kicad/qa/tests/pcbnew/test_pns_basics.cpp

396 lines
12 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2021-2023 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <qa_utils/wx_utils/unit_test_utils.h>
#include <settings/settings_manager.h>
#include <pcbnew/pad.h>
#include <pcbnew/pcb_track.h>
#include <router/pns_node.h>
#include <router/pns_router.h>
#include <router/pns_item.h>
#include <router/pns_via.h>
#include <router/pns_kicad_iface.h>
static bool isCopper( const PNS::ITEM* aItem )
{
if( !aItem )
return false;
BOARD_ITEM* parent = aItem->Parent();
if( parent && parent->Type() == PCB_PAD_T )
{
PAD* pad = static_cast<PAD*>( parent );
if( !pad->IsOnCopperLayer() )
return false;
if( pad->GetAttribute() != PAD_ATTRIB::NPTH )
return true;
// round NPTH with a hole size >= pad size are not on a copper layer
// All other NPTH are seen on copper layers
// This is a basic criteria, but probably enough for a NPTH
if( pad->GetShape() == PAD_SHAPE::CIRCLE )
{
if( pad->GetSize().x <= pad->GetDrillSize().x )
return false;
}
return true;
}
return true;
}
static bool isHole( const PNS::ITEM* aItem )
{
if( !aItem )
return false;
return aItem->OfKind( PNS::ITEM::HOLE_T );
}
static bool isEdge( const PNS::ITEM* aItem )
{
if( !aItem )
return false;
const BOARD_ITEM *parent = aItem->BoardItem();
return parent && ( parent->IsOnLayer( Edge_Cuts ) || parent->IsOnLayer( Margin ) );
}
class MOCK_RULE_RESOLVER : public PNS::RULE_RESOLVER
{
public:
MOCK_RULE_RESOLVER() : m_clearanceEpsilon( 10 )
{
}
virtual ~MOCK_RULE_RESOLVER() {}
virtual int Clearance( const PNS::ITEM* aA, const PNS::ITEM* aB,
bool aUseClearanceEpsilon = true ) override
{
PNS::CONSTRAINT constraint;
int rv = 0;
LAYER_RANGE layers;
if( !aB )
layers = aA->Layers();
else if( isEdge( aA ) )
layers = aB->Layers();
else if( isEdge( aB ) )
layers = aA->Layers();
else
layers = aA->Layers().Intersection( aB->Layers() );
// Normalize layer range (no -1 magic numbers)
layers = layers.Intersection( LAYER_RANGE( PCBNEW_LAYER_ID_START, PCB_LAYER_ID_COUNT - 1 ) );
for( int layer = layers.Start(); layer <= layers.End(); ++layer )
{
if( isHole( aA ) && isHole( aB) )
{
if( QueryConstraint( PNS::CONSTRAINT_TYPE::CT_HOLE_TO_HOLE, aA, aB, layer, &constraint ) )
{
if( constraint.m_Value.Min() > rv )
rv = constraint.m_Value.Min();
}
}
else if( isHole( aA ) || isHole( aB ) )
{
if( QueryConstraint( PNS::CONSTRAINT_TYPE::CT_HOLE_CLEARANCE, aA, aB, layer, &constraint ) )
{
if( constraint.m_Value.Min() > rv )
rv = constraint.m_Value.Min();
}
}
else if( isCopper( aA ) && ( !aB || isCopper( aB ) ) )
{
if( QueryConstraint( PNS::CONSTRAINT_TYPE::CT_CLEARANCE, aA, aB, layer, &constraint ) )
{
if( constraint.m_Value.Min() > rv )
rv = constraint.m_Value.Min();
}
}
else if( isEdge( aA ) || ( aB && isEdge( aB ) ) )
{
if( QueryConstraint( PNS::CONSTRAINT_TYPE::CT_EDGE_CLEARANCE, aA, aB, layer, &constraint ) )
{
if( constraint.m_Value.Min() > rv )
rv = constraint.m_Value.Min();
}
}
}
return rv;
}
virtual int DpCoupledNet( int aNet ) override { return -1; }
virtual int DpNetPolarity( int aNet ) override { return -1; }
virtual bool DpNetPair( const PNS::ITEM* aItem, int& aNetP, int& aNetN ) override
{
return false;
}
virtual bool QueryConstraint( PNS::CONSTRAINT_TYPE aType, const PNS::ITEM* aItemA,
const PNS::ITEM* aItemB, int aLayer,
PNS::CONSTRAINT* aConstraint ) override
{
ITEM_KEY key;
key.a = aItemA;
key.b = aItemB;
key.type = aType;
auto it = m_ruleMap.find( key );
if( it == m_ruleMap.end() )
{
int cl;
switch( aType )
{
case PNS::CONSTRAINT_TYPE::CT_CLEARANCE: cl = m_defaultClearance; break;
case PNS::CONSTRAINT_TYPE::CT_HOLE_TO_HOLE: cl = m_defaultHole2Hole; break;
case PNS::CONSTRAINT_TYPE::CT_HOLE_CLEARANCE: cl = m_defaultHole2Copper; break;
default: return false;
}
//printf("GetDef %s %s %d cl %d\n", aItemA->KindStr().c_str(), aItemB->KindStr().c_str(), aType, cl );
aConstraint->m_Type = aType;
aConstraint->m_Value.SetMin( cl );
return true;
}
else
{
*aConstraint = it->second;
}
return true;
}
virtual wxString NetName( int aNet ) override { return wxT( "noname" ); }
int ClearanceEpsilon() const override { return m_clearanceEpsilon; }
struct ITEM_KEY
{
const PNS::ITEM* a = nullptr;
const PNS::ITEM* b = nullptr;
PNS::CONSTRAINT_TYPE type;
bool operator==( const ITEM_KEY& other ) const
{
return a == other.a && b == other.b && type == other.type;
}
bool operator<( const ITEM_KEY& other ) const
{
if( a < other.a )
{
return true;
}
else if ( a == other.a )
{
if( b < other.b )
return true;
else if ( b == other.b )
return type < other.type;
}
return false;
}
};
bool IsInNetTie( const PNS::ITEM* aA ) override { return false; }
bool IsNetTieExclusion( const PNS::ITEM* aItem, const VECTOR2I& aCollisionPos,
const PNS::ITEM* aCollidingItem ) override
{
return false;
}
bool IsKeepout( const PNS::ITEM* aA, const PNS::ITEM* aB ) override { return false; }
void AddMockRule( PNS::CONSTRAINT_TYPE aType, const PNS::ITEM* aItemA, const PNS::ITEM* aItemB,
PNS::CONSTRAINT aConstraint )
{
ITEM_KEY key;
key.a = aItemA;
key.b = aItemB;
key.type = aType;
m_ruleMap[key] = aConstraint;
}
int m_defaultClearance = 200000;
int m_defaultHole2Hole = 220000;
int m_defaultHole2Copper = 210000;
private:
std::map<ITEM_KEY, PNS::CONSTRAINT> m_ruleMap;
int m_clearanceEpsilon;
};
struct PNS_TEST_FIXTURE;
class MOCK_PNS_KICAD_IFACE : public PNS_KICAD_IFACE_BASE
{
public:
MOCK_PNS_KICAD_IFACE( PNS_TEST_FIXTURE *aFixture ) :
m_testFixture( aFixture )
{}
~MOCK_PNS_KICAD_IFACE() {}
void HideItem( PNS::ITEM* aItem ) override {};
void DisplayItem( const PNS::ITEM* aItem, int aClearance, bool aEdit = false,
bool aIsHeadTrace = false ) override {};
PNS::RULE_RESOLVER* GetRuleResolver() override;
private:
PNS_TEST_FIXTURE* m_testFixture;
};
struct PNS_TEST_FIXTURE
{
PNS_TEST_FIXTURE() :
m_settingsManager( true /* headless */ )
{
m_router = new PNS::ROUTER;
m_iface = new MOCK_PNS_KICAD_IFACE( this );
m_router->SetInterface( m_iface );
}
SETTINGS_MANAGER m_settingsManager;
PNS::ROUTER* m_router;
MOCK_RULE_RESOLVER m_ruleResolver;
MOCK_PNS_KICAD_IFACE* m_iface;
//std::unique_ptr<BOARD> m_board;
};
PNS::RULE_RESOLVER* MOCK_PNS_KICAD_IFACE::GetRuleResolver()
{
return &m_testFixture->m_ruleResolver;
}
static void dumpObstacles( const PNS::NODE::OBSTACLES &obstacles )
{
for( const PNS::OBSTACLE& obs : obstacles )
{
printf( "%p [%s] - %p [%s], clearance %d\n",
obs.m_head, obs.m_head->KindStr().c_str(),
obs.m_item, obs.m_item->KindStr().c_str(),
obs.m_clearance );
}
}
BOOST_FIXTURE_TEST_CASE( PNSHoleCollisions, PNS_TEST_FIXTURE )
{
PNS::VIA* v1 = new PNS::VIA( VECTOR2I( 0, 1000000 ), LAYER_RANGE( F_Cu, B_Cu ), 50000, 10000 );
PNS::VIA* v2 = new PNS::VIA( VECTOR2I( 0, 2000000 ), LAYER_RANGE( F_Cu, B_Cu ), 50000, 10000 );
std::unique_ptr<PNS::NODE> world ( new PNS::NODE );
world->SetMaxClearance( 10000000 );
world->SetRuleResolver( &m_ruleResolver );
world->AddRaw( v1 );
world->AddRaw( v2 );
BOOST_TEST_MESSAGE( "via to via, no violations" );
{
PNS::NODE::OBSTACLES obstacles;
int count = world->QueryColliding( v1, obstacles );
BOOST_CHECK_EQUAL( obstacles.size(), 0 );
BOOST_CHECK_EQUAL( count, 0 );
}
BOOST_TEST_MESSAGE( "via to via, forced copper to copper violation" );
{
PNS::NODE::OBSTACLES obstacles;
m_ruleResolver.m_defaultClearance = 1000000;
world->QueryColliding( v1, obstacles );
dumpObstacles( obstacles );
BOOST_CHECK_EