kicad/eeschema/sim/sim_model_source.cpp

1191 lines
41 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2022 Mikolaj Wielgus
* Copyright (C) 2022-2023 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 3
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* https://www.gnu.org/licenses/gpl-3.0.html
* or you may search the http://www.gnu.org website for the version 3 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <sim/sim_model_source.h>
#include <fmt/core.h>
#include <pegtl.hpp>
#include <pegtl/contrib/parse_tree.hpp>
namespace SIM_MODEL_SOURCE_PARSER
{
using namespace SIM_MODEL_SOURCE_GRAMMAR;
template <typename Rule> struct pwlValuesSelector : std::false_type {};
template <> struct pwlValuesSelector<number<SIM_VALUE::TYPE_FLOAT, NOTATION::SI>>
: std::true_type {};
}
std::string SPICE_GENERATOR_SOURCE::ModelLine( const SPICE_ITEM& aItem ) const
{
return "";
}
std::string SPICE_GENERATOR_SOURCE::ItemLine( const SPICE_ITEM& aItem ) const
{
SPICE_ITEM item = aItem;
std::string ac = "";
std::string dc = "";
if( const SIM_MODEL::PARAM* ac_param = m_model.FindParam( "ac" ) )
ac = SIM_VALUE::ToSpice( ac_param->value );
if( const SIM_MODEL::PARAM* dc_param = m_model.FindParam( "dc" ) )
dc = SIM_VALUE::ToSpice( dc_param->value );
bool emptyLine = true;
item.modelName = "";
// @FIXME
// the keyword "DC" refers to both offset of a sine source, and value for DC analysis
// Because of this, both values are always equal in a sine source.
//
// suggestion: rename the sine parameter from "DC" to "offset"
if( dc != "" )
{
emptyLine = false;
item.modelName += fmt::format( "DC {} ", dc );
}
if( m_model.GetSpiceInfo().inlineTypeString != ""
&& m_model.GetType() != SIM_MODEL::TYPE::V // DC-only sources are already processed
&& m_model.GetType() != SIM_MODEL::TYPE::I )
{
std::string args = "";
switch( m_model.GetType() )
{
case SIM_MODEL::TYPE::V_PWL:
case SIM_MODEL::TYPE::I_PWL:
{
tao::pegtl::string_input<> in( m_model.GetParam( 0 ).value, "from_content" );
std::unique_ptr<tao::pegtl::parse_tree::node> root;
try
{
root = tao::pegtl::parse_tree::parse<SIM_MODEL_SOURCE_PARSER::pwlValuesGrammar,
SIM_MODEL_SOURCE_PARSER::pwlValuesSelector>
( in );
}
catch( const tao::pegtl::parse_error& )
{
break;
}
if( root )
{
for( const auto& node : root->children )
{
if( node->is_type<SIM_MODEL_SOURCE_PARSER::number<SIM_VALUE::TYPE_FLOAT,
SIM_VALUE::NOTATION::SI>>() )
{
args.append( SIM_VALUE::ToSpice( node->string() ) + " " );
}
}
}
break;
}
// TODO: dt should be tstep by default.
