += teta / (robust_fpt_type(to_fpt(8.0)) * A);
t -= A / (robust_fpt_type(to_fpt(2.0)) * teta);
} else {
robust_fpt_type det = ((teta * teta + denom * denom) * A * B).sqrt();
if (segment_index == 2) {
t -= det / (denom * denom);
} else {
t += det / (denom * denom);
}
t += teta * (A + B) / (robust_fpt_type(to_fpt(2.0)) * denom * denom);
}
robust_dif_type c_x, c_y;
c_x += robust_fpt_type(to_fpt(0.5) * (to_fpt(site1.x()) +
to_fpt(site2.x())));
c_x += robust_fpt_type(vec_x) * t;
c_y += robust_fpt_type(to_fpt(0.5) * (to_fpt(site1.y()) +
to_fpt(site2.y())));
c_y += robust_fpt_type(vec_y) * t;
robust_dif_type r, lower_x(c_x);
r -= robust_fpt_type(line_a) * robust_fpt_type(site3.x0());
r -= robust_fpt_type(line_b) * robust_fpt_type(site3.y0());
r += robust_fpt_type(line_a) * c_x;
r += robust_fpt_type(line_b) * c_y;
if (r.pos().fpv() < r.neg().fpv())
r = -r;
lower_x += r * inv_segm_len;
c_event = circle_type(
c_x.dif().fpv(), c_y.dif().fpv(), lower_x.dif().fpv());
bool recompute_c_x = c_x.dif().ulp() > ULPS;
bool recompute_c_y = c_y.dif().ulp() > ULPS;
bool recompute_lower_x = lower_x.dif().ulp() > ULPS;
if (recompute_c_x || recompute_c_y || recompute_lower_x) {
exact_circle_formation_functor_.pps(
site1, site2, site3, segment_index, c_event,
recompute_c_x, recompute_c_y, recompute_lower_x);
}
}
void pss(const site_type& site1,
const site_type& site2,
const site_type& site3,
int point_index,
circle_type& c_event) {
const point_type& segm_start1 = site2.point1(true);
const point_type& segm_end1 = site2.point0(true);
const point_type& segm_start2 = site3.point0(true);
const point_type& segm_end2 = site3.point1(true);
fpt_type a1 = to_fpt(segm_end1.x()) - to_fpt(segm_start1.x());
fpt_type b1 = to_fpt(segm_end1.y()) - to_fpt(segm_start1.y());
fpt_type a2 = to_fpt(segm_end2.x()) - to_fpt(segm_start2.x());
fpt_type b2 = to_fpt(segm_end2.y()) - to_fpt(segm_start2.y());
bool recompute_c_x, recompute_c_y, recompute_lower_x;
robust_fpt_type orientation(robust_cross_product(
static_cast<int_x2_type>(segm_end1.y()) -
static_cast<int_x2_type>(segm_start1.y()),
static_cast<int_x2_type>(segm_end1.x()) -
static_cast<int_x2_type>(segm_start1.x()),
static_cast<int_x2_type>(segm_end2.y()) -
static_cast<int_x2_type>(segm_start2.y()),
static_cast<int_x2_type>(segm_end2.x()) -
static_cast<int_x2_type>(segm_start2.x())), to_fpt(1.0));
if (ot::eval(orientation) == ot::COLLINEAR) {
robust_fpt_type a(a1 * a1 + b1 * b1, to_fpt(2.0));
robust_fpt_type c(robust_cross_product(
static_cast<int_x2_type>(segm_end1.y()) -
static_cast<int_x2_type>(segm_start1.y()),
static_cast<int_x2_type>(segm_end1.x()) -
static_cast<int_x2_type>(segm_start1.x()),
static_cast<int_x2_type>(segm_start2.y()) -
static_cast<int_x2_type>(segm_start1.y()),
static_cast<int_x2_type>(segm_start2.x()) -
