kicad/include/boost/polygon/detail/polygon_90_touch.hpp

419 lines
18 KiB
C++

/*
Copyright 2008 Intel Corporation
Use, modification and distribution are subject to the Boost Software License,
Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
*/
#ifndef BOOST_POLYGON_POLYGON_90_TOUCH_HPP
#define BOOST_POLYGON_POLYGON_90_TOUCH_HPP
namespace boost { namespace polygon{
template <typename Unit>
struct touch_90_operation {
typedef interval_data<Unit> Interval;
class TouchScanEvent {
private:
typedef std::map<Unit, std::set<int> > EventData;
EventData eventData_;
public:
// The TouchScanEvent::iterator is a lazy algorithm that accumulates
// polygon ids in a set as it is incremented through the
// scan event data structure.
// The iterator provides a forward iterator semantic only.
class iterator {
private:
typename EventData::const_iterator itr_;
std::pair<Interval, std::set<int> > ivlIds_;
bool incremented_;
public:
inline iterator() : itr_(), ivlIds_(), incremented_(false) {}
inline iterator(typename EventData::const_iterator itr,
Unit prevPos, Unit curPos, const std::set<int>& ivlIds) : itr_(itr), ivlIds_(), incremented_(false) {
ivlIds_.second = ivlIds;
ivlIds_.first = Interval(prevPos, curPos);
}
inline iterator(const iterator& that) : itr_(), ivlIds_(), incremented_(false) { (*this) = that; }
inline iterator& operator=(const iterator& that) {
itr_ = that.itr_;
ivlIds_.first = that.ivlIds_.first;
ivlIds_.second = that.ivlIds_.second;
incremented_ = that.incremented_;
return *this;
};
inline bool operator==(const iterator& that) { return itr_ == that.itr_; }
inline bool operator!=(const iterator& that) { return itr_ != that.itr_; }
inline iterator& operator++() {
//std::cout << "increment\n";
//std::cout << "state\n";
//for(std::set<int>::iterator itr = ivlIds_.second.begin(); itr != ivlIds_.second.end(); ++itr) {
// std::cout << (*itr) << " ";
//} std::cout << std::endl;
//std::cout << "update\n";
for(std::set<int>::const_iterator itr = (*itr_).second.begin();
itr != (*itr_).second.end(); ++itr) {
//std::cout << (*itr) << " ";
std::set<int>::iterator lb = ivlIds_.second.find(*itr);
if(lb != ivlIds_.second.end()) {
ivlIds_.second.erase(lb);
} else {
ivlIds_.second.insert(*itr);
}
}
//std::cout << std::endl;
//std::cout << "new state\n";
//for(std::set<int>::iterator itr = ivlIds_.second.begin(); itr != ivlIds_.second.end(); ++itr) {
// std::cout << (*itr) << " ";
//} std::cout << std::endl;
++itr_;
//ivlIds_.first = Interval(ivlIds_.first.get(HIGH), itr_->first);
incremented_ = true;
return *this;
}
inline const iterator operator++(int){
iterator tmpItr(*this);
++(*this);
return tmpItr;
}
inline std::pair<Interval, std::set<int> >& operator*() {
if(incremented_) ivlIds_.first = Interval(ivlIds_.first.get(HIGH), itr_->first);
incremented_ = false;
if(ivlIds_.second.empty())(++(*this));
if(incremented_) ivlIds_.first = Interval(ivlIds_.first.get(HIGH), itr_->first);
incremented_ = false;
return ivlIds_; }
};
inline TouchScanEvent() : eventData_() {}
template<class iT>
inline TouchScanEvent(iT begin, iT end) : eventData_() {
for( ; begin != end; ++begin){
insert(*begin);
}
}
inline TouchScanEvent(const TouchScanEvent& that) : eventData_(that.eventData_) {}
inline TouchScanEvent& operator=(const TouchScanEvent& that){
eventData_ = that.eventData_;
return *this;
}
//Insert an interval polygon id into the EventData
inline void insert(const std::pair<Interval, int>& intervalId){
insert(intervalId.first.low(), intervalId.second);
insert(intervalId.first.high(), intervalId.second);
}
//Insert an position and polygon id into EventData
inline void insert(Unit pos, int id) {
typename EventData::iterator lb = eventData_.lower_bound(pos);
if(lb != eventData_.end() && lb->first == pos) {
std::set<int>& mr (lb->second);
std::set<int>::iterator mri = mr.find(id);
if(mri == mr.end()) {
mr.insert(id);
} else {
mr.erase(id);
}
} else {
lb = eventData_.insert(lb, std::pair<Unit, std::set<int> >(pos, std::set<int>()));
(*lb).second.insert(id);
}
}
//merge this scan event with that by inserting its data
inline void insert(const TouchScanEvent& that){
typename EventData::const_iterator itr;
for(itr = that.eventData_.begin(); itr != that.eventData_.end(); ++itr) {
eventData_[(*itr).first].insert(itr->second.begin(), itr->second.end());
}
}
//Get the begin iterator over event data
inline iterator begin() const {
//std::cout << "begin\n";
if(eventData_.empty()) return end();
typename EventData::const_iterator itr = eventData_.begin();
Unit pos = itr->first;
const std::set<int>& idr = itr->second;
++itr;
return iterator(itr, pos, itr->first, idr);
}
//Get the end iterator over event data
inline iterator end() const { return iterator(eventData_.end(), 0, 0, std::set<int>()); }
inline void clear() { eventData_.clear(); }
inline Interval extents() const {
if(eventData_.empty()) return Interval();
return Interval((*(eventData_.begin())).first, (*(eventData_.rbegin())).first);
}
};
//declaration of a map of scan events by coordinate value used to store all the
//polygon data for a single layer input into the scanline algorithm
typedef std::pair<std::map<Unit, TouchScanEvent>, std::map<Unit, TouchScanEvent> > TouchSetData;
class TouchOp {
public:
typedef std::map<Unit, std::set<int> > ScanData;
typedef std::pair<Unit, std::set<int> > ElementType;
protected:
ScanData scanData_;
typename ScanData::iterator nextItr_;
public:
inline TouchOp () : scanData_(), nextItr_() { nextItr_ = scanData_.end(); }
inline TouchOp (const TouchOp& that) : scanData_(that.scanData_), nextItr_() { nextItr_ = scanData_.begin(); }
inline TouchOp& operator=(const TouchOp& that);
//moves scanline forward
inline void advanceScan() { nextItr_ = scanData_.begin(); }
//proceses the given interval and std::set<int> data
//the output data structre is a graph, the indicies in the vector correspond to graph nodes,
//the integers in the set are vector indicies and are the nodes with which that node shares an edge
template <typename graphT>
inline void processInterval(graphT& outputContainer, Interval ivl, const std::set<int>& ids, bool leadingEdge) {
//print();
typename ScanData::iterator lowItr = lookup_(ivl.low());
typename ScanData::iterator highItr = lookup_(ivl.high());
//std::cout << "Interval: " << ivl << std::endl;
//for(std::set<int>::const_iterator itr = ids.begin(); itr != ids.end(); ++itr)
// std::cout << (*itr) << " ";
//std::cout << std::endl;
//add interval to scan data if it is past the end
if(lowItr == scanData_.end()) {
//std::cout << "case0" << std::endl;
lowItr = insert_(ivl.low(), ids);
evaluateBorder_(outputContainer, ids, ids);
highItr = insert_(ivl.high(), std::set<int>());
return;
}
//ensure that highItr points to the end of the ivl
if(highItr == scanData_.end() || (*highItr).first > ivl.high()) {
//std::cout << "case1" << std::endl;
//std::cout << highItr->first << std::endl;
std::set<int> value = std::set<int>();
if(highItr != scanData_.begin()) {
--highItr;
//std::cout << highItr->first << std::endl;
//std::cout << "high set size " << highItr->second.size() << std::endl;
value = highItr->second;
}
nextItr_ = highItr;
