kicad/pcbnew/router/pns_shove.cpp

1374 lines
34 KiB
C++

/*
* KiRouter - a push-and-(sometimes-)shove PCB router
*
* Copyright (C) 2013-2014 CERN
* Author: Tomasz Wlostowski <tomasz.wlostowski@cern.ch>
*
* This program is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#define PNS_DEBUG
#include <deque>
#include <cassert>
#include "trace.h"
#include "range.h"
#include "pns_line.h"
#include "pns_node.h"
#include "pns_walkaround.h"
#include "pns_shove.h"
#include "pns_solid.h"
#include "pns_optimizer.h"
#include "pns_via.h"
#include "pns_utils.h"
#include "pns_router.h"
#include "pns_shove.h"
#include "pns_utils.h"
#include "pns_topology.h"
#include "time_limit.h"
#include <profile.h>
void PNS_SHOVE::replaceItems( PNS_ITEM* aOld, PNS_ITEM* aNew )
{
OPT_BOX2I changed_area = ChangedArea( aOld, aNew );
if( changed_area )
{
m_affectedAreaSum = m_affectedAreaSum ? m_affectedAreaSum->Merge ( *changed_area ) : *changed_area;
}
m_currentNode->Replace( aOld, aNew );
}
int PNS_SHOVE::getClearance( const PNS_ITEM* aA, const PNS_ITEM* aB ) const
{
if( m_forceClearance >= 0 )
return m_forceClearance;
return m_currentNode->GetClearance( aA, aB );
}
void PNS_SHOVE::sanityCheck( PNS_LINE* aOld, PNS_LINE* aNew )
{
assert( aOld->CPoint( 0 ) == aNew->CPoint( 0 ) );
assert( aOld->CPoint( -1 ) == aNew->CPoint( -1 ) );
}
PNS_SHOVE::PNS_SHOVE( PNS_NODE* aWorld, PNS_ROUTER* aRouter ) :
PNS_ALGO_BASE ( aRouter )
{
m_forceClearance = -1;
m_root = aWorld;
m_currentNode = aWorld;
// Initialize other temporary variables:
m_draggedVia = NULL;
m_iter = 0;
m_multiLineMode = false;
}
PNS_SHOVE::~PNS_SHOVE()
{
}
PNS_LINE PNS_SHOVE::assembleLine( const PNS_SEGMENT* aSeg, int* aIndex )
{
return m_currentNode->AssembleLine( const_cast<PNS_SEGMENT*>( aSeg ), aIndex, true );
}
// A dumb function that checks if the shoved line is shoved the right way, e.g.
// visually "outwards" of the line/via applying pressure on it. Unfortunately there's no
// mathematical concept of orientation of an open curve, so we use some primitive heuristics:
// if the shoved line wraps around the start of the "pusher", it's likely shoved in wrong direction.
bool PNS_SHOVE::checkBumpDirection( const PNS_LINE& aCurrent, const PNS_LINE& aShoved ) const
{
const SEG& ss = aCurrent.CSegment( 0 );
int dist = getClearance( &aCurrent, &aShoved ) + PNS_HULL_MARGIN;
dist += aCurrent.Width() / 2;
dist += aShoved.Width() / 2;
const VECTOR2I ps = ss.A - ( ss.B - ss.A ).Resize( dist );
return !aShoved.CLine().PointOnEdge( ps );
}
PNS_SHOVE::SHOVE_STATUS PNS_SHOVE::walkaroundLoneVia( PNS_LINE& aCurrent, PNS_LINE& aObstacle,
PNS_LINE& aShoved )
{
int clearance = getClearance( &aCurrent, &aObstacle );
const SHAPE_LINE_CHAIN hull = aCurrent.Via().Hull( clearance, aObstacle.Width() );
SHAPE_LINE_CHAIN path_cw, path_ccw;
aObstacle.Walkaround( hull, path_cw, true );
aObstacle.Walkaround( hull, path_ccw, false );
const SHAPE_LINE_CHAIN& shortest = path_ccw.Length() < path_cw.Length() ? path_ccw : path_cw;
if( shortest.PointCount() < 2 )
return SH_INCOMPLETE;
if( aObstacle.CPoint( -1 ) != shortest.CPoint( -1 ) )
return SH_INCOMPLETE;
if( aObstacle.CPoint( 0 ) != shortest.CPoint( 0 ) )
return SH_INCOMPLETE;
aShoved.SetShape( shortest );
if( m_currentNode->CheckColliding( &aShoved, &aCurrent ) )
return SH_INCOMPLETE;
return SH_OK;
}
PNS_SHOVE::SHOVE_STATUS PNS_SHOVE::processHullSet( PNS_LINE& aCurrent, PNS_LINE& aObstacle,
PNS_LINE& aShoved, const HULL_SET& aHulls )
{
const SHAPE_LINE_CHAIN& obs = aObstacle.CLine();
int attempt;