case SIM_MODEL::TYPE::V_WHITENOISE:
case SIM_MODEL::TYPE::I_WHITENOISE:
args.append( getParamValueString( "rms", "0" ) + " " );
args.append( getParamValueString( "dt", "0" ) + " " );
args.append( "0 0 0 0 0 " );
break;
case SIM_MODEL::TYPE::V_PINKNOISE:
case SIM_MODEL::TYPE::I_PINKNOISE:
args.append( "0 " );
args.append( getParamValueString( "dt", "0" ) + " " );
args.append( getParamValueString( "slope", "0" ) + " " );
args.append( getParamValueString( "rms", "0" ) + " " );
args.append( "0 0 0 " );
break;
case SIM_MODEL::TYPE::V_BURSTNOISE:
case SIM_MODEL::TYPE::I_BURSTNOISE:
args.append( "0 0 0 0 " );
args.append( getParamValueString( "ampl", "0" ) + " " );
args.append( getParamValueString( "tcapt", "0" ) + " " );
args.append( getParamValueString( "temit", "0" ) + " " );
break;
case SIM_MODEL::TYPE::V_RANDUNIFORM:
case SIM_MODEL::TYPE::I_RANDUNIFORM:
{
/* TODO
args.append( "1 " );
args.append( getParamValueString( "dt", "0" ) + " " );
args.append( getParamValueString( "td", "0" ) + " " );
SIM_VALUE_FLOAT min = dynamic_cast<SIM_VALUE_FLOAT&>( m_model.FindParam( "max" )->value );
if( !min.ToString().empty() )
min.FromString( "0" );
SIM_VALUE_FLOAT max = dynamic_cast<SIM_VALUE_FLOAT&>( m_model.FindParam( "min" )->value );
if( !max.ToString().empty() )
max.FromString( "0" );
SIM_VALUE_FLOAT range = max - min;
SIM_VALUE_FLOAT offset = ( max + min ) / SIM_VALUE_FLOAT( 2 );
args.append( range.ToSpiceString() + " " );
args.append( offset.ToSpiceString() + " " );
*/
break;
}
case SIM_MODEL::TYPE::V_RANDNORMAL:
case SIM_MODEL::TYPE::I_RANDNORMAL:
args.append( "2 " );
args.append( getParamValueString( "dt", "0" ) + " " );
args.append( getParamValueString( "td", "0" ) + " " );
args.append( getParamValueString( "stddev", "0" ) + " " );
args.append( getParamValueString( "mean", "0" ) + " " );
break;
case SIM_MODEL::TYPE::V_RANDEXP:
case SIM_MODEL::TYPE::I_RANDEXP:
args.append( "3 " );
args.append( getParamValueString( "dt", "0" ) + " " );
args.append( getParamValueString( "td", "0" ) + " " );
args.append( getParamValueString( "mean", "0" ) + " " );
args.append( getParamValueString( "offset", "0" ) + " " );
break;
/*
case SIM_MODEL::TYPE::V_RANDPOISSON:
case SIM_MODEL::TYPE::I_RANDPOISSON:
args.append( "4 " );
args.append( getParamValueString( "dt", "0" ) + " " );
args.append( getParamValueString( "td", "0" ) + " " );
args.append( getParamValueString( "lambda", "0" ) + " " );
