kicad/pcbnew/autoplac.cpp

1225 lines
39 KiB
C++

/*************************************************/
/* Routines de placement automatique des MODULES */
/*************************************************/
/* Fichier autoplac.cpp */
#include "fctsys.h"
#include "gr_basic.h"
#include "common.h"
#include "class_drawpanel.h"
#include "confirm.h"
#include "pcbnew.h"
#include "autorout.h"
#include "zones.h"
#include "cell.h"
#include "protos.h"
/************************************************************/
/* Menu et Routines de placement automatique des composants */
/************************************************************/
#define GAIN 16
#define PENALITE 500
/* Penalite pour orientation donnee par CntRot90 et CntRot180:
* gradue de 0 ( rotation interdite ) a 10 ( rotation a cout null )
* Le cout est ici donne en majoration
*/
static const float OrientPenality[11] = {
2.0f, /* CntRot = 0 en fait rotation interdite */
1.9f, /* CntRot = 1 */
1.8f, /* CntRot = 2 */
1.7f, /* CntRot = 3 */
1.6f, /* CntRot = 4 */
1.5f, /* CntRot = 5 */
1.4f, /* CntRot = 5 */
1.3f, /* CntRot = 7 */
1.2f, /* CntRot = 8 */
1.1f, /* CntRot = 9 */
1.0f /* CntRot = 10 rotation autorisee, penalite nulle */
};
/* Etat d'une cellule */
#define OUT_OF_BOARD -2
#define OCCUPED_By_MODULE -1
/* variables locales */
static wxPoint CurrPosition; // position courante du module en cours de placement
static bool AutoPlaceShowAll = TRUE;
float MinCout;
/* Fonctions locales */
static int TstModuleOnBoard( BOARD* Pcb, MODULE* Module, bool TstOtherSide );
static void Build_PlacedPads_List( BOARD* Pcb );
static int Tri_PlaceModules( MODULE** pt_ref, MODULE** pt_compare );
static void TracePenaliteRectangle( BOARD* Pcb, int ux0, int uy0, int ux1, int uy1,
int marge, int Penalite, int masque_layer );
static MODULE* PickModule( WinEDA_PcbFrame* pcbframe, wxDC* DC );
/* variables importees */
extern RATSNEST_ITEM* local_liste_chevelu; // adresse de base du buffer des chevelus locaux
extern int nb_local_chevelu; // nbr de links du module en deplacement
/********************************************************************************/
void WinEDA_PcbFrame::AutoPlaceModule( MODULE* Module, int place_mode, wxDC* DC )
/********************************************************************************/
/* Routine de Placement Automatique des composants dans le contour du PCB
* Les composants ayant le status FIXE ne sont pas bouges
* Si le menu appelant est le placement de 1 module, il sera replace
*/
{
int ii, activ;
MODULE* ThisModule = NULL;
MODULE** BaseListeModules;
wxPoint PosOK;
wxPoint memopos;
int error;
int NbModules = 0;
int NbTotalModules = 0;
float Pas;
int lay_tmp_TOP, lay_tmp_BOTTOM, OldPasRoute;
if( GetBoard()->m_Modules == NULL )
return;
DrawPanel->m_AbortRequest = FALSE;
DrawPanel->m_AbortEnable = TRUE;
switch( place_mode )
{
case PLACE_1_MODULE:
ThisModule = Module;
if( ThisModule == NULL )
return;
ThisModule->m_ModuleStatus &= ~(MODULE_is_PLACED | MODULE_to_PLACE);
break;
case PLACE_OUT_OF_BOARD:
break;
case PLACE_ALL:
if( !IsOK( this, _( "Footprints NOT LOCKED will be moved" ) ) )
return;
break;
case PLACE_INCREMENTAL:
if( !IsOK( this, _( "Footprints NOT PLACED will be moved" ) ) )
return;
break;
}
memopos = CurrPosition;
lay_tmp_BOTTOM = Route_Layer_BOTTOM;
lay_tmp_TOP = Route_Layer_TOP;
OldPasRoute = g_GridRoutingSize;
g_GridRoutingSize = (int)GetScreen()->GetGrid().x;
// Ensure g_GridRoutingSize has a reasonnable value:
if( g_GridRoutingSize < 10 )
g_GridRoutingSize = 10; // Min value = 1/1000 inch
/* Compute module parmeters used in auto place */
Module = GetBoard()->m_Modules;
for( ; Module != NULL; Module = Module->Next() ) // remise a jour du rect d'encadrement
{
Module->Set_Rectangle_Encadrement();
Module->SetRectangleExinscrit();
}
/* Generation du plan de placement */
if( GenPlaceBoard() == 0 )
return;
/* Mise a jour des parametres modules utiles au placement */
BaseListeModules = GenListeModules( GetBoard(), &NbTotalModules );
MyFree( BaseListeModules );
/* Placement des modules fixes sur le plan de placement */
Module = GetBoard()->m_Modules;
for( ; Module != NULL; Module = Module->Next() )