for( attempt = 0; attempt < 4; attempt++ )
{
bool invertTraversal = ( attempt >= 2 );
bool clockwise = attempt % 2;
int vFirst = -1, vLast = -1;
SHAPE_LINE_CHAIN path;
PNS_LINE l( aObstacle );
for( int i = 0; i < (int) aHulls.size(); i++ )
{
const SHAPE_LINE_CHAIN& hull = aHulls[invertTraversal ? aHulls.size() - 1 - i : i];
l.Walkaround( hull, path, clockwise );
path.Simplify();
l.SetShape( path );
}
for( int i = 0; i < std::min ( path.PointCount(), obs.PointCount() ); i++ )
{
if( path.CPoint( i ) != obs.CPoint( i ) )
{
vFirst = i;
break;
}
}
int k = obs.PointCount() - 1;
for( int i = path.PointCount() - 1; i >= 0 && k >= 0; i--, k-- )
{
if( path.CPoint( i ) != obs.CPoint( k ) )
{
vLast = i;
break;
}
}
if( ( vFirst < 0 || vLast < 0 ) && !path.CompareGeometry( aObstacle.CLine() ) )
{
TRACE( 100, "attempt %d fail vfirst-last", attempt );
continue;
}
if( path.CPoint( -1 ) != obs.CPoint( -1 ) || path.CPoint( 0 ) != obs.CPoint( 0 ) )
{
TRACE( 100, "attempt %d fail vend-start\n", attempt );
continue;
}
if( !checkBumpDirection( aCurrent, l ) )
{
TRACE( 100, "attempt %d fail direction-check", attempt );
aShoved.SetShape( l.CLine() );
continue;
}
if( path.SelfIntersecting() )
{
TRACE( 100, "attempt %d fail self-intersect", attempt );
continue;
}
bool colliding = m_currentNode->CheckColliding( &l, &aCurrent, PNS_ITEM::ANY, m_forceClearance );
if( ( aCurrent.Marker() & MK_HEAD ) && !colliding )
{
PNS_JOINT* jtStart = m_currentNode->FindJoint( aCurrent.CPoint( 0 ), &aCurrent );
for( PNS_ITEM* item : jtStart->LinkList() )
{
if( m_currentNode->CheckColliding( item, &l ) )
colliding = true;
}
}
if( colliding )
{
TRACE( 100, "attempt %d fail coll-check", attempt );
continue;
}
aShoved.SetShape( l.CLine() );
return SH_OK;
}
return SH_INCOMPLETE;
}
PNS_SHOVE::SHOVE_STATUS PNS_SHOVE::ProcessSingleLine( PNS_LINE& aCurrent, PNS_LINE& aObstacle,
PNS_LINE& aShoved )
{
aShoved.ClearSegmentLinks();
bool obstacleIsHead = false;
if( aObstacle.LinkedSegments() )
{
for( PNS_SEGMENT* s : *aObstacle.LinkedSegments() )
if( s->Marker() & MK_HEAD )
{
obstacleIsHead = true;
break;
}
}
SHOVE_STATUS rv;
bool viaOnEnd = aCurrent.EndsWithVia();
if( viaOnEnd && ( !aCurrent.LayersOverlap( &aObstacle ) || aCurrent.SegmentCount() == 0 ) )
{
rv = walkaroundLoneVia( aCurrent, aObstacle, aShoved );
}
else
{
int w = aObstacle.Width();
int n_segs = aCurrent.SegmentCount();
int clearance = getClearance( &aCurrent, &aObstacle ) + 1;
HULL_SET hulls;
hulls.reserve( n_segs + 1 );
for( int i = 0; i < n_segs; i++ )
{
PNS_SEGMENT seg( aCurrent, aCurrent.CSegment( i ) );
SHAPE_LINE_CHAIN hull = seg.Hull( clearance, w );
hulls.push_back( hull );
}
if( viaOnEnd )
hulls.push_back ( aCurrent.Via().Hull( clearance, w ) );
rv = processHullSet ( aCurrent, aObstacle, aShoved, hulls );
}
if( obstacleIsHead )
aShoved.Mark( aShoved.Marker() | MK_HEAD );
return rv;
}
PNS_SHOVE::SHOVE_STATUS PNS_SHOVE::onCollidingSegment( PNS_LINE& aCurrent, PNS_SEGMENT* aObstacleSeg )
{
int segIndex;
PNS_LINE obstacleLine = assembleLine( aObstacleSeg, &segIndex );
PNS_LINE shovedLine( obstacleLine );
PNS_SEGMENT tmp( *aObstacleSeg );
SHOVE_STATUS rv = ProcessSingleLine( aCurrent, obstacleLine, shovedLine );
const double extensionWalkThreshold = 1.0;
double obsLen = obstacleLine.CLine().Length();
double shovedLen = shovedLine.CLine().Length();
double extensionFactor = 0.0;
if( obsLen != 0.0f )
extensionFactor = shovedLen / obsLen - 1.0;
if( extensionFactor > extensionWalkThreshold )
return SH_TRY_WALK;
assert( obstacleLine.LayersOverlap( &shovedLine ) );