args.append( getParamValueString( "offset", "0" ) + " " );
break;
*/
default:
for( const SIM_MODEL::PARAM& param : m_model.GetParams() )
{
std::string argStr = SIM_VALUE::ToSpice( param.value );
if( argStr != "" )
args.append( argStr + " " );
}
break;
}
emptyLine = false;
item.modelName += fmt::format( "{}( {}) ", m_model.GetSpiceInfo().inlineTypeString, args );
}
else
{
switch( m_model.GetType() )
case SIM_MODEL::TYPE::V_VCL:
case SIM_MODEL::TYPE::I_VCL:
{
item.modelName += fmt::format( "{} ", getParamValueString( "gain", "1.0" ) );
emptyLine = false;
break;
case SIM_MODEL::TYPE::V_CCL:
case SIM_MODEL::TYPE::I_CCL:
item.modelName += fmt::format( "{} {} ",
getParamValueString( "control", "V?" ),
getParamValueString( "gain", "1.0" ) );
emptyLine = false;
break;
default:
break;
}
}
if( ac != "" )
{
std::string ph = "";
if( const SIM_MODEL::PARAM* ph_param = m_model.FindParam( "ph" ) )
ph = SIM_VALUE::ToSpice( ph_param->value );
emptyLine = false;
item.modelName += fmt::format( "AC {} {} ", ac, ph );
}
std::string portnum = "";
if( const SIM_MODEL::PARAM* portnum_param = m_model.FindParam( "portnum" ) )
portnum = SIM_VALUE::ToSpice( portnum_param->value );
if( portnum != "" )
{
item.modelName += fmt::format( "portnum {} ", portnum );
std::string z0 = "";
if( const SIM_MODEL::PARAM* z0_param = m_model.FindParam( "z0" ) )
z0 = SIM_VALUE::ToSpice( z0_param->value );
if( z0 != "" )
item.modelName += fmt::format( "z0 {} ", z0 );
}
if( emptyLine )
{
item.modelName = SIM_VALUE::ToSpice( m_model.GetParam( 0 ).value );
}
return SPICE_GENERATOR::ItemLine( item );
}
std::string SPICE_GENERATOR_SOURCE::getParamValueString( const std::string& aParamName,
const std::string& aDefaultValue ) const
{
std::string result = "";
if ( m_model.FindParam( aParamName ) )
result = SIM_VALUE::ToSpice( m_model.FindParam( aParamName )->value );
if( result == "" )
result = aDefaultValue;
return result;
}
SIM_MODEL_SOURCE::SIM_MODEL_SOURCE( TYPE aType ) :
SIM_MODEL( aType, std::make_unique<SPICE_GENERATOR_SOURCE>( *this ),
std::make_unique<SIM_MODEL_SOURCE_SERIALIZER>( *this ) )
{
for( const SIM_MODEL::PARAM::INFO& paramInfo : makeParamInfos( aType ) )
AddParam( paramInfo );
}
void SIM_MODEL_SOURCE::doSetParamValue( int aParamIndex, const std::string& aValue )
{
// Sources are special. All preceding parameter values must be filled. If they are not, fill
// them out automatically. If a value is nulled, delete everything after it.
if( aValue.empty() )
{
for( int paramIndex = static_cast<int>( aParamIndex );
paramIndex < GetParamCount();
++paramIndex )
{
m_params.at( aParamIndex ).value = "";
}
}
else
{
for( int paramIndex = 0; paramIndex < aParamIndex; ++paramIndex )
{
if( GetParam( paramIndex ).value == "" )
{
m_params.at( aParamIndex ).value = "0";
SIM_MODEL::SetParamValue( paramIndex, "0" );
}
}
}
return SIM_MODEL::doSetParamValue( aParamIndex, aValue );
}
const std::vector<SIM_MODEL::PARAM::INFO>& SIM_MODEL_SOURCE::makeParamInfos( TYPE aType )
{
static std::vector<PARAM::INFO> vdc = makeDcParamInfos( "y", "V" );
static std::vector<PARAM::INFO> idc = makeDcParamInfos( "y", "A" );
static std::vector<PARAM::INFO> vsin = makeSinParamInfos( "y", "V" );
static std::vector<PARAM::INFO> isin = makeSinParamInfos( "y", "A" );
static std::vector<PARAM::INFO> vpulse = makePulseParamInfos( "y", "V" );
static std::vector<PARAM::INFO> ipulse = makePulseParamInfos( "y", "A" );
static std::vector<PARAM::INFO> vexp = makeExpParamInfos( "y", "V" );
static std::vector<PARAM::INFO> iexp = makeExpParamInfos( "y", "A" );
/*static std::vector<PARAM::INFO> vsfam = makeSfamParamInfos( "y", "V" );
static std::vector<PARAM::INFO> isfam = makeSfamParamInfos( "y", "A" );
static std::vector<PARAM::INFO> vsffm = makeSffmParamInfos( "y", "V" );
static std::vector<PARAM::INFO> isffm = makeSffmParamInfos( "y", "A" );*/
static std::vector<PARAM::INFO> vcvs = makeVcParamInfos( "" );
static std::vector<PARAM::INFO> ccvs = makeCcParamInfos( "ohm" );
static std::vector<PARAM::INFO> vpwl = makePwlParamInfos( "y", "Voltage", "V" );
static std::vector<PARAM::INFO> vccs = makeVcParamInfos( "S" );
static std::vector<PARAM::INFO> cccs = makeCcParamInfos( "" );
static std::vector<PARAM::INFO> ipwl = makePwlParamInfos( "y", "Current", "A" );
static std::vector<PARAM::INFO> vwhitenoise = makeWhiteNoiseParamInfos( "y", "V" );
static std::vector<PARAM::INFO> iwhitenoise = makeWhiteNoiseParamInfos( "y", "A" );
static std::vector<PARAM::INFO> vpinknoise = makePinkNoiseParamInfos( "y", "V" );
static std::vector<PARAM::INFO> ipinknoise = makePinkNoiseParamInfos( "y", "A" );
static std::vector<PARAM::INFO> vburstnoise = makeBurstNoiseParamInfos( "y", "V" );
static std::vector<PARAM::INFO> iburstnoise = makeBurstNoiseParamInfos( "y", "A" );
static std::vector<PARAM::INFO> vrandomuniform = makeRandomUniformParamInfos( "y", "V" );
static std::vector<PARAM::INFO> irandomuniform = makeRandomUniformParamInfos( "y", "A" );
static std::vector<PARAM::INFO> vrandomnormal = makeRandomNormalParamInfos( "y", "V" );
static std::vector<PARAM::INFO> irandomnormal = makeRandomNormalParamInfos( "y", "A" );
static std::vector<PARAM::INFO> vrandomexp = makeRandomExpParamInfos( "y", "V" );
static std::vector<PARAM::INFO> irandomexp = makeRandomExpParamInfos( "y", "A" );
static std::vector<PARAM::INFO> vrandompoisson = makeRandomPoissonParamInfos( "y", "V" );
static std::vector<PARAM::INFO> irandompoisson = makeRandomPoissonParamInfos( "y", "A" );
switch( aType )
{
case TYPE::V: return vdc;
case TYPE::I: return idc;
case TYPE::V_SIN: return vsin;
case TYPE::I_SIN: return isin;
case TYPE::V_PULSE: return vpulse;
case TYPE::I_PULSE: return ipulse;
case TYPE::V_EXP: return vexp;
case TYPE::I_EXP: return iexp;
//case TYPE::V_SFAM: return vsfam;
//case TYPE::I_SFAM: return isfam;
//case TYPE::V_SFFM: return vsffm;
//case TYPE::I_SFFM: return isffm;
case TYPE::V_VCL: return vcvs;
case TYPE::V_CCL: return ccvs;
case TYPE::V_PWL: return vpwl;
case TYPE::I_VCL: return vccs;
case TYPE::I_CCL: return cccs;
case TYPE::I_PWL: return ipwl;
case TYPE::V_WHITENOISE: return vwhitenoise;
case TYPE::I_WHITENOISE: return iwhitenoise;
case TYPE::V_PINKNOISE: return vpinknoise;
case TYPE::I_PINKNOISE: return ipinknoise;
case TYPE::V_BURSTNOISE: return vburstnoise;
case TYPE::I_BURSTNOISE: return iburstnoise;
case TYPE::V_RANDUNIFORM: return vrandomuniform;
case TYPE::I_RANDUNIFORM: return irandomuniform;