{
Module->m_ModuleStatus &= ~MODULE_to_PLACE;
switch( place_mode )
{
case PLACE_1_MODULE:
if( ThisModule == Module )
Module->m_ModuleStatus |= MODULE_to_PLACE;
break;
case PLACE_OUT_OF_BOARD:
Module->m_ModuleStatus &= ~MODULE_is_PLACED;
if( Module->m_ModuleStatus & MODULE_is_LOCKED )
break;
if( !GetBoard()->m_BoundaryBox.Inside( Module->m_Pos ) )
Module->m_ModuleStatus |= MODULE_to_PLACE;
break;
case PLACE_ALL:
Module->m_ModuleStatus &= ~MODULE_is_PLACED;
if( Module->m_ModuleStatus & MODULE_is_LOCKED )
break;
Module->m_ModuleStatus |= MODULE_to_PLACE;
break;
case PLACE_INCREMENTAL:
if( Module->m_ModuleStatus & MODULE_is_LOCKED )
{
Module->m_ModuleStatus &= ~MODULE_is_PLACED; break;
}
if( !(Module->m_ModuleStatus & MODULE_is_PLACED) )
Module->m_ModuleStatus |= MODULE_to_PLACE;
break;
}
if( Module->m_ModuleStatus & MODULE_to_PLACE ) // Erase from screen
{
NbModules++;
Module->Draw( DrawPanel, DC, GR_XOR );
}
else
{
GenModuleOnBoard( Module );
}
}
/* Placement des modules */
activ = 0; Pas = 100.0;
if( NbModules )
Pas = 100.0 / (float) NbModules;
while( ( Module = PickModule( this, DC ) ) != NULL )
{
float BestScore;
DisplayActivity( (int) (activ * Pas), wxEmptyString ); activ++;
/* Affichage du remplissage: surface de placement, obstacles, penalites */
DrawInfoPlace( DC );
/* Recherche du placement: orientation 0 */
error = RecherchePlacementModule( Module, DC );
BestScore = MinCout;
PosOK = CurrPosition;
if( error == ESC )
goto end_of_tst;
/* Recherche du placement: orientation 180 */
ii = Module->m_CntRot180 & 0x0F;
if( ii != 0 )
{
int Angle_Rot_Module = 1800;
Rotate_Module( DC, Module, Angle_Rot_Module, FALSE );
Module->SetRectangleExinscrit();
error = RecherchePlacementModule( Module, DC );
MinCout *= OrientPenality[ii];
if( BestScore > MinCout ) /* Cette orientation est meilleure */
{
PosOK = CurrPosition;
BestScore = MinCout;
}
else
{
Angle_Rot_Module = -1800;
Rotate_Module( DC, Module, Angle_Rot_Module, FALSE );
}
if( error == ESC )
goto end_of_tst;
}
/* Recherche du placement: orientation 90 */
ii = Module->m_CntRot90 & 0x0F;
if( ii != 0 )
{
int Angle_Rot_Module = 900;
Rotate_Module( DC, Module, Angle_Rot_Module, FALSE );
error = RecherchePlacementModule( Module, DC );
MinCout *= OrientPenality[ii];
if( BestScore > MinCout ) /* Cette orientation est meilleure */
{
PosOK = CurrPosition;
BestScore = MinCout;
}
else
{
Angle_Rot_Module = -900;
Rotate_Module( DC, Module, Angle_Rot_Module, FALSE );
}
if( error == ESC )
goto end_of_tst;
}
/* Recherche du placement: orientation -90 (ou 270 degres) */
ii = (Module->m_CntRot90 >> 4 ) & 0x0F;
if( ii != 0 )
{
int Angle_Rot_Module = 2700;
Rotate_Module( DC, Module, Angle_Rot_Module, FALSE );
error = RecherchePlacementModule( Module, DC );
MinCout *= OrientPenality[ii];
if( BestScore > MinCout ) /* Cette orientation est meilleure */
{
PosOK = CurrPosition;
BestScore = MinCout;
}
else
{
Angle_Rot_Module = -2700;
Rotate_Module( DC, Module, Angle_Rot_Module, FALSE );
}
if( error == ESC )
goto end_of_tst;
}
end_of_tst:
if( error == ESC )
break;
/* placement du module */
CurrPosition = GetScreen()->m_Curseur;
GetScreen()->m_Curseur = PosOK;
Place_Module( Module, DC );
GetScreen()->m_Curseur = CurrPosition;
Module->Set_Rectangle_Encadrement();
Module->SetRectangleExinscrit();
GenModuleOnBoard( Module );
Module->m_ModuleStatus |= MODULE_is_PLACED;
Module->m_ModuleStatus &= ~MODULE_to_PLACE;
}
CurrPosition = memopos;
/* Liberation de la memoire */
Board.UnInitBoard();
Route_Layer_TOP = lay_tmp_TOP;
Route_Layer_BOTTOM = lay_tmp_BOTTOM;
g_GridRoutingSize = OldPasRoute;
Module = GetBoard()->m_Modules;
for( ; Module != NULL; Module = Module->Next() )
{
Module->Set_Rectangle_Encadrement();
}
/* Recalcul de la liste des pads, detruite par les calculs precedents */
GetBoard()->m_Status_Pcb = 0;
GetBoard()->Build_Pads_Full_List();
DrawPanel->ReDraw( DC, TRUE );
DrawPanel->m_AbortEnable = FALSE;
}
/**********************************************/
void WinEDA_PcbFrame::DrawInfoPlace( wxDC* DC )
/**********************************************/
/* Affiche a l'ecran les infos de placement
*/
{
int color, ii, jj;
int ox, oy, top_state, bottom_state;