#ifdef DEBUG
m_logger.NewGroup( "on-colliding-segment", m_iter );
m_logger.Log( &tmp, 0, "obstacle-segment" );
m_logger.Log( &aCurrent, 1, "current-line" );
m_logger.Log( &obstacleLine, 2, "obstacle-line" );
m_logger.Log( &shovedLine, 3, "shoved-line" );
#endif
if( rv == SH_OK )
{
if( shovedLine.Marker() & MK_HEAD )
{
if( m_multiLineMode )
return SH_INCOMPLETE;
m_newHead = shovedLine;
}
int rank = aCurrent.Rank();
shovedLine.SetRank( rank - 1 );
sanityCheck( &obstacleLine, &shovedLine );
replaceItems( &obstacleLine, &shovedLine );
if( !pushLine( shovedLine ) )
rv = SH_INCOMPLETE;
}
return rv;
}
PNS_SHOVE::SHOVE_STATUS PNS_SHOVE::onCollidingLine( PNS_LINE& aCurrent, PNS_LINE& aObstacle )
{
PNS_LINE shovedLine( aObstacle );
SHOVE_STATUS rv = ProcessSingleLine( aCurrent, aObstacle, shovedLine );
#ifdef DEBUG
m_logger.NewGroup( "on-colliding-line", m_iter );
m_logger.Log( &aObstacle, 0, "obstacle-line" );
m_logger.Log( &aCurrent, 1, "current-line" );
m_logger.Log( &shovedLine, 3, "shoved-line" );
#endif
if( rv == SH_OK )
{
if( shovedLine.Marker() & MK_HEAD )
{
if( m_multiLineMode )
return SH_INCOMPLETE;
m_newHead = shovedLine;
}
sanityCheck( &aObstacle, &shovedLine );
replaceItems( &aObstacle, &shovedLine );
int rank = aObstacle.Rank();
shovedLine.SetRank( rank - 1 );
if( !pushLine( shovedLine ) )
{
rv = SH_INCOMPLETE;
}
}
return rv;
}
PNS_SHOVE::SHOVE_STATUS PNS_SHOVE::onCollidingSolid( PNS_LINE& aCurrent, PNS_ITEM* aObstacle )
{
PNS_WALKAROUND walkaround( m_currentNode, Router() );
PNS_LINE walkaroundLine( aCurrent );
if( aCurrent.EndsWithVia() )
{
PNS_VIA vh = aCurrent.Via();
PNS_VIA* via = NULL;
PNS_JOINT* jtStart = m_currentNode->FindJoint( vh.Pos(), &aCurrent );
if( !jtStart )
return SH_INCOMPLETE;
for( PNS_ITEM* item : jtStart->LinkList() )
{
if( item->OfKind( PNS_ITEM::VIA ) )
{
via = (PNS_VIA*) item;
break;
}
}
if( via && m_currentNode->CheckColliding( via, aObstacle ) )
return onCollidingVia( aObstacle, via );
}
PNS_TOPOLOGY topo( m_currentNode );
std::set<PNS_ITEM*> cluster = topo.AssembleCluster( aObstacle, aCurrent.Layers().Start() );
#ifdef DEBUG
m_logger.NewGroup( "on-colliding-solid-cluster", m_iter );
for( PNS_ITEM* item : cluster )
{
m_logger.Log( item, 0, "cluster-entry" );
}
#endif
walkaround.SetSolidsOnly( false );
walkaround.RestrictToSet( true, cluster );
walkaround.SetIterationLimit( 16 ); // fixme: make configurable
int currentRank = aCurrent.Rank();
int nextRank;
for( int attempt = 0; attempt < 2; attempt++ )
{
if( attempt == 1 || Settings().JumpOverObstacles() )
{
nextRank = currentRank - 1;
walkaround.SetSingleDirection( true );
}
else
{
nextRank = currentRank + 10000;
walkaround.SetSingleDirection( false );
}
if( walkaround.Route( aCurrent, walkaroundLine, false ) != PNS_WALKAROUND::DONE )
return SH_INCOMPLETE;
walkaroundLine.ClearSegmentLinks();
walkaroundLine.Unmark();
walkaroundLine.Line().Simplify();
if( walkaroundLine.HasLoops() )
return SH_INCOMPLETE;
if( aCurrent.Marker() & MK_HEAD )
{
walkaroundLine.Mark( MK_HEAD );
if( m_multiLineMode )
return SH_INCOMPLETE;
m_newHead = walkaroundLine;
}
sanityCheck( &aCurrent, &walkaroundLine );
if( !m_lineStack.empty() )
{
PNS_LINE lastLine = m_lineStack.front();
if( m_currentNode->CheckColliding( &lastLine, &walkaroundLine ) )
{
PNS_LINE dummy ( lastLine );
if( ProcessSingleLine( walkaroundLine, lastLine, dummy ) == SH_OK )
break;
} else
break;
}
}
replaceItems( &aCurrent, &walkaroundLine );
walkaroundLine.SetRank( nextRank );
#ifdef DEBUG