static_cast<int_x2_type>(segm_start1.x())), to_fpt(1.0));
robust_fpt_type det(
robust_cross_product(
static_cast<int_x2_type>(segm_end1.x()) -
static_cast<int_x2_type>(segm_start1.x()),
static_cast<int_x2_type>(segm_end1.y()) -
static_cast<int_x2_type>(segm_start1.y()),
static_cast<int_x2_type>(site1.x()) -
static_cast<int_x2_type>(segm_start1.x()),
static_cast<int_x2_type>(site1.y()) -
static_cast<int_x2_type>(segm_start1.y())) *
robust_cross_product(
static_cast<int_x2_type>(segm_end1.y()) -
static_cast<int_x2_type>(segm_start1.y()),
static_cast<int_x2_type>(segm_end1.x()) -
static_cast<int_x2_type>(segm_start1.x()),
static_cast<int_x2_type>(site1.y()) -
static_cast<int_x2_type>(segm_start2.y()),
static_cast<int_x2_type>(site1.x()) -
static_cast<int_x2_type>(segm_start2.x())),
to_fpt(3.0));
robust_dif_type t;
t -= robust_fpt_type(a1) * robust_fpt_type((
to_fpt(segm_start1.x()) + to_fpt(segm_start2.x())) * to_fpt(0.5) -
to_fpt(site1.x()));
t -= robust_fpt_type(b1) * robust_fpt_type((
to_fpt(segm_start1.y()) + to_fpt(segm_start2.y())) * to_fpt(0.5) -
to_fpt(site1.y()));
if (point_index == 2) {
t += det.sqrt();
} else {
t -= det.sqrt();
}
t /= a;
robust_dif_type c_x, c_y;
c_x += robust_fpt_type(to_fpt(0.5) * (
to_fpt(segm_start1.x()) + to_fpt(segm_start2.x())));
c_x += robust_fpt_type(a1) * t;
c_y += robust_fpt_type(to_fpt(0.5) * (
to_fpt(segm_start1.y()) + to_fpt(segm_start2.y())));
c_y += robust_fpt_type(b1) * t;
robust_dif_type lower_x(c_x);
if (is_neg(c)) {
lower_x -= robust_fpt_type(to_fpt(0.5)) * c / a.sqrt();
} else {
lower_x += robust_fpt_type(to_fpt(0.5)) * c / a.sqrt();
}
recompute_c_x = c_x.dif().ulp() > ULPS;
recompute_c_y = c_y.dif().ulp() > ULPS;
recompute_lower_x = lower_x.dif().ulp() > ULPS;
c_event =
circle_type(c_x.dif().fpv(), c_y.dif().fpv(), lower_x.dif().fpv());
} else {
robust_fpt_type sqr_sum1(get_sqrt(a1 * a1 + b1 * b1), to_fpt(2.0));
robust_fpt_type sqr_sum2(get_sqrt(a2 * a2 + b2 * b2), to_fpt(2.0));
robust_fpt_type a(robust_cross_product(
static_cast<int_x2_type>(segm_end1.x()) -
static_cast<int_x2_type>(segm_start1.x()),
static_cast<int_x2_type>(segm_end1.y()) -
static_cast<int_x2_type>(segm_start1.y()),
static_cast<int_x2_type>(segm_start2.y()) -
static_cast<int_x2_type>(segm_end2.y()),
static_cast<int_x2_type>(segm_end2.x()) -
static_cast<int_x2_type>(segm_start2.x())), to_fpt(1.0));
if (!is_neg(a)) {
a += sqr_sum1 * sqr_sum2;
} else {
a = (orientation * orientation) / (sqr_sum1 * sqr_sum2 - a);
}
robust_fpt_type or1(robust_cross_product(
static_cast<int_x2_type>(segm_end1.y()) -
static_cast<int_x2_type>(segm_start1.y()),
static_cast<int_x2_type>(segm_end1.x()) -
static_cast<int_x2_type>(segm_start1.x()),
static_cast<int_x2_type>(segm_end1.y()) -
static_cast<int_x2_type>(site1.y()),
static_cast<int_x2_type>(segm_end1.x()) -