case TYPE::V_RANDNORMAL: return vrandomnormal;
case TYPE::I_RANDNORMAL: return irandomnormal;
case TYPE::V_RANDEXP: return vrandomexp;
case TYPE::I_RANDEXP: return irandomexp;
//case TYPE::V_RANDPOISSON: return vrandompoisson;
//case TYPE::I_RANDPOISSON: return irandompoisson;
default:
wxFAIL_MSG( "Unhandled SIM_MODEL type in SIM_MODEL_SOURCE" );
static std::vector<SIM_MODEL::PARAM::INFO> empty;
return empty;
}
}
std::vector<SIM_MODEL::PARAM::INFO> SIM_MODEL_SOURCE::makeDcParamInfos( const std::string& aPrefix,
const std::string& aUnit )
{
std::vector<PARAM::INFO> paramInfos;
PARAM::INFO paramInfo;
paramInfo.name = "dc";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = aUnit;
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "0";
paramInfo.description = "DC value";
paramInfos.push_back( paramInfo );
appendAcParamInfos( paramInfos, aUnit );
appendSpParamInfos( paramInfos, aUnit );
return paramInfos;
}
std::vector<SIM_MODEL::PARAM::INFO> SIM_MODEL_SOURCE::makeSinParamInfos( const std::string& aPrefix,
const std::string& aUnit )
{
std::vector<PARAM::INFO> paramInfos;
PARAM::INFO paramInfo;
paramInfo.name = "dc";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = aUnit;
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "";
paramInfo.description = "DC offset";
paramInfos.push_back( paramInfo );
paramInfo.name = "ampl";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = aUnit;
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "";
paramInfo.description = "Amplitude";
paramInfos.push_back( paramInfo );
paramInfo.name = "f";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = "Hz";
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "1/tstop";
paramInfo.description = "Frequency";
paramInfos.push_back( paramInfo );
paramInfo.name = "td";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = "s";
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "0";
paramInfo.description = "Delay";
paramInfos.push_back( paramInfo );
paramInfo.name = "theta";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = "1/s";
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "0";
paramInfo.description = "Damping factor";
paramInfos.push_back( paramInfo );
paramInfo.name = "phase";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = "°";
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "0";
paramInfo.description = "Phase";
paramInfos.push_back( paramInfo );
appendAcParamInfos( paramInfos, aUnit );
appendSpParamInfos( paramInfos, aUnit );
return paramInfos;
}
std::vector<SIM_MODEL::PARAM::INFO> SIM_MODEL_SOURCE::makePulseParamInfos( const std::string& aPrefix,
const std::string& aUnit )
{
std::vector<PARAM::INFO> paramInfos;
PARAM::INFO paramInfo;
paramInfo.name = aPrefix + "1";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = aUnit;
paramInfo.category = PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "";
paramInfo.description = "Initial value";
paramInfos.push_back( paramInfo );
paramInfo.name = aPrefix + "2";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = aUnit;
paramInfo.category = PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "";
paramInfo.description = "Pulsed value";
paramInfos.push_back( paramInfo );
paramInfo.name = "td";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = "s";
paramInfo.category = PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "0";
paramInfo.description = "Delay";
paramInfos.push_back( paramInfo );
paramInfo.name = "tr";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = "s";
paramInfo.category = PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "tstep";
paramInfo.description = "Rise time";
paramInfos.push_back( paramInfo );
paramInfo.name = "tf";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = "s";
paramInfo.category = PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "tstep";
paramInfo.description = "Fall time";
paramInfos.push_back( paramInfo );
paramInfo.name = "tw"; // Ngspice calls it "pw".