m_logger.NewGroup( "on-colliding-solid", m_iter );
m_logger.Log( aObstacle, 0, "obstacle-solid" );
m_logger.Log( &aCurrent, 1, "current-line" );
m_logger.Log( &walkaroundLine, 3, "walk-line" );
#endif
popLine();
if( !pushLine( walkaroundLine ) )
return SH_INCOMPLETE;
return SH_OK;
}
bool PNS_SHOVE::reduceSpringback( const PNS_ITEMSET& aHeadSet )
{
bool rv = false;
while( !m_nodeStack.empty() )
{
SPRINGBACK_TAG spTag = m_nodeStack.back();
if( !spTag.m_node->CheckColliding( aHeadSet ) )
{
rv = true;
delete spTag.m_node;
m_nodeStack.pop_back();
}
else
break;
}
return rv;
}
bool PNS_SHOVE::pushSpringback( PNS_NODE* aNode, const PNS_ITEMSET& aHeadItems,
const PNS_COST_ESTIMATOR& aCost, const OPT_BOX2I& aAffectedArea )
{
SPRINGBACK_TAG st;
OPT_BOX2I prev_area;
if( !m_nodeStack.empty() )
prev_area = m_nodeStack.back().m_affectedArea;
st.m_node = aNode;
st.m_cost = aCost;
st.m_headItems = aHeadItems;
if( aAffectedArea )
{
if( prev_area )
st.m_affectedArea = prev_area->Merge ( *aAffectedArea );
else
st.m_affectedArea = aAffectedArea;
} else
st.m_affectedArea = prev_area;
m_nodeStack.push_back( st );
return true;
}
PNS_SHOVE::SHOVE_STATUS PNS_SHOVE::pushVia( PNS_VIA* aVia, const VECTOR2I& aForce, int aCurrentRank, bool aDryRun )
{
LINE_PAIR_VEC draggedLines;
VECTOR2I p0( aVia->Pos() );
PNS_JOINT* jt = m_currentNode->FindJoint( p0, aVia );
VECTOR2I p0_pushed( p0 + aForce );
if( !jt )
{
TRACEn( 1, "weird, can't find the center-of-via joint\n" );
return SH_INCOMPLETE;
}
if( jt->IsLocked() )
return SH_INCOMPLETE;
while( aForce.x != 0 || aForce.y != 0 )
{
PNS_JOINT* jt_next = m_currentNode->FindJoint( p0_pushed, aVia );
if( !jt_next )
break;
p0_pushed += aForce.Resize( 2 ); // make sure pushed via does not overlap with any existing joint
}
PNS_VIA* pushedVia = aVia->Clone();
pushedVia->SetPos( p0_pushed );
pushedVia->Mark( aVia->Marker() );
if( aVia->Marker() & MK_HEAD )
{
m_draggedVia = pushedVia;
m_draggedViaHeadSet.Clear();
}
for( PNS_ITEM* item : jt->LinkList() )
{
if( PNS_SEGMENT* seg = dyn_cast<PNS_SEGMENT*>( item ) )
{
LINE_PAIR lp;
int segIndex;
lp.first = assembleLine( seg, &segIndex );
assert( segIndex == 0 || ( segIndex == ( lp.first.SegmentCount() - 1 ) ) );
if( segIndex == 0 )
lp.first.Reverse();
lp.second = lp.first;
lp.second.ClearSegmentLinks();
lp.second.DragCorner( p0_pushed, lp.second.CLine().Find( p0 ) );
lp.second.AppendVia( *pushedVia );
draggedLines.push_back( lp );
if( aVia->Marker() & MK_HEAD )
m_draggedViaHeadSet.Add( lp.second );
}
}
m_draggedViaHeadSet.Add( pushedVia );
if( aDryRun )
return SH_OK;
replaceItems( aVia, pushedVia );
#ifdef DEBUG
m_logger.Log( aVia, 0, "obstacle-via" );
#endif
pushedVia->SetRank( aCurrentRank - 1 );
#ifdef DEBUG
m_logger.Log( pushedVia, 1, "pushed-via" );
#endif
for( LINE_PAIR lp : draggedLines )
{
if( lp.first.Marker() & MK_HEAD )
{
lp.second.Mark( MK_HEAD );
if( m_multiLineMode )
return SH_INCOMPLETE;
m_newHead = lp.second;
}
unwindStack( &lp.first );
if( lp.second.SegmentCount() )
{
replaceItems( &lp.first, &lp.second );
lp.second.SetRank( aCurrentRank - 1 );
if( !pushLine( lp.second, true ) )
return SH_INCOMPLETE;
}
else
{
m_currentNode->Remove( &lp.first );
}
#ifdef DEBUG
m_logger.Log( &lp.first, 2, "fan-pre" );
m_logger.Log( &lp.second, 3, "fan-post" );
#endif
}
return SH_OK;
}
PNS_SHOVE::SHOVE_STATUS PNS_SHOVE::onCollidingVia( PNS_ITEM* aCurrent, PNS_VIA* aObstacleVia )
{
int clearance = getClearance( aCurrent, aObstacleVia ) ;
LINE_PAIR_VEC draggedLines;
bool colLine = false, colVia = false;
PNS_LINE* currentLine = NULL;