GRSetDrawMode( DC, GR_COPY );
for( ii = 0; ii < Nrows; ii++ )
{
oy = GetBoard()->m_BoundaryBox.m_Pos.y + (ii * g_GridRoutingSize);
for( jj = 0; jj < Ncols; jj++ )
{
ox = GetBoard()->m_BoundaryBox.m_Pos.x + (jj * g_GridRoutingSize);
/* surface de placement : */
color = BLACK;
top_state = GetCell( ii, jj, TOP );
bottom_state = GetCell( ii, jj, BOTTOM );
if( (top_state & CELL_is_ZONE) )
color = BLUE;
/* obstacles */
if( (top_state & CELL_is_EDGE) || (bottom_state & CELL_is_EDGE) )
color = WHITE;
else if( top_state & (HOLE | CELL_is_MODULE) )
color = LIGHTRED;
else if( bottom_state & (HOLE | CELL_is_MODULE) )
color = LIGHTGREEN;
else /* Affichage du remplissage: Penalites */
{
if( GetDist( ii, jj, TOP ) || GetDist( ii, jj, BOTTOM ) )
color = DARKGRAY;
}
GRPutPixel( &DrawPanel->m_ClipBox, DC, ox, oy, color );
}
}
}
/***************************************/
int WinEDA_PcbFrame::GenPlaceBoard()
/***************************************/
/* Routine de generation du board ( cote composant + cote cuivre ) :
* Alloue la memoire necessaire pour representer en "bitmap" sur la grille
* courante:
* - la surface de placement des composant ( le board )
* - le bitmap des penalites
* et initialise les cellules du board a
* - HOLE pour les cellules occupees par un segment EDGE
* - CELL_is_ZONE pour les cellules internes au contour EDGE (s'il est ferme)
*
* la surface de placement (board) donne les cellules internes au contour
* du pcb, et parmi celle-ci les cellules libres et les cellules deja occupees
*
* le bitmap des penalites donnent les cellules occupes par les modules,
* augmentes d'une surface de penalite liee au nombre de pads du module
*
* le bitmap des penalites est mis a 0
* l'occupation des cellules est laisse a 0
*/
{
int jj, ii;
int NbCells;
EDA_BaseStruct* PtStruct;
wxString msg;
Board.UnInitBoard();
if( !SetBoardBoundaryBoxFromEdgesOnly() )
{
DisplayError( this, _( "No edge PCB, Unknown board size!" ), 30 );
return 0;
}
/* The boundary box must have its start point on placing grid: */
GetBoard()->m_BoundaryBox.m_Pos.x -= GetBoard()->m_BoundaryBox.m_Pos.x % g_GridRoutingSize;
GetBoard()->m_BoundaryBox.m_Pos.y -= GetBoard()->m_BoundaryBox.m_Pos.y % g_GridRoutingSize;
/* The boundary box must have its end point on placing grid: */
wxPoint end = GetBoard()->m_BoundaryBox.GetEnd();
end.x -= end.x % g_GridRoutingSize; end.x += g_GridRoutingSize;
end.y -= end.y % g_GridRoutingSize; end.y += g_GridRoutingSize;
GetBoard()->m_BoundaryBox.SetEnd( end );
Nrows = GetBoard()->m_BoundaryBox.GetHeight() / g_GridRoutingSize;
Ncols = GetBoard()->m_BoundaryBox.GetWidth() / g_GridRoutingSize;
/* get a small margin for memory allocation: */
Ncols += 2; Nrows += 2;
NbCells = Ncols * Nrows;
MsgPanel->EraseMsgBox();
msg.Printf( wxT( "%d" ), Ncols );
Affiche_1_Parametre( this, 1, _( "Cols" ), msg, GREEN );
msg.Printf( wxT( "%d" ), Nrows );
Affiche_1_Parametre( this, 7, _( "Lines" ), msg, GREEN );
msg.Printf( wxT( "%d" ), NbCells );
Affiche_1_Parametre( this, 14, _( "Cells." ), msg, YELLOW );
/* Choix du nombre de faces de placement */
Nb_Sides = TWO_SIDES;
Affiche_1_Parametre( this, 22, wxT( "S" ), ( Nb_Sides == TWO_SIDES ) ? wxT( "2" ) : wxT(
"1" ), WHITE );
/* Creation du mapping du board */
Board.InitBoard();
/* Affichage de la memoire utilisee */
msg.Printf( wxT( "%d" ), Board.m_MemSize / 1024 );
Affiche_1_Parametre( this, 24, wxT( "Mem(Ko)" ), msg, CYAN );
Route_Layer_BOTTOM = CMP_N;
if( Nb_Sides == TWO_SIDES )
Route_Layer_BOTTOM = COPPER_LAYER_N;
Route_Layer_TOP = CMP_N;
/* Place the edge layer segments */
PtStruct = GetBoard()->m_Drawings;
TRACK TmpSegm( NULL );
TmpSegm.SetLayer( -1 );
TmpSegm.SetNet( -1 );
TmpSegm.m_Width = g_GridRoutingSize / 2;
for( ; PtStruct != NULL; PtStruct = PtStruct->Next() )
{
DRAWSEGMENT* DrawSegm;
switch( PtStruct->Type() )
{
case TYPE_DRAWSEGMENT:
DrawSegm = (DRAWSEGMENT*) PtStruct;
if( DrawSegm->GetLayer() != EDGE_N )
break;
TmpSegm.m_Start = DrawSegm->m_Start;
TmpSegm.m_End = DrawSegm->m_End;
TmpSegm.m_Shape = DrawSegm->m_Shape;
TmpSegm.m_Param = DrawSegm->m_Angle;
TraceSegmentPcb( GetBoard(), &TmpSegm, HOLE | CELL_is_EDGE, g_GridRoutingSize, WRITE_CELL );