static_cast<int_x2_type>(site1.x())), to_fpt(1.0));
robust_fpt_type or2(robust_cross_product(
static_cast<int_x2_type>(segm_end2.x()) -
static_cast<int_x2_type>(segm_start2.x()),
static_cast<int_x2_type>(segm_end2.y()) -
static_cast<int_x2_type>(segm_start2.y()),
static_cast<int_x2_type>(segm_end2.x()) -
static_cast<int_x2_type>(site1.x()),
static_cast<int_x2_type>(segm_end2.y()) -
static_cast<int_x2_type>(site1.y())), to_fpt(1.0));
robust_fpt_type det = robust_fpt_type(to_fpt(2.0)) * a * or1 * or2;
robust_fpt_type c1(robust_cross_product(
static_cast<int_x2_type>(segm_end1.y()) -
static_cast<int_x2_type>(segm_start1.y()),
static_cast<int_x2_type>(segm_end1.x()) -
static_cast<int_x2_type>(segm_start1.x()),
static_cast<int_x2_type>(segm_end1.y()),
static_cast<int_x2_type>(segm_end1.x())), to_fpt(1.0));
robust_fpt_type c2(robust_cross_product(
static_cast<int_x2_type>(segm_end2.x()) -
static_cast<int_x2_type>(segm_start2.x()),
static_cast<int_x2_type>(segm_end2.y()) -
static_cast<int_x2_type>(segm_start2.y()),
static_cast<int_x2_type>(segm_end2.x()),
static_cast<int_x2_type>(segm_end2.y())), to_fpt(1.0));
robust_fpt_type inv_orientation =
robust_fpt_type(to_fpt(1.0)) / orientation;
robust_dif_type t, b, ix, iy;
ix += robust_fpt_type(a2) * c1 * inv_orientation;
ix += robust_fpt_type(a1) * c2 * inv_orientation;
iy += robust_fpt_type(b1) * c2 * inv_orientation;
iy += robust_fpt_type(b2) * c1 * inv_orientation;
b += ix * (robust_fpt_type(a1) * sqr_sum2);
b += ix * (robust_fpt_type(a2) * sqr_sum1);
b += iy * (robust_fpt_type(b1) * sqr_sum2);
b += iy * (robust_fpt_type(b2) * sqr_sum1);
b -= sqr_sum1 * robust_fpt_type(robust_cross_product(
static_cast<int_x2_type>(segm_end2.x()) -
static_cast<int_x2_type>(segm_start2.x()),
static_cast<int_x2_type>(segm_end2.y()) -
static_cast<int_x2_type>(segm_start2.y()),
static_cast<int_x2_type>(-site1.y()),
static_cast<int_x2_type>(site1.x())), to_fpt(1.0));
b -= sqr_sum2 * robust_fpt_type(robust_cross_product(
static_cast<int_x2_type>(segm_end1.x()) -
static_cast<int_x2_type>(segm_start1.x()),
static_cast<int_x2_type>(segm_end1.y()) -
static_cast<int_x2_type>(segm_start1.y()),
static_cast<int_x2_type>(-site1.y()),
static_cast<int_x2_type>(site1.x())), to_fpt(1.0));
t -= b;
if (point_index == 2) {
t += det.sqrt();
} else {
t -= det.sqrt();
}
t /= (a * a);
robust_dif_type c_x(ix), c_y(iy);
c_x += t * (robust_fpt_type(a1) * sqr_sum2);
c_x += t * (robust_fpt_type(a2) * sqr_sum1);
c_y += t * (robust_fpt_type(b1) * sqr_sum2);
c_y += t * (robust_fpt_type(b2) * sqr_sum1);
if (t.pos().fpv() < t.neg().fpv()) {
t = -t;
}
robust_dif_type lower_x(c_x);
if (is_neg(orientation)) {
lower_x -= t * orientation;
} else {
lower_x += t * orientation;
}
recompute_c_x = c_x.dif().ulp() > ULPS;
recompute_c_y = c_y.dif().ulp() > ULPS;