highItr = insert_(ivl.high(), value);
} else {
//evaluate border with next higher interval
//std::cout << "case1a" << std::endl;
if(leadingEdge)evaluateBorder_(outputContainer, highItr->second, ids);
}
//split the low interval if needed
if(lowItr->first > ivl.low()) {
//std::cout << "case2" << std::endl;
if(lowItr != scanData_.begin()) {
//std::cout << "case3" << std::endl;
--lowItr;
nextItr_ = lowItr;
//std::cout << lowItr->first << " " << lowItr->second.size() << std::endl;
lowItr = insert_(ivl.low(), lowItr->second);
} else {
//std::cout << "case4" << std::endl;
nextItr_ = lowItr;
lowItr = insert_(ivl.low(), std::set<int>());
}
} else {
//evaluate border with next higher interval
//std::cout << "case2a" << std::endl;
typename ScanData::iterator nextLowerItr = lowItr;
if(leadingEdge && nextLowerItr != scanData_.begin()){
--nextLowerItr;
evaluateBorder_(outputContainer, nextLowerItr->second, ids);
}
}
//std::cout << "low: " << lowItr->first << " high: " << highItr->first << std::endl;
//print();
//process scan data intersecting interval
for(typename ScanData::iterator itr = lowItr; itr != highItr; ){
//std::cout << "case5" << std::endl;
//std::cout << itr->first << std::endl;
std::set<int>& beforeIds = itr->second;
++itr;
evaluateInterval_(outputContainer, beforeIds, ids, leadingEdge);
}
//print();
//merge the bottom interval with the one below if they have the same count
if(lowItr != scanData_.begin()){
//std::cout << "case6" << std::endl;
typename ScanData::iterator belowLowItr = lowItr;
--belowLowItr;
if(belowLowItr->second == lowItr->second) {
//std::cout << "case7" << std::endl;
scanData_.erase(lowItr);
}
}
//merge the top interval with the one above if they have the same count
if(highItr != scanData_.begin()) {
//std::cout << "case8" << std::endl;
typename ScanData::iterator beforeHighItr = highItr;
--beforeHighItr;
if(beforeHighItr->second == highItr->second) {
//std::cout << "case9" << std::endl;
scanData_.erase(highItr);
highItr = beforeHighItr;
++highItr;
}
}
//print();
nextItr_ = highItr;
}
// inline void print() const {
// for(typename ScanData::const_iterator itr = scanData_.begin(); itr != scanData_.end(); ++itr) {
// std::cout << itr->first << ": ";
// for(std::set<int>::const_iterator sitr = itr->second.begin();
// sitr != itr->second.end(); ++sitr){
// std::cout << *sitr << " ";
// }
// std::cout << std::endl;
// }
// }
private:
inline typename ScanData::iterator lookup_(Unit pos){
if(nextItr_ != scanData_.end() && nextItr_->first >= pos) {
return nextItr_;
}
return nextItr_ = scanData_.lower_bound(pos);
}
inline typename ScanData::iterator insert_(Unit pos, const std::set<int>& ids){
//std::cout << "inserting " << ids.size() << " ids at: " << pos << std::endl;
return nextItr_ = scanData_.insert(nextItr_, std::pair<Unit, std::set<int> >(pos, ids));
}
template <typename graphT>
inline void evaluateInterval_(graphT& outputContainer, std::set<int>& ids,
const std::set<int>& changingIds, bool leadingEdge) {
for(std::set<int>::const_iterator ciditr = changingIds.begin(); ciditr != changingIds.end(); ++ciditr){
//std::cout << "evaluateInterval " << (*ciditr) << std::endl;
evaluateId_(outputContainer, ids, *ciditr, leadingEdge);
}
}
template <typename graphT>
inline void evaluateBorder_(graphT& outputContainer, const std::set<int>& ids, const std::set<int>& changingIds) {
for(std::set<int>::const_iterator ciditr = changingIds.begin(); ciditr != changingIds.end(); ++ciditr){
//std::cout << "evaluateBorder " << (*ciditr) << std::endl;
evaluateBorderId_(outputContainer, ids, *ciditr);
}
}
template <typename graphT>