break;
case TYPE_TEXTE:
default:
break;
}
}
/* Init du point d'accrochage de la zone */
OrCell( Nrows / 2, Ncols / 2, BOTTOM, CELL_is_ZONE );
/* Remplissage des cellules de la couche BOTTOM */
ii = 1; jj = 1;
while( ii )
{
msg.Printf( wxT( "%d" ), jj++ );
Affiche_1_Parametre( this, 50, _( "Loop" ), msg, CYAN );
ii = Propagation( this );
}
/* Init de la couche TOP */
if( Board.m_BoardSide[TOP] )
memcpy( Board.m_BoardSide[TOP], Board.m_BoardSide[BOTTOM], NbCells * sizeof(BoardCell) );
return 1;
}
/******************************************************/
void WinEDA_PcbFrame::GenModuleOnBoard( MODULE* Module )
/******************************************************/
/* initialise sur le board de placement les cellules correspondantes au
* module Module
*/
{
int ox, oy, fx, fy, Penalite;
int marge = g_GridRoutingSize / 2;
int masque_layer;
D_PAD* Pad;
ox = Module->m_RealBoundaryBox.m_Pos.x - marge;
fx = Module->m_RealBoundaryBox.GetRight() + marge;
oy = Module->m_RealBoundaryBox.m_Pos.y - marge;
fy = Module->m_RealBoundaryBox.GetBottom() + marge;
if( ox < GetBoard()->m_BoundaryBox.m_Pos.x )
ox = GetBoard()->m_BoundaryBox.m_Pos.x;
if( ox > GetBoard()->m_BoundaryBox.GetRight() )
ox = GetBoard()->m_BoundaryBox.GetRight();
if( fx < GetBoard()->m_BoundaryBox.m_Pos.x )
fx = GetBoard()->m_BoundaryBox.m_Pos.x;
if( fx > GetBoard()->m_BoundaryBox.GetRight() )
fx = GetBoard()->m_BoundaryBox.GetRight();
if( oy < GetBoard()->m_BoundaryBox.m_Pos.y )
oy = GetBoard()->m_BoundaryBox.m_Pos.y;
if( oy > GetBoard()->m_BoundaryBox.GetBottom() )
oy = GetBoard()->m_BoundaryBox.GetBottom();
if( fy < GetBoard()->m_BoundaryBox.m_Pos.y )
fy = GetBoard()->m_BoundaryBox.m_Pos.y;
if( fy > GetBoard()->m_BoundaryBox.GetBottom() )
fy = GetBoard()->m_BoundaryBox.GetBottom();
masque_layer = 0;
if( Module->GetLayer() == CMP_N )
masque_layer = CMP_LAYER;
if( Module->GetLayer() == COPPER_LAYER_N )
masque_layer = CUIVRE_LAYER;
TraceFilledRectangle( GetBoard(), ox, oy, fx, fy, masque_layer,
CELL_is_MODULE, WRITE_OR_CELL );
/* Trace des pads et leur surface de securite */
marge = g_DesignSettings.m_TrackClearence + g_DesignSettings.m_CurrentTrackWidth;
for( Pad = Module->m_Pads; Pad != NULL; Pad = Pad->Next() )
{
Place_1_Pad_Board( GetBoard(), Pad, CELL_is_MODULE, marge, WRITE_OR_CELL );
}
/* Trace de la penalite */
marge = (g_GridRoutingSize * Module->m_PadNum ) / GAIN;
Penalite = PENALITE;
TracePenaliteRectangle( GetBoard(), ox, oy, fx, fy, marge, Penalite,
masque_layer );
}
/************************************************************************/
int WinEDA_PcbFrame::RecherchePlacementModule( MODULE* Module, wxDC* DC )
/************************************************************************/
/*
* Routine Principale de recherche de la position optimale du module
* Entree:
* Module pointe la struct MODULE du module a placer.
* Retourne:
* 1 si placement impossible, 0 si OK
* et MinCout = variable externe = cout du meilleur placement
*/
{
int cx, cy;
int ox, oy, fx, fy;/* cadre d'occupation du module centre sur le curseur */
int error = 1;
int DisplayChevelu = 0;
wxPoint LastPosOK;
float mincout, cout, Score;
int Penalite;
bool TstOtherSide;
Module->DisplayInfo( this );
Build_PlacedPads_List( GetBoard() );
LastPosOK.x = GetBoard()->m_BoundaryBox.m_Pos.x;
LastPosOK.y = GetBoard()->m_BoundaryBox.m_Pos.y;
cx = Module->m_Pos.x; cy = Module->m_Pos.y;
ox = Module->m_RealBoundaryBox.m_Pos.x - cx;
fx = Module->m_RealBoundaryBox.m_Size.x + ox;
oy = Module->m_RealBoundaryBox.m_Pos.y - cy;
fy = Module->m_RealBoundaryBox.m_Size.y + oy;
CurrPosition.x = GetBoard()->m_BoundaryBox.m_Pos.x - ox;
CurrPosition.y = GetBoard()->m_BoundaryBox.m_Pos.y - oy;
/* remise sur la grille de placement: */
CurrPosition.x -= CurrPosition.x % g_GridRoutingSize;
CurrPosition.y -= CurrPosition.y % g_GridRoutingSize;
g_Offset_Module.x = cx - CurrPosition.x;
g_Offset_Module.y = cy - CurrPosition.y;
GetBoard()->m_Status_Pcb &= ~RATSNEST_ITEM_LOCAL_OK;
/* tst des pastilles traversantes, qui pour un circuit imprime ayant des
* composants des 2 cotes, peuvent tomber sur un composant de cote oppose:
* s'il y a au moins 1 pastille apparaissant sur l'autre cote, ce cote