VECTOR2I mtvLine, mtvVia, mtv, mtvSolid;
int rank = -1;
if( aCurrent->OfKind( PNS_ITEM::LINE ) )
{
#ifdef DEBUG
m_logger.NewGroup( "push-via-by-line", m_iter );
m_logger.Log( aCurrent, 4, "current" );
#endif
currentLine = (PNS_LINE*) aCurrent;
colLine = CollideShapes( aObstacleVia->Shape(), currentLine->Shape(),
clearance + currentLine->Width() / 2 + PNS_HULL_MARGIN,
true, mtvLine );
if( currentLine->EndsWithVia() )
colVia = CollideShapes( currentLine->Via().Shape(), aObstacleVia->Shape(),
clearance + PNS_HULL_MARGIN, true, mtvVia );
if( !colLine && !colVia )
return SH_OK;
if( colLine && colVia )
mtv = mtvVia.EuclideanNorm() > mtvLine.EuclideanNorm() ? mtvVia : mtvLine;
else if( colLine )
mtv = mtvLine;
else
mtv = mtvVia;
rank = currentLine->Rank();
}
else if( aCurrent->OfKind( PNS_ITEM::SOLID ) )
{
CollideShapes( aObstacleVia->Shape(), aCurrent->Shape(),
clearance + PNS_HULL_MARGIN, true, mtvSolid );
mtv = -mtvSolid;
rank = aCurrent->Rank() + 10000;
}
return pushVia( aObstacleVia, mtv, rank );
}
PNS_SHOVE::SHOVE_STATUS PNS_SHOVE::onReverseCollidingVia( PNS_LINE& aCurrent, PNS_VIA* aObstacleVia )
{
int n = 0;
PNS_LINE cur( aCurrent );
cur.ClearSegmentLinks();
PNS_JOINT* jt = m_currentNode->FindJoint( aObstacleVia->Pos(), aObstacleVia );
PNS_LINE shoved( aCurrent );
shoved.ClearSegmentLinks();
cur.RemoveVia();
unwindStack( &aCurrent );
for( PNS_ITEM* item : jt->LinkList() )
{
if( item->OfKind( PNS_ITEM::SEGMENT ) && item->LayersOverlap( &aCurrent ) )
{
PNS_SEGMENT* seg = (PNS_SEGMENT*) item;
PNS_LINE head = assembleLine( seg );
head.AppendVia( *aObstacleVia );
SHOVE_STATUS st = ProcessSingleLine( head, cur, shoved );
if( st != SH_OK )
{
#ifdef DEBUG
m_logger.NewGroup( "on-reverse-via-fail-shove", m_iter );
m_logger.Log( aObstacleVia, 0, "the-via" );
m_logger.Log( &aCurrent, 1, "current-line" );
m_logger.Log( &shoved, 3, "shoved-line" );
#endif
return st;
}
cur.SetShape( shoved.CLine() );
n++;
}
}
if( !n )
{
#ifdef DEBUG
m_logger.NewGroup( "on-reverse-via-fail-lonevia", m_iter );
m_logger.Log( aObstacleVia, 0, "the-via" );
m_logger.Log( &aCurrent, 1, "current-line" );
#endif
PNS_LINE head( aCurrent );
head.Line().Clear();
head.AppendVia( *aObstacleVia );
head.ClearSegmentLinks();
SHOVE_STATUS st = ProcessSingleLine( head, aCurrent, shoved );
if( st != SH_OK )
return st;
cur.SetShape( shoved.CLine() );
}
if( aCurrent.EndsWithVia() )
shoved.AppendVia( aCurrent.Via() );
#ifdef DEBUG
m_logger.NewGroup( "on-reverse-via", m_iter );
m_logger.Log( aObstacleVia, 0, "the-via" );
m_logger.Log( &aCurrent, 1, "current-line" );
m_logger.Log( &shoved, 3, "shoved-line" );
#endif
int currentRank = aCurrent.Rank();
replaceItems( &aCurrent, &shoved );
if( !pushLine( shoved ) )
return SH_INCOMPLETE;
shoved.SetRank( currentRank );
return SH_OK;
}
void PNS_SHOVE::unwindStack( PNS_SEGMENT *aSeg )
{
for( std::vector<PNS_LINE>::iterator i = m_lineStack.begin(); i != m_lineStack.end() ; )
{
if( i->ContainsSegment( aSeg ) )
i = m_lineStack.erase( i );
else
i++;
}
for( std::vector<PNS_LINE>::iterator i = m_optimizerQueue.begin(); i != m_optimizerQueue.end() ; )
{
if( i->ContainsSegment( aSeg ) )
i = m_optimizerQueue.erase( i );
else
i++;
}
}
void PNS_SHOVE::unwindStack( PNS_ITEM* aItem )
{
if( aItem->OfKind( PNS_ITEM::SEGMENT ) )
unwindStack( static_cast<PNS_SEGMENT*>( aItem ) );
else if( aItem->OfKind( PNS_ITEM::LINE ) )
{
PNS_LINE* l = static_cast<PNS_LINE*>( aItem );
if( !l->LinkedSegments() )
return;
for( PNS_SEGMENT* seg : *l->LinkedSegments() )
unwindStack( seg );