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = "s";
paramInfo.category = PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "tstop";
paramInfo.description = "Pulse width";
paramInfos.push_back( paramInfo );
paramInfo.name = "per";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = "s";
paramInfo.category = PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "tstop";
paramInfo.description = "Period";
paramInfos.push_back( paramInfo );
paramInfo.name = "np";
paramInfo.type = SIM_VALUE::TYPE_INT;
paramInfo.unit = "";
paramInfo.category = PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "";
paramInfo.description = "Number of pulses";
paramInfos.push_back( paramInfo );
appendAcParamInfos( paramInfos, aUnit );
appendSpParamInfos( paramInfos, aUnit );
return paramInfos;
}
std::vector<SIM_MODEL::PARAM::INFO> SIM_MODEL_SOURCE::makeExpParamInfos( const std::string& aPrefix,
const std::string& aUnit )
{
std::vector<PARAM::INFO> paramInfos;
PARAM::INFO paramInfo;
paramInfo.name = aPrefix + "1";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = aUnit;
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "";
paramInfo.description = "Initial value";
paramInfos.push_back( paramInfo );
paramInfo.name = aPrefix + "2";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = aUnit;
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "";
paramInfo.description = "Pulsed value";
paramInfos.push_back( paramInfo );
paramInfo.name = "td1";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = "s";
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "0";
paramInfo.description = "Rise delay time";
paramInfos.push_back( paramInfo );
paramInfo.name = "tau1";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = "s";
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "tstep";
paramInfo.description = "Rise time constant";
paramInfos.push_back( paramInfo );
paramInfo.name = "td2";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = "s";
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "td1+tstep";
paramInfo.description = "Fall delay time";
paramInfos.push_back( paramInfo );
paramInfo.name = "tau2";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = "s";
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "tstep";
paramInfo.description = "Fall time constant";
paramInfos.push_back( paramInfo );
appendAcParamInfos( paramInfos, aUnit );
appendSpParamInfos( paramInfos, aUnit );
return paramInfos;
}
/*std::vector<SIM_MODEL::PARAM::INFO> SIM_MODEL_SOURCE::makeSfamParamInfos( const std::string& aPrefix, const std::string& aUnit )
{
std::vector<PARAM::INFO> paramInfos;
PARAM::INFO paramInfo;
paramInfo.name = "dc";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = aUnit;
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "";
paramInfo.description = "DC offset";
paramInfo.name = "ampl";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = aUnit;
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "";
paramInfo.description = "Amplitude";
paramInfos.push_back( paramInfo );
paramInfo.name = "mo";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = "";
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "";
paramInfo.description = "Modulating signal offset";
paramInfos.push_back( paramInfo );
paramInfo.name = "fc";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = "Hz";
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "";
paramInfo.description = "Carrier frequency";
paramInfos.push_back( paramInfo );
paramInfo.name = "mf";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = "Hz";
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "";
paramInfo.description = "Modulating frequency";
paramInfos.push_back( paramInfo );
appendAcParamInfos( paramInfos, aUnit );
return paramInfos;
}
std::vector<SIM_MODEL::PARAM::INFO> SIM_MODEL_SOURCE::makeSffmParamInfos( const std::string& aPrefix, const std::string& aUnit )
{
std::vector<PARAM::INFO> paramInfos;
PARAM::INFO paramInfo;
paramInfo.name = "dc";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = aUnit;
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "";
paramInfo.description = "DC offset";
paramInfos.push_back( paramInfo );
paramInfo.name = "ampl";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = aUnit;
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "";
paramInfo.description = "Amplitude";
paramInfos.push_back( paramInfo );
paramInfo.name = "fc";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = "Hz";
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "1/tstop";
paramInfo.description = "Carrier frequency";
paramInfos.push_back( paramInfo );
paramInfo.name = "mdi";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = "";
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "";
paramInfo.description = "Modulation index";
paramInfos.push_back( paramInfo );
paramInfo.name = "fs";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = "Hz";
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "1/tstop";
paramInfo.description = "Signal frequency";
paramInfos.push_back( paramInfo );
paramInfo.name = "phasec";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = "°";
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "0";
paramInfo.description = "Carrier phase";
paramInfos.push_back( paramInfo );
paramInfo.name = "phases";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = "°";
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "0";
paramInfo.description = "Signal phase";
paramInfos.push_back( paramInfo );
appendAcParamInfos( paramInfos, aUnit );
return paramInfos;
}*/
std::vector<SIM_MODEL::PARAM::INFO> SIM_MODEL_SOURCE::makeCcParamInfos( const std::string& aGainUnit )
{
std::vector<PARAM::INFO> paramInfos;
PARAM::INFO paramInfo;
paramInfo.name = "gain";
paramInfo.id = 1;
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = aGainUnit;
paramInfo.description = "Gain";
paramInfos.push_back( paramInfo );
paramInfo.name = "control";
paramInfo.id = 2;
paramInfo.type = SIM_VALUE::TYPE_STRING;
paramInfo.description = "Controlling voltage source";
paramInfos.push_back( paramInfo );
return paramInfos;
}
std::vector<SIM_MODEL::PARAM::INFO> SIM_MODEL_SOURCE::makeVcParamInfos( const std::string& aGainUnit )
{
std::vector<PARAM::INFO> paramInfos;
PARAM::INFO paramInfo;
paramInfo.name = "gain";
paramInfo.id = 1;
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = aGainUnit;
paramInfo.description = "Gain";
paramInfos.push_back( paramInfo );
return paramInfos;
}
std::vector<SIM_MODEL::PARAM::INFO> SIM_MODEL_SOURCE::makePwlParamInfos( const std::string& aPrefix,
const std::string& aQuantity,
const std::string& aUnit )
{
std::vector<PARAM::INFO> paramInfos;
PARAM::INFO paramInfo;
paramInfo.name = "pwl";
paramInfo.type = SIM_VALUE::TYPE_STRING;
paramInfo.unit = "s," + aUnit;
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "";
paramInfo.description = aUnit == "V" ? "Time-voltage points" : "Time-current points";
paramInfos.push_back( paramInfo );
// TODO: Ngspice doesn't support "td" and "r" for current sources, so let's disable that for
// now.