* est teste */
TstOtherSide = FALSE;
if( Nb_Sides == TWO_SIDES )
{
D_PAD* Pad; int masque_otherlayer;
masque_otherlayer = CUIVRE_LAYER;
if( Module->GetLayer() == COPPER_LAYER_N )
masque_otherlayer = CMP_LAYER;
for( Pad = Module->m_Pads; Pad != NULL; Pad = Pad->Next() )
{
if( (Pad->m_Masque_Layer & masque_otherlayer) == 0 )
continue;
TstOtherSide = TRUE;
break;
}
}
DrawModuleOutlines( DrawPanel, DC, Module );
mincout = -1.0;
Affiche_Message( wxT( "Score ??, pos ??" ) );
for( ; CurrPosition.x < GetBoard()->m_BoundaryBox.GetRight() - fx;
CurrPosition.x += g_GridRoutingSize )
{
wxYield();
if( DrawPanel->m_AbortRequest )
{
if( IsOK( this, _( "Ok to abort ?" ) ) )
return ESC;
else
DrawPanel->m_AbortRequest = FALSE;
}
cx = Module->m_Pos.x; cy = Module->m_Pos.y;
Module->m_RealBoundaryBox.m_Pos.x = ox + CurrPosition.x;
Module->m_RealBoundaryBox.m_Pos.y = oy + CurrPosition.y;
DrawModuleOutlines( DrawPanel, DC, Module );
g_Offset_Module.x = cx - CurrPosition.x;
CurrPosition.y = GetBoard()->m_BoundaryBox.m_Pos.y - oy;
/* remise sur la grille de placement: */
CurrPosition.y -= CurrPosition.y % g_GridRoutingSize;
DrawModuleOutlines( DrawPanel, DC, Module );
for( ; CurrPosition.y < GetBoard()->m_BoundaryBox.GetBottom() - fy;
CurrPosition.y += g_GridRoutingSize )
{
/* effacement des traces */
DrawModuleOutlines( DrawPanel, DC, Module );
if( DisplayChevelu )
Compute_Ratsnest_PlaceModule( DC );
DisplayChevelu = 0;
Module->m_RealBoundaryBox.m_Pos.x = ox + CurrPosition.x;
Module->m_RealBoundaryBox.m_Pos.y = oy + CurrPosition.y;
g_Offset_Module.y = cy - CurrPosition.y;
DrawModuleOutlines( DrawPanel, DC, Module );
Penalite = TstModuleOnBoard( GetBoard(), Module, TstOtherSide );
if( Penalite >= 0 ) /* c a d si le module peut etre place */
{
error = 0;
build_ratsnest_module( DC, Module );
cout = Compute_Ratsnest_PlaceModule( DC );
DisplayChevelu = 1;
Score = cout + (float) Penalite;
if( (mincout >= Score ) || (mincout < 0 ) )
{
LastPosOK = CurrPosition;
mincout = Score;
wxString msg;
msg.Printf( wxT( "Score %d, pos %3.4f, %3.4f" ),
(int) mincout,
(float) LastPosOK.x / 10000, (float) LastPosOK.y / 10000 );
Affiche_Message( msg );
}
}
if( DisplayChevelu )
Compute_Ratsnest_PlaceModule( DC );
DisplayChevelu = 0;
}
}
DrawModuleOutlines( DrawPanel, DC, Module ); /* effacement du dernier trace */
if( DisplayChevelu )
Compute_Ratsnest_PlaceModule( DC );
/* Regeneration des variables modifiees */
Module->m_RealBoundaryBox.m_Pos.x = ox + cx;
Module->m_RealBoundaryBox.m_Pos.y = oy + cy;
CurrPosition = LastPosOK;
GetBoard()->m_Status_Pcb &= ~(RATSNEST_ITEM_LOCAL_OK | LISTE_PAD_OK );
MinCout = mincout;
return error;
}
/**************************************************************************/
int TstRectangle( BOARD* Pcb, int ux0, int uy0, int ux1, int uy1, int side )
/**************************************************************************/
/* tst si la surface rectangulaire (ux,y0 .. ux,y1):
* - est sur une zone libre ( retourne OCCUPED_By_MODULE sinon)
* - est sur la surface utile du board ( retourne OUT_OF_BOARD sinon)
*
* retourne 0 si OK
*/
{
int row, col;
int row_min, row_max, col_min, col_max;
unsigned int data;
ux0 -= Pcb->m_BoundaryBox.m_Pos.x; uy0 -= Pcb->m_BoundaryBox.m_Pos.y;
ux1 -= Pcb->m_BoundaryBox.m_Pos.x; uy1 -= Pcb->m_BoundaryBox.m_Pos.y;
/* Calcul des coord limites des cellules appartenant au rectangle */
row_max = uy1 / g_GridRoutingSize;
col_max = ux1 / g_GridRoutingSize;
row_min = uy0 / g_GridRoutingSize; if( uy0 > row_min * g_GridRoutingSize )
row_min++;
col_min = ux0 / g_GridRoutingSize; if( ux0 > col_min * g_GridRoutingSize )
col_min++;
if( row_min < 0 )
row_min = 0;
if( row_max >= (Nrows - 1) )
row_max = Nrows - 1;
if( col_min < 0 )
col_min = 0;
if( col_max >= (Ncols - 1) )
col_max = Ncols - 1;
for( row = row_min; row <= row_max; row++ )
{
for( col = col_min; col <= col_max; col++ )
{
data = GetCell( row, col, side );
if( (data & CELL_is_ZONE) == 0 ) /* Cellule non autorisee */
return OUT_OF_BOARD;
if( data & CELL_is_MODULE ) /* Deja utilisee */
return OCCUPED_By_MODULE;
}
}
return 0;
}
/******************************************************************************/
unsigned int CalculePenaliteRectangle( BOARD* Pcb, int ux0, int uy0,
int ux1, int uy1, int side )
/******************************************************************************/
/* calcule et retourne la penalite de la surface rectangulaire (ux,y0 .. ux,y1):
* ( somme des valeurs des cellules du plan des Distances )
*/
{
int row, col;
int row_min, row_max, col_min, col_max;
unsigned int Penalite;
ux0 -= Pcb->m_BoundaryBox.m_Pos.x; uy0 -= Pcb->m_BoundaryBox.m_Pos.y;
ux1 -= Pcb->m_BoundaryBox.m_Pos.x; uy1 -= Pcb->m_BoundaryBox.m_Pos.y;
/* Calcul des coord limites des cellules appartenant au rectangle */
row_max = uy1 / g_GridRoutingSize;
col_max = ux1 / g_GridRoutingSize;
row_min = uy0 / g_GridRoutingSize; if( uy0 > row_min * g_GridRoutingSize )
row_min++;
col_min = ux0 / g_GridRoutingSize; if( ux0 > col_min * g_GridRoutingSize )
col_min++;
if( row_min < 0 )
row_min = 0;
if( row_max >= (Nrows - 1) )
row_max = Nrows - 1;
if( col_min < 0 )
col_min = 0;
if( col_max >= (Ncols - 1) )
col_max = Ncols - 1;
Penalite = 0;
for( row = row_min; row <= row_max; row++ )
{
for( col = col_min; col <= col_max; col++ )
{
Penalite += (int) GetDist( row, col, side );
}
}
return Penalite;
}
/**********************************************************************/
int TstModuleOnBoard( BOARD* Pcb, MODULE* Module, bool TstOtherSide )
/**********************************************************************/
/* Teste si le module peut etre place sur le board.
* retourne de diagnostic de TstRectangle().
* le module est connu par son rectangle d'encadrement
*/
{
int ox, oy, fx, fy;
int error, Penalite, marge, side, otherside;
side = TOP; otherside = BOTTOM;
if( Module->GetLayer() == COPPER_LAYER_N )
{
side = BOTTOM; otherside = TOP;
}
ox = Module->m_RealBoundaryBox.m_Pos.x;
fx = Module->m_RealBoundaryBox.GetRight();
oy = Module->m_RealBoundaryBox.m_Pos.y;
fy = Module->m_RealBoundaryBox.GetBottom();
error = TstRectangle( Pcb, ox, oy, fx, fy, side );
if( error < 0 )
return error;
if( TstOtherSide )
{
error = TstRectangle( Pcb, ox, oy, fx, fy, otherside );
if( error < 0 )
return error;
}
marge = (g_GridRoutingSize * Module->m_PadNum ) / GAIN;
Penalite = CalculePenaliteRectangle( Pcb, ox - marge, oy - marge,
fx + marge, fy + marge, side );
return Penalite;
}
/************************************************************/
float WinEDA_PcbFrame::Compute_Ratsnest_PlaceModule( wxDC* DC )
/************************************************************/
/* Routine affichant le chevelu du module en cours de deplacement, et
* evaluant le "cout" de la position.
* Le cout est la longueur des chevelus en distance de manhattan, avec
* penalite pour les inclinaisons se rapprochant de 45 degre
*/
{
RATSNEST_ITEM* pt_local_chevelu;
int ii;
float cout, icout;
int ox, oy;
int fx, fy;
int dx, dy;
if( (GetBoard()->m_Status_Pcb & RATSNEST_ITEM_LOCAL_OK) == 0 )
return -1;
pt_local_chevelu = local_liste_chevelu;
ii = nb_local_chevelu;
cout = 0;
while( ii-- > 0 )
{
if( !(pt_local_chevelu->m_Status & LOCAL_RATSNEST_ITEM) )
{
ox = pt_local_chevelu->m_PadStart->GetPosition().x - g_Offset_Module.x;
oy = pt_local_chevelu->m_PadStart->GetPosition().y - g_Offset_Module.y;
fx = pt_local_chevelu->m_PadEnd->GetPosition().x;
fy = pt_local_chevelu->m_PadEnd->GetPosition().y;
if( AutoPlaceShowAll )
{
GRLine( &DrawPanel->m_ClipBox, DC, ox, oy, fx, fy,
0, g_DesignSettings.m_RatsnestColor | GR_XOR );
}
/* Evaluation du cout du chevelu: */
dx = fx - ox;
dy = fy - oy;
dx = abs( dx );
dy = abs( dy );
if( dx < dy )
EXCHG( dx, dy );/* dx >= dy */
/* cout de la distance: */
icout = (float) dx * dx;
/* cout de l'inclinaison */
icout += 3 * (float) dy * dy;
icout = sqrt( icout );
cout += icout; /* cout total = somme des couts de chaque chevelu */
}
pt_local_chevelu++;
}
return cout;
}
/********************************************/
void Build_PlacedPads_List( BOARD* aPcb )
/********************************************/
/*
* construction de la liste ( sous forme d'une liste de stucture )
* des caract utiles des pads du PCB pour Placement Automatique )
* Cette liste est restreinte a la liste des pads des modules deja places sur
* la carte.