}
}
bool PNS_SHOVE::pushLine( const PNS_LINE& aL, bool aKeepCurrentOnTop )
{
if( aL.LinkCount() >= 0 && ( aL.LinkCount() != aL.SegmentCount() ) )
return false;
if( aKeepCurrentOnTop && m_lineStack.size() > 0)
{
m_lineStack.insert( m_lineStack.begin() + m_lineStack.size() - 1, aL );
}
else
{
m_lineStack.push_back( aL );
}
m_optimizerQueue.push_back( aL );
return true;
}
void PNS_SHOVE::popLine( )
{
PNS_LINE& l = m_lineStack.back();
for( std::vector<PNS_LINE>::iterator i = m_optimizerQueue.begin(); i != m_optimizerQueue.end(); )
{
bool found = false;
if( !l.LinkedSegments() )
continue;
for( PNS_SEGMENT *s : *l.LinkedSegments() )
{
if( i->ContainsSegment( s ) )
{
i = m_optimizerQueue.erase( i );
found = true;
break;
}
}
if( !found )
i++;
}
m_lineStack.pop_back();
}
PNS_SHOVE::SHOVE_STATUS PNS_SHOVE::shoveIteration( int aIter )
{
PNS_LINE currentLine = m_lineStack.back();
PNS_NODE::OPT_OBSTACLE nearest;
SHOVE_STATUS st = SH_NULL;
PNS_ITEM::PnsKind search_order[] = { PNS_ITEM::SOLID, PNS_ITEM::VIA, PNS_ITEM::SEGMENT };
for( int i = 0; i < 3; i++ )
{
nearest = m_currentNode->NearestObstacle( &currentLine, search_order[i] );
if( nearest )
break;
}
if( !nearest )
{
m_lineStack.pop_back();
return SH_OK;
}
PNS_ITEM* ni = nearest->m_item;
unwindStack( ni );
if( !ni->OfKind( PNS_ITEM::SOLID ) && ni->Rank() >= 0 && ni->Rank() > currentLine.Rank() )
{
switch( ni->Kind() )
{
case PNS_ITEM::VIA:
{
PNS_VIA* revVia = (PNS_VIA*) ni;
TRACE( 2, "iter %d: reverse-collide-via", aIter );
if( currentLine.EndsWithVia() && m_currentNode->CheckColliding( &currentLine.Via(), revVia ) )
{
st = SH_INCOMPLETE;
}
else
{
st = onReverseCollidingVia ( currentLine, revVia );
}
break;
}
case PNS_ITEM::SEGMENT:
{
PNS_SEGMENT* seg = (PNS_SEGMENT*) ni;
TRACE( 2, "iter %d: reverse-collide-segment ", aIter );
PNS_LINE revLine = assembleLine( seg );
popLine();
st = onCollidingLine( revLine, currentLine );
if( !pushLine( revLine ) )
return SH_INCOMPLETE;
break;
}
default:
assert( false );
}
}
else
{ // "forward" collisions
switch( ni->Kind() )
{
case PNS_ITEM::SEGMENT:
TRACE( 2, "iter %d: collide-segment ", aIter );
st = onCollidingSegment( currentLine, (PNS_SEGMENT*) ni );
if( st == SH_TRY_WALK )
{
st = onCollidingSolid( currentLine, (PNS_SOLID*) ni );
}
break;
case PNS_ITEM::VIA:
TRACE( 2, "iter %d: shove-via ", aIter );
st = onCollidingVia( &currentLine, (PNS_VIA*) ni );
break;
case PNS_ITEM::SOLID:
TRACE( 2, "iter %d: walk-solid ", aIter );
st = onCollidingSolid( currentLine, (PNS_SOLID*) ni );
break;
default:
break;
}
}
return st;
}
PNS_SHOVE::SHOVE_STATUS PNS_SHOVE::shoveMainLoop()
{
SHOVE_STATUS st = SH_OK;
m_affectedAreaSum = OPT_BOX2I();
TRACE( 1, "ShoveStart [root: %d jts, current: %d jts]", m_root->JointCount() %
m_currentNode->JointCount() );
int iterLimit = Settings().ShoveIterationLimit();
TIME_LIMIT timeLimit = Settings().ShoveTimeLimit();
m_iter = 0;
timeLimit.Restart();
while( !m_lineStack.empty() )
{
st = shoveIteration( m_iter );
m_iter++;
if( st == SH_INCOMPLETE || timeLimit.Expired() || m_iter >= iterLimit )
{
st = SH_INCOMPLETE;
break;
}
}
return st;
}
OPT_BOX2I PNS_SHOVE::totalAffectedArea() const
{
OPT_BOX2I area;
if( !m_nodeStack.empty() )
area = m_nodeStack.back().m_affectedArea;
if( area )
{
if( m_affectedAreaSum )
area->Merge ( *m_affectedAreaSum );
} else
area = m_affectedAreaSum;
return area;
}
PNS_SHOVE::SHOVE_STATUS PNS_SHOVE::ShoveLines( const PNS_LINE& aCurrentHead )
{
SHOVE_STATUS st = SH_OK;
m_multiLineMode = false;
// empty head? nothing to shove...