inline void evaluateBorderId_(graphT& outputContainer, const std::set<int>& ids, int changingId) {
for(std::set<int>::const_iterator scanItr = ids.begin(); scanItr != ids.end(); ++scanItr) {
//std::cout << "create edge: " << changingId << " " << *scanItr << std::endl;
if(changingId != *scanItr){
outputContainer[changingId].insert(*scanItr);
outputContainer[*scanItr].insert(changingId);
}
}
}
template <typename graphT>
inline void evaluateId_(graphT& outputContainer, std::set<int>& ids, int changingId, bool leadingEdge) {
//std::cout << "changingId: " << changingId << std::endl;
//for( std::set<int>::iterator itr = ids.begin(); itr != ids.end(); ++itr){
// std::cout << *itr << " ";
//}std::cout << std::endl;
std::set<int>::iterator lb = ids.lower_bound(changingId);
if(lb == ids.end() || (*lb) != changingId) {
if(leadingEdge) {
//std::cout << "insert\n";
//insert and add to output
for(std::set<int>::iterator scanItr = ids.begin(); scanItr != ids.end(); ++scanItr) {
//std::cout << "create edge: " << changingId << " " << *scanItr << std::endl;
if(changingId != *scanItr){
outputContainer[changingId].insert(*scanItr);
outputContainer[*scanItr].insert(changingId);
}
}
ids.insert(changingId);
}
} else {
if(!leadingEdge){
//std::cout << "erase\n";
ids.erase(lb);
}
}
}
};
template <typename graphT>
static inline void processEvent(graphT& outputContainer, TouchOp& op, const TouchScanEvent& data, bool leadingEdge) {
for(typename TouchScanEvent::iterator itr = data.begin(); itr != data.end(); ++itr) {
//std::cout << "processInterval" << std::endl;
op.processInterval(outputContainer, (*itr).first, (*itr).second, leadingEdge);
}
}
template <typename graphT>
static inline void performTouch(graphT& outputContainer, const TouchSetData& data) {
typename std::map<Unit, TouchScanEvent>::const_iterator leftItr = data.first.begin();
typename std::map<Unit, TouchScanEvent>::const_iterator rightItr = data.second.begin();
typename std::map<Unit, TouchScanEvent>::const_iterator leftEnd = data.first.end();
typename std::map<Unit, TouchScanEvent>::const_iterator rightEnd = data.second.end();
TouchOp op;
while(leftItr != leftEnd || rightItr != rightEnd) {
//std::cout << "loop" << std::endl;
op.advanceScan();
//rightItr cannont be at end if leftItr is not at end
if(leftItr != leftEnd && rightItr != rightEnd &&
leftItr->first <= rightItr->first) {
//std::cout << "case1" << std::endl;
//std::cout << leftItr ->first << std::endl;
processEvent(outputContainer, op, leftItr->second, true);
++leftItr;
} else {
//std::cout << "case2" << std::endl;
//std::cout << rightItr ->first << std::endl;
processEvent(outputContainer, op, rightItr->second, false);
++rightItr;
}
}
}
template <class iT>
static inline void populateTouchSetData(TouchSetData& data, iT beginData, iT endData, int id) {
Unit prevPos = ((std::numeric_limits<Unit>::max)());
Unit prevY = prevPos;
int count = 0;
for(iT itr = beginData; itr != endData; ++itr) {
Unit pos = (*itr).first;
if(pos != prevPos) {
prevPos = pos;
prevY = (*itr).second.first;
count = (*itr).second.second;
continue;
}
Unit y = (*itr).second.first;
if(count != 0 && y != prevY) {
std::pair<Interval, int> element(Interval(prevY, y), id);
if(count > 0) {
data.first[pos].insert(element);
} else {
data.second[pos].insert(element);
}
}
prevY = y;
count += (*itr).second.second;
}
}
static inline void populateTouchSetData(TouchSetData& data, const std::vector<std::pair<Unit, std::pair<Unit, int> > >& inputData, int id) {
populateTouchSetData(data, inputData.begin(), inputData.end(), id);
}
};
}
}
#endif