recompute_lower_x = lower_x.dif().ulp() > ULPS;
c_event = circle_type(
c_x.dif().fpv(), c_y.dif().fpv(), lower_x.dif().fpv());
}
if (recompute_c_x || recompute_c_y || recompute_lower_x) {
exact_circle_formation_functor_.pss(
site1, site2, site3, point_index, c_event,
recompute_c_x, recompute_c_y, recompute_lower_x);
}
}
void sss(const site_type& site1,
const site_type& site2,
const site_type& site3,
circle_type& c_event) {
robust_fpt_type a1(to_fpt(site1.x1(true)) - to_fpt(site1.x0(true)));
robust_fpt_type b1(to_fpt(site1.y1(true)) - to_fpt(site1.y0(true)));
robust_fpt_type c1(robust_cross_product(
site1.x0(true), site1.y0(true),
site1.x1(true), site1.y1(true)), to_fpt(1.0));
robust_fpt_type a2(to_fpt(site2.x1(true)) - to_fpt(site2.x0(true)));
robust_fpt_type b2(to_fpt(site2.y1(true)) - to_fpt(site2.y0(true)));
robust_fpt_type c2(robust_cross_product(
site2.x0(true), site2.y0(true),
site2.x1(true), site2.y1(true)), to_fpt(1.0));
robust_fpt_type a3(to_fpt(site3.x1(true)) - to_fpt(site3.x0(true)));
robust_fpt_type b3(to_fpt(site3.y1(true)) - to_fpt(site3.y0(true)));
robust_fpt_type c3(robust_cross_product(
site3.x0(true), site3.y0(true),
site3.x1(true), site3.y1(true)), to_fpt(1.0));
robust_fpt_type len1 = (a1 * a1 + b1 * b1).sqrt();
robust_fpt_type len2 = (a2 * a2 + b2 * b2).sqrt();
robust_fpt_type len3 = (a3 * a3 + b3 * b3).sqrt();
robust_fpt_type cross_12(robust_cross_product(
static_cast<int_x2_type>(site1.x1(true)) -
static_cast<int_x2_type>(site1.x0(true)),
static_cast<int_x2_type>(site1.y1(true)) -
static_cast<int_x2_type>(site1.y0(true)),
static_cast<int_x2_type>(site2.x1(true)) -
static_cast<int_x2_type>(site2.x0(true)),
static_cast<int_x2_type>(site2.y1(true)) -
static_cast<int_x2_type>(site2.y0(true))), to_fpt(1.0));
robust_fpt_type cross_23(robust_cross_product(
static_cast<int_x2_type>(site2.x1(true)) -
static_cast<int_x2_type>(site2.x0(true)),
static_cast<int_x2_type>(site2.y1(true)) -
static_cast<int_x2_type>(site2.y0(true)),
static_cast<int_x2_type>(site3.x1(true)) -
static_cast<int_x2_type>(site3.x0(true)),
static_cast<int_x2_type>(site3.y1(true)) -
static_cast<int_x2_type>(site3.y0(true))), to_fpt(1.0));
robust_fpt_type cross_31(robust_cross_product(
static_cast<int_x2_type>(site3.x1(true)) -
static_cast<int_x2_type>(site3.x0(true)),
static_cast<int_x2_type>(site3.y1(true)) -
static_cast<int_x2_type>(site3.y0(true)),
static_cast<int_x2_type>(site1.x1(true)) -
static_cast<int_x2_type>(site1.x0(true)),
static_cast<int_x2_type>(site1.y1(true)) -
static_cast<int_x2_type>(site1.y0(true))), to_fpt(1.0));
// denom = cross_12 * len3 + cross_23 * len1 + cross_31 * len2.
robust_dif_type denom;
denom += cross_12 * len3;
denom += cross_23 * len1;
denom += cross_31 * len2;
// denom * r = (b2 * c_x - a2 * c_y - c2 * denom) / len2.
robust_dif_type r;
r -= cross_12 * c3;
r -= cross_23 * c1;
r -= cross_31 * c2;
robust_dif_type c_x;
c_x += a1 * c2 * len3;
c_x -= a2 * c1 * len3;
c_x += a2 * c3 * len1;
c_x -= a3 * c2 * len1;
c_x += a3 * c1 * len2;
c_x -= a1 * c3 * len2;
robust_dif_type c_y;
c_y += b1 * c2 * len3;
c_y -= b2 * c1 * len3;
c_y += b2 * c3 * len1;
c_y -= b3 * c2 * len1;
c_y += b3 * c1 * len2;
c_y -= b1 * c3 * len2;
robust_dif_type lower_x = c_x + r;
robust_fpt_type denom_dif = denom.dif();
robust_fpt_type c_x_dif = c_x.dif() / denom_dif;
robust_fpt_type c_y_dif = c_y.dif() / denom_dif;
robust_fpt_type lower_x_dif = lower_x.dif() / denom_dif;
bool recompute_c_x = c_x_dif.ulp() > ULPS;
bool recompute_c_y = c_y_dif.ulp() > ULPS;
bool recompute_lower_x = lower_x_dif.ulp() > ULPS;
c_event = circle_type(c_x_dif.fpv(), c_y_dif.fpv(), lower_x_dif.fpv());
if (recompute_c_x || recompute_c_y || recompute_lower_x) {
exact_circle_formation_functor_.sss(
site1, site2, site3, c_event,
recompute_c_x, recompute_c_y, recompute_lower_x);
}
}
private:
exact_circle_formation_functor_type exact_circle_formation_functor_;
to_fpt_converter to_fpt;
};
template <typename Site,
typename Circle,
typename CEP = circle_existence_predicate<Site>,
typename CFF = lazy_circle_formation_functor<Site, Circle> >
class circle_formation_predicate {
public:
typedef Site site_type;
typedef Circle circle_type;
typedef CEP circle_existence_predicate_type;
typedef CFF circle_formation_functor_type;
// Create a circle event from the given three sites.
// Returns true if the circle event exists, else false.
// If exists circle event is saved into the c_event variable.
bool operator()(const site_type& site1, const site_type& site2,
const site_type& site3, circle_type& circle) {
if (!site1.is_segment()) {
if (!site2.is_segment()) {
if (!site3.is_segment()) {
// (point, point, point) sites.
if (!circle_existence_predicate_.ppp(site1, site2, site3))
return false;
circle_formation_functor_.ppp(site1, site2, site3, circle);
} else {
// (point, point, segment) sites.
if (!circle_existence_predicate_.pps(site1, site2, site3, 3))
return false;
circle_formation_functor_.pps(site1, site2, site3, 3, circle);
}
} else {
if (!site3.is_segment()) {
// (point, segment, point) sites.
if (!circle_existence_predicate_.pps(site1, site3, site2, 2))
return false;
circle_formation_functor_.pps(site1, site3, site2, 2, circle);
} else {
// (point, segment, segment) sites.
if (!circle_existence_predicate_.pss(site1, site2, site3, 1))
return false;
circle_formation_functor_.pss(site1, site2, site3, 1, circle);
}
}
} else {
if (!site2.is_segment()) {
if (!site3.is_segment()) {
// (segment, point, point) sites.
if (!circle_existence_predicate_.pps(site2, site3, site1, 1))
return false;
circle_formation_functor_.pps(site2, site3, site1, 1, circle);
} else {
// (segment, point, segment) sites.
if (!circle_existence_predicate_.pss(site2, site1, site3, 2))
return false;
circle_formation_functor_.pss(site2, site1, site3, 2, circle);
}
} else {
if (!site3.is_segment()) {
// (segment, segment, point) sites.
if (!circle_existence_predicate_.pss(site3, site1, site2, 3))
return false;
circle_formation_functor_.pss(site3, site1, site2, 3, circle);
} else {
// (segment, segment, segment) sites.
if (!circle_existence_predicate_.sss(site1, site2, site3))
return false;
circle_formation_functor_.sss(site1, site2, site3, circle);
}
}
}
return true;
}
private:
circle_existence_predicate_type circle_existence_predicate_;
circle_formation_functor_type circle_formation_functor_;
};
};
} // detail
} // polygon
} // boost
#endif // BOOST_POLYGON_DETAIL_VORONOI_PREDICATES