*
* parametres:
* adresse du buffer de classement = Pcb->ptr_pads;
*
* Variables globales mise a jour:
* pointeur ptr_pads (adr de classement de la liste des pads)
* nb_pads = nombre utile de pastilles classes
* m_Status_Pcb |= LISTE_PAD_OK
*/
{
aPcb->m_Pads.clear();
aPcb->m_NbNodes = 0;
// Initialisation du buffer et des variables de travail
for( MODULE* module = aPcb->m_Modules; module; module = module->Next() )
{
if( module->m_ModuleStatus & MODULE_to_PLACE )
continue;
for( D_PAD* pad = module->m_Pads; pad; pad = pad->Next() )
{
aPcb->m_Pads.push_back( pad );
pad->SetSubNet( 0 );
pad->SetSubRatsnest( 0 );
pad->SetParent( module );
if( pad->GetNet() )
aPcb->m_NbNodes++;
}
}
aPcb->m_Status_Pcb |= LISTE_PAD_OK;
aPcb->m_Status_Pcb &= ~(LISTE_RATSNEST_ITEM_OK | RATSNEST_ITEM_LOCAL_OK);
}
/*****************************************************************/
/* Construction de la zone de penalite ( rectangle ) d'un module */
/*****************************************************************/
/* les cellules ( du plan des Distances ) du rectangle x0,y0 a x1,y1 sont
* incrementees de la valeur Penalite
* celles qui sont externes au rectangle, mais internes au rectangle
* x0,y0 -marge a x1,y1 + marge sont incrementees d'une valeur
* (Penalite ... 0) decroissante en fonction de leur eloignement
*/
static void TracePenaliteRectangle( BOARD* Pcb, int ux0, int uy0, int ux1, int uy1,
int marge, int Penalite, int masque_layer )
{
int row, col;
int row_min, row_max, col_min, col_max, pmarge;
int trace = 0;
DistCell data, LocalPenalite;
int lgain, cgain;
if( masque_layer & g_TabOneLayerMask[Route_Layer_BOTTOM] )
trace = 1; /* Trace sur BOTTOM */
if( (masque_layer & g_TabOneLayerMask[Route_Layer_TOP] ) && Nb_Sides )
trace |= 2; /* Trace sur TOP */
if( trace == 0 )
return;
ux0 -= Pcb->m_BoundaryBox.m_Pos.x; uy0 -= Pcb->m_BoundaryBox.m_Pos.y;
ux1 -= Pcb->m_BoundaryBox.m_Pos.x; uy1 -= Pcb->m_BoundaryBox.m_Pos.y;
ux0 -= marge; ux1 += marge;
uy0 -= marge; uy1 += marge;
pmarge = marge / g_GridRoutingSize; if( pmarge < 1 )
pmarge = 1;
/* Calcul des coord limites des cellules appartenant au rectangle */
row_max = uy1 / g_GridRoutingSize;
col_max = ux1 / g_GridRoutingSize;
row_min = uy0 / g_GridRoutingSize; if( uy0 > row_min * g_GridRoutingSize )
row_min++;
col_min = ux0 / g_GridRoutingSize; if( ux0 > col_min * g_GridRoutingSize )
col_min++;
if( row_min < 0 )
row_min = 0;
if( row_max >= (Nrows - 1) )
row_max = Nrows - 1;
if( col_min < 0 )
col_min = 0;
if( col_max >= (Ncols - 1) )
col_max = Ncols - 1;
for( row = row_min; row <= row_max; row++ )
{
lgain = 256;
if( row < pmarge )
lgain = (256 * row) / pmarge;
else if( row > row_max - pmarge )
lgain = ( 256 * (row_max - row) ) / pmarge;
for( col = col_min; col <= col_max; col++ )
{
cgain = 256;
LocalPenalite = Penalite;
if( col < pmarge )
cgain = (256 * col) / pmarge;
else if( col > col_max - pmarge )
cgain = ( 256 * (col_max - col) ) / pmarge;
cgain = (cgain * lgain) / 256;
if( cgain != 256 )
LocalPenalite = (LocalPenalite * cgain) / 256;
if( trace & 1 )
{
data = GetDist( row, col, BOTTOM ) + LocalPenalite;
SetDist( row, col, BOTTOM, data );
}
if( trace & 2 )
{
data = GetDist( row, col, TOP );
data = MAX( data, LocalPenalite );
SetDist( row, col, TOP, data );
}
}
}
}
/***************************************************/
/* Routines de tri de modules, utilisee par qsort: */
/***************************************************/
static int Tri_PlaceModules( MODULE** pt_ref, MODULE** pt_compare )
{
float ff, ff1, ff2;
ff1 = (*pt_ref)->m_Surface * (*pt_ref)->m_PadNum;
ff2 = (*pt_compare)->m_Surface * (*pt_compare)->m_PadNum;
ff = ff1 - ff2;
if( ff < 0 )
return 1;
if( ff > 0 )
return -1;
return 0;
}
static int Tri_RatsModules( MODULE** pt_ref, MODULE** pt_compare )
{
float ff, ff1, ff2;
ff1 = (*pt_ref)->m_Surface * (*pt_ref)->flag;
ff2 = (*pt_compare)->m_Surface * (*pt_compare)->flag;
ff = ff1 - ff2;
if( ff < 0 )
return 1;
if( ff > 0 )
return -1;
return 0;
}
/***************************************************************/
static MODULE* PickModule( WinEDA_PcbFrame* pcbframe, wxDC* DC )
/***************************************************************/
/* Recherche le "meilleur" module a placer
* les criteres de choix sont:
* - maximum de chevelus avec les modules deja places
* - taille max, et nombre de pads max
*/
{
MODULE** BaseListeModules, ** pt_Dmod;
MODULE* Module = NULL, * AltModule = NULL;
RATSNEST_ITEM* pt_local_chevelu;
int NbModules, ii;
BaseListeModules = GenListeModules( pcbframe->GetBoard(), &NbModules );
if( BaseListeModules == NULL )
return NULL;
Build_PlacedPads_List( pcbframe->GetBoard() );
/* Tri par surface decroissante des modules
* (on place les plus gros en 1er), surface ponderee par le nombre de pads */
qsort( BaseListeModules, NbModules, sizeof(MODULE * *),
( int (*)( const void*, const void* ) )Tri_PlaceModules );
for( pt_Dmod = BaseListeModules; *pt_Dmod != NULL; pt_Dmod++ )
{
(*pt_Dmod)->flag = 0;
if( !( (*pt_Dmod)->m_ModuleStatus & MODULE_to_PLACE ) )
continue;
pcbframe->GetBoard()->m_Status_Pcb &= ~RATSNEST_ITEM_LOCAL_OK;
(*pt_Dmod)->DisplayInfo( pcbframe );
pcbframe->build_ratsnest_module( DC, *pt_Dmod );
/* calcul du nombre de chevelus externes */
pt_local_chevelu = local_liste_chevelu;
ii = nb_local_chevelu;
while( ii-- > 0 )
{
if( (pt_local_chevelu->m_Status & LOCAL_RATSNEST_ITEM) == 0 )
(*pt_Dmod)->flag++;
pt_local_chevelu++;
}
}
pcbframe->GetBoard()->m_Status_Pcb &= ~RATSNEST_ITEM_LOCAL_OK;
qsort( BaseListeModules, NbModules, sizeof(MODULE * *),
( int (*)( const void*, const void* ) )Tri_RatsModules );
/* Recherche du "meilleur" module */
Module = NULL;
for( pt_Dmod = BaseListeModules; *pt_Dmod != NULL; pt_Dmod++ )
{
if( !( (*pt_Dmod)->m_ModuleStatus & MODULE_to_PLACE ) )
continue;
AltModule = *pt_Dmod;
if( (*pt_Dmod)->flag == 0 )
continue;
Module = *pt_Dmod; break;
}
MyFree( BaseListeModules );
if( Module )
return Module;
else
return AltModule;
}
/*******************************************************/
bool WinEDA_PcbFrame::SetBoardBoundaryBoxFromEdgesOnly()
/*******************************************************/
/* Determine le rectangle d'encadrement du pcb, selon les contours
* (couche EDGE) uniquement
* Sortie:
* GetBoard()->m_BoundaryBox mis a jour
* Retourne FALSE si pas de contour
*/
{
int rayon, cx, cy, d;
int xmax, ymax;
BOARD_ITEM* PtStruct;
DRAWSEGMENT* ptr;
bool succes = FALSE;
if( GetBoard() == NULL )
return FALSE;
GetBoard()->m_BoundaryBox.m_Pos.x = GetBoard()->m_BoundaryBox.m_Pos.y = 0x7FFFFFFFl;
xmax = ymax = -0x7FFFFFFFl;
/* Analyse des Contours PCB */
PtStruct = GetBoard()->m_Drawings;
for( ; PtStruct != NULL; PtStruct = PtStruct->Next() )
{
if( PtStruct->Type() != TYPE_DRAWSEGMENT )
continue;
succes = TRUE;
ptr = (DRAWSEGMENT*) PtStruct;
d = (ptr->m_Width / 2) + 1;
if( ptr->m_Shape == S_CIRCLE )
{
cx = ptr->m_Start.x; cy = ptr->m_Start.y;
rayon = (int) hypot( (double) (ptr->m_End.x - cx), (double) (ptr->m_End.y - cy) );
rayon += d;
GetBoard()->m_BoundaryBox.m_Pos.x = MIN( GetBoard()->m_BoundaryBox.m_Pos.x, cx - rayon );
GetBoard()->m_BoundaryBox.m_Pos.y = MIN( GetBoard()->m_BoundaryBox.m_Pos.y, cy - rayon );
xmax = MAX( xmax, cx + rayon );
ymax = MAX( ymax, cy + rayon );
}
else
{
cx = MIN( ptr->m_Start.x, ptr->m_End.x );
cy = MIN( ptr->m_Start.y, ptr->m_End.y );
GetBoard()->m_BoundaryBox.m_Pos.x = MIN( GetBoard()->m_BoundaryBox.m_Pos.x, cx - d );
GetBoard()->m_BoundaryBox.m_Pos.y = MIN( GetBoard()->m_BoundaryBox.m_Pos.y, cy - d );
cx = MAX( ptr->m_Start.x, ptr->m_End.x );
cy = MAX( ptr->m_Start.y, ptr->m_End.y );
xmax = MAX( xmax, cx + d );
ymax = MAX( ymax, cy + d );
}
}
GetBoard()->m_BoundaryBox.SetWidth( xmax - GetBoard()->m_BoundaryBox.m_Pos.x );
GetBoard()->m_BoundaryBox.SetHeight( ymax - GetBoard()->m_BoundaryBox.m_Pos.y );
return succes;
}