if( !aCurrentHead.SegmentCount() && !aCurrentHead.EndsWithVia() )
return SH_INCOMPLETE;
PNS_LINE head( aCurrentHead );
head.ClearSegmentLinks();
m_lineStack.clear();
m_optimizerQueue.clear();
m_newHead = OPT_LINE();
m_logger.Clear();
PNS_ITEMSET headSet;
headSet.Add( aCurrentHead );
reduceSpringback( headSet );
PNS_NODE* parent = m_nodeStack.empty() ? m_root : m_nodeStack.back().m_node;
m_currentNode = parent->Branch();
m_currentNode->ClearRanks();
m_currentNode->Add( &head );
m_currentNode->LockJoint( head.CPoint(0), &head, true );
if( !head.EndsWithVia() )
m_currentNode->LockJoint( head.CPoint( -1 ), &head, true );
head.Mark( MK_HEAD );
head.SetRank( 100000 );
m_logger.NewGroup( "initial", 0 );
m_logger.Log( &head, 0, "head" );
PNS_VIA* headVia = NULL;
if( head.EndsWithVia() )
{
headVia = head.Via().Clone();
m_currentNode->Add( headVia );
headVia->Mark( MK_HEAD );
headVia->SetRank( 100000 );
m_logger.Log( headVia, 0, "head-via" );
}
if( !pushLine( head ) )
{
delete m_currentNode;
m_currentNode = parent;
return SH_INCOMPLETE;
}
st = shoveMainLoop();
if( st == SH_OK )
{
runOptimizer( m_currentNode );
if( m_newHead )
st = m_currentNode->CheckColliding( &(*m_newHead) ) ? SH_INCOMPLETE : SH_HEAD_MODIFIED;
else
st = m_currentNode->CheckColliding( &head ) ? SH_INCOMPLETE : SH_OK;
}
m_currentNode->RemoveByMarker( MK_HEAD );
TRACE( 1, "Shove status : %s after %d iterations",
( ( st == SH_OK || st == SH_HEAD_MODIFIED ) ? "OK" : "FAILURE") % m_iter );
if( st == SH_OK || st == SH_HEAD_MODIFIED )
{
pushSpringback( m_currentNode, headSet, PNS_COST_ESTIMATOR(), m_affectedAreaSum );
}
else
{
delete m_currentNode;
m_currentNode = parent;
m_newHead = OPT_LINE();
}
if( m_newHead && head.EndsWithVia() )
{
PNS_VIA v = head.Via();
v.SetPos( m_newHead->CPoint( -1 ) );
m_newHead->AppendVia(v);
}
return st;
}
PNS_SHOVE::SHOVE_STATUS PNS_SHOVE::ShoveMultiLines( const PNS_ITEMSET& aHeadSet )
{
SHOVE_STATUS st = SH_OK;
m_multiLineMode = true;
PNS_ITEMSET headSet;
for( const PNS_ITEM* item : aHeadSet.CItems() )
{
const PNS_LINE* headOrig = static_cast<const PNS_LINE*>( item );
// empty head? nothing to shove...
if( !headOrig->SegmentCount() )
return SH_INCOMPLETE;
headSet.Add( *headOrig );
}
m_lineStack.clear();
m_optimizerQueue.clear();
m_logger.Clear();
reduceSpringback( headSet );
PNS_NODE* parent = m_nodeStack.empty() ? m_root : m_nodeStack.back().m_node;
m_currentNode = parent->Branch();
m_currentNode->ClearRanks();
int n = 0;
for( const PNS_ITEM* item : aHeadSet.CItems() )
{
const PNS_LINE* headOrig = static_cast<const PNS_LINE*>( item );
PNS_LINE head( *headOrig );
head.ClearSegmentLinks();
m_currentNode->Add( &head );
head.Mark( MK_HEAD );
head.SetRank( 100000 );
n++;
if( !pushLine( head ) )
return SH_INCOMPLETE;
PNS_VIA* headVia = NULL;
if( head.EndsWithVia() )
{
headVia = head.Via().Clone(); // fixme: leak
m_currentNode->Add( headVia );
headVia->Mark( MK_HEAD );
headVia->SetRank( 100000 );
m_logger.Log( headVia, 0, "head-via" );
}
}
m_logger.NewGroup( "initial", 0 );
//m_logger.Log( head, 0, "head" );
st = shoveMainLoop();
if( st == SH_OK )
runOptimizer( m_currentNode );
m_currentNode->RemoveByMarker( MK_HEAD );
TRACE( 1, "Shove status : %s after %d iterations",
( st == SH_OK ? "OK" : "FAILURE") % m_iter );
if( st == SH_OK )
{
pushSpringback( m_currentNode, PNS_ITEMSET(), PNS_COST_ESTIMATOR(), m_affectedAreaSum );
}
else
{
delete m_currentNode;
m_currentNode = parent;
}
return st;
}
PNS_SHOVE::SHOVE_STATUS PNS_SHOVE::ShoveDraggingVia( PNS_VIA* aVia, const VECTOR2I& aWhere,
PNS_VIA** aNewVia )
{
SHOVE_STATUS st = SH_OK;
m_lineStack.clear();
m_optimizerQueue.clear();
m_newHead = OPT_LINE();
m_draggedVia = NULL;
m_draggedViaHeadSet.Clear();
PNS_NODE* parent = m_nodeStack.empty() ? m_root : m_nodeStack.back().m_node;
m_currentNode = parent;
parent = m_nodeStack.empty() ? m_root : m_nodeStack.back().m_node;
m_currentNode = parent->Branch();
m_currentNode->ClearRanks();
aVia->Mark( MK_HEAD );
st = pushVia( aVia, ( aWhere - aVia->Pos() ), 0 );
st = shoveMainLoop();
if( st == SH_OK )
runOptimizer( m_currentNode );
if( st == SH_OK || st == SH_HEAD_MODIFIED )
{
pushSpringback( m_currentNode, m_draggedViaHeadSet, PNS_COST_ESTIMATOR(), m_affectedAreaSum );
}
else
{
delete m_currentNode;
m_currentNode = parent;
}
if( aNewVia )
{
*aNewVia = m_draggedVia;
}
return st;
}
void PNS_SHOVE::runOptimizer( PNS_NODE* aNode )
{
PNS_OPTIMIZER optimizer( aNode );
int optFlags = 0, n_passes = 0;
PNS_OPTIMIZATION_EFFORT effort = Settings().OptimizerEffort();
OPT_BOX2I area = totalAffectedArea();
int maxWidth = 0;
for( std::vector<PNS_LINE>::iterator i = m_optimizerQueue.begin();
i != m_optimizerQueue.end(); ++i )
{
maxWidth = std::max( i->Width(), maxWidth );
}
if( area )
{
area->Inflate( 10 * maxWidth );
}
switch( effort )
{
case OE_LOW:
optFlags = PNS_OPTIMIZER::MERGE_OBTUSE;
n_passes = 1;
break;
case OE_MEDIUM:
optFlags = PNS_OPTIMIZER::MERGE_SEGMENTS;
if( area )
optimizer.SetRestrictArea( *area );
n_passes = 2;
break;
case OE_FULL:
optFlags = PNS_OPTIMIZER::MERGE_SEGMENTS;
n_passes = 2;
break;
default:
break;
}
if( Settings().SmartPads() )
optFlags |= PNS_OPTIMIZER::SMART_PADS;
optimizer.SetEffortLevel( optFlags );
optimizer.SetCollisionMask( PNS_ITEM::ANY );
for( int pass = 0; pass < n_passes; pass++ )
{
std::reverse( m_optimizerQueue.begin(), m_optimizerQueue.end() );
for( std::vector<PNS_LINE>::iterator i = m_optimizerQueue.begin();
i != m_optimizerQueue.end(); ++i )
{
PNS_LINE& line = *i;
if( !( line.Marker() & MK_HEAD ) )
{
PNS_LINE optimized;
if( optimizer.Optimize( &line, &optimized ) )
{
aNode->Remove( &line );
line.SetShape( optimized.CLine() );
aNode->Add( &line );
}
}
}
}
}
PNS_NODE* PNS_SHOVE::CurrentNode()
{
return m_nodeStack.empty() ? m_root : m_nodeStack.back().m_node;
}
const PNS_LINE PNS_SHOVE::NewHead() const
{
assert( m_newHead );
return *m_newHead;
}
void PNS_SHOVE::SetInitialLine( PNS_LINE& aInitial )
{
m_root = m_root->Branch();
m_root->Remove( &aInitial );
}