/*paramInfo.name = "td";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = "s";
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "0";
paramInfo.description = aUnit == "V" ? "Time-voltage points" : "Time-current points";
paramInfo.isSpiceInstanceParam = true;
paramInfos.push_back( paramInfo );
paramInfo.name = "repeat";
paramInfo.type = SIM_VALUE::TYPE_BOOL;
paramInfo.unit = "";
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "0";
paramInfo.description = "Repeat forever";
paramInfo.isSpiceInstanceParam = true;
paramInfo.spiceInstanceName = "r";
paramInfos.push_back( paramInfo );*/
/*paramInfo.name = "t";
paramInfo.type = SIM_VALUE::TYPE_FLOAT_VECTOR;
paramInfo.unit = "s";
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "";
paramInfo.description = "Time vector";
paramInfos.push_back( paramInfo );
paramInfo.name = aPrefix;
paramInfo.type = SIM_VALUE::TYPE_FLOAT_VECTOR;
paramInfo.unit = aUnit;
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "";
paramInfo.description = aQuantity + " vector";
paramInfos.push_back( paramInfo );
paramInfo.name = "repeat";
paramInfo.type = SIM_VALUE::TYPE_BOOL;
paramInfo.unit = "";
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "";
paramInfo.description = "Repeat forever";
paramInfos.push_back( paramInfo );
paramInfo.name = "td";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = "s";
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "0";
paramInfo.description = "Delay";
paramInfos.push_back( paramInfo );*/
appendAcParamInfos( paramInfos, aUnit );
appendSpParamInfos( paramInfos, aUnit );
return paramInfos;
}
std::vector<SIM_MODEL::PARAM::INFO> SIM_MODEL_SOURCE::makeWhiteNoiseParamInfos( const std::string& aPrefix,
const std::string& aUnit )
{
std::vector<PARAM::INFO> paramInfos;
PARAM::INFO paramInfo;
paramInfo.name = "rms";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = aUnit;
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "0";
paramInfo.description = "White noise RMS amplitude";
paramInfos.push_back( paramInfo );
paramInfo.name = "dt";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = "s";
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "0";
paramInfo.description = "Time step";
paramInfos.push_back( paramInfo );
appendAcParamInfos( paramInfos, aUnit );
appendSpParamInfos( paramInfos, aUnit );
return paramInfos;
}
std::vector<SIM_MODEL::PARAM::INFO> SIM_MODEL_SOURCE::makePinkNoiseParamInfos( const std::string& aPrefix,
const std::string& aUnit )
{
std::vector<PARAM::INFO> paramInfos;
PARAM::INFO paramInfo;
paramInfo.name = "rms";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = "";
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "0";
paramInfo.description = "1/f noise RMS amplitude";
paramInfos.push_back( paramInfo );
paramInfo.name = "slope";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = "";
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "1";
paramInfo.description = "1/f noise exponent";
paramInfos.push_back( paramInfo );
paramInfo.name = "dt";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = "s";
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "0";
paramInfo.description = "Time step";
paramInfos.push_back( paramInfo );
appendAcParamInfos( paramInfos, aUnit );
appendSpParamInfos( paramInfos, aUnit );
return paramInfos;
}
std::vector<SIM_MODEL::PARAM::INFO> SIM_MODEL_SOURCE::makeBurstNoiseParamInfos( const std::string& aPrefix,
const std::string& aUnit )
{
std::vector<PARAM::INFO> paramInfos;
PARAM::INFO paramInfo;
paramInfo.name = "ampl";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = aUnit;
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "0";
paramInfo.description = "Burst noise amplitude";
paramInfos.push_back( paramInfo );
paramInfo.name = "tcapt";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = "s";
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "0";
paramInfo.description = "Burst noise trap capture time";
paramInfos.push_back( paramInfo );
paramInfo.name = "temit";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = "s";
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "0";
paramInfo.description = "Burst noise trap emission time";
paramInfos.push_back( paramInfo );
appendAcParamInfos( paramInfos, aUnit );
appendSpParamInfos( paramInfos, aUnit );
return paramInfos;
}
std::vector<SIM_MODEL::PARAM::INFO> SIM_MODEL_SOURCE::makeRandomUniformParamInfos( const std::string& aPrefix,
const std::string& aUnit )
{
std::vector<PARAM::INFO> paramInfos;
PARAM::INFO paramInfo;
paramInfo.name = "min";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = aUnit;
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "-0.5";
paramInfo.description = "Min. value";
paramInfos.push_back( paramInfo );
paramInfo.name = "max";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = aUnit;
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "0.5";
paramInfo.description = "Max. value";
paramInfos.push_back( paramInfo );
paramInfo.name = "dt";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = "s";
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "0";
paramInfo.description = "Time step";
paramInfos.push_back( paramInfo );
paramInfo.name = "td";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = "s";
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "0";
paramInfo.description = "Delay";
paramInfos.push_back( paramInfo );
appendAcParamInfos( paramInfos, aUnit );
appendSpParamInfos( paramInfos, aUnit );
return paramInfos;
}
std::vector<SIM_MODEL::PARAM::INFO> SIM_MODEL_SOURCE::makeRandomNormalParamInfos( const std::string& aPrefix,
const std::string& aUnit )
{
std::vector<PARAM::INFO> paramInfos;
PARAM::INFO paramInfo;
paramInfo.name = "mean";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = aUnit;
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "0";
paramInfo.description = "Mean";
paramInfos.push_back( paramInfo );
paramInfo.name = "stddev";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = aUnit;
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "1";
paramInfo.description = "Standard deviation";
paramInfos.push_back( paramInfo );
paramInfo.name = "dt";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = "s";
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "0";
paramInfo.description = "Time step";
paramInfos.push_back( paramInfo );
paramInfo.name = "td";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = "s";
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "0";
paramInfo.description = "Delay";
paramInfos.push_back( paramInfo );
appendAcParamInfos( paramInfos, aUnit );
appendSpParamInfos( paramInfos, aUnit );
return paramInfos;
}
std::vector<SIM_MODEL::PARAM::INFO> SIM_MODEL_SOURCE::makeRandomExpParamInfos( const std::string& aPrefix,
const std::string& aUnit )
{
std::vector<PARAM::INFO> paramInfos;
PARAM::INFO paramInfo;
paramInfo.name = "offset";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = aUnit;
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "0";
paramInfo.description = "Offset";
paramInfos.push_back( paramInfo );
paramInfo.name = "mean";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = aUnit;
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "1";
paramInfo.description = "Mean";
paramInfos.push_back( paramInfo );
paramInfo.name = "dt";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = "s";
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "0";
paramInfo.description = "Time step";
paramInfos.push_back( paramInfo );
paramInfo.name = "td";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = "s";
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "0";
paramInfo.description = "Delay";
paramInfos.push_back( paramInfo );
appendAcParamInfos( paramInfos, aUnit );
appendSpParamInfos( paramInfos, aUnit );
return paramInfos;
}
std::vector<SIM_MODEL::PARAM::INFO> SIM_MODEL_SOURCE::makeRandomPoissonParamInfos( const std::string& aPrefix,
const std::string& aUnit )
{
std::vector<PARAM::INFO> paramInfos;
PARAM::INFO paramInfo;
paramInfo.name = "offset";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = aUnit;
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "0";
paramInfo.description = "Offset";
paramInfos.push_back( paramInfo );
paramInfo.name = "lambda";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = aUnit;
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "1";
paramInfo.description = "Mean";
paramInfos.push_back( paramInfo );
paramInfo.name = "dt";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = "s";
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "0";
paramInfo.description = "Time step";
paramInfos.push_back( paramInfo );
paramInfo.name = "td";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = "s";
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::PRINCIPAL;
paramInfo.defaultValue = "0";
paramInfo.description = "Delay";
paramInfos.push_back( paramInfo );
appendAcParamInfos( paramInfos, aUnit );
appendSpParamInfos( paramInfos, aUnit );
return paramInfos;
}
void SIM_MODEL_SOURCE::appendAcParamInfos( std::vector<PARAM::INFO>& aParamInfos, const std::string& aUnit )
{
PARAM::INFO paramInfo;
paramInfo.name = "ac";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = aUnit;
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::AC;
paramInfo.defaultValue = "0";
paramInfo.description = "AC magnitude";
aParamInfos.push_back( paramInfo );
paramInfo.name = "ph";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = "°";
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::AC;
paramInfo.defaultValue = "0";
paramInfo.description = "AC phase";
aParamInfos.push_back( paramInfo );
}
void SIM_MODEL_SOURCE::appendSpParamInfos( std::vector<PARAM::INFO>& aParamInfos,
const std::string& aUnit )
{
PARAM::INFO paramInfo;
if( !strcmp( aUnit.c_str(), "V" ) )
{
paramInfo.name = "portnum";
paramInfo.type = SIM_VALUE::TYPE_INT;
paramInfo.unit = "";
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::S_PARAM;
paramInfo.defaultValue = "";
paramInfo.description = "Port number";
aParamInfos.push_back( paramInfo );
paramInfo.name = "z0";
paramInfo.type = SIM_VALUE::TYPE_FLOAT;
paramInfo.unit = "Ohm";
paramInfo.category = SIM_MODEL::PARAM::CATEGORY::S_PARAM;
paramInfo.defaultValue = "";
paramInfo.description = "Internal impedance";
aParamInfos.push_back( paramInfo );
}
}
std::vector<std::string> SIM_MODEL_SOURCE::GetPinNames() const
{
if( GetDeviceType() == SIM_MODEL::DEVICE_T::E || GetDeviceType() == SIM_MODEL::DEVICE_T::G )
return { "+", "-", "C+", "C-" };
else
return { "+", "-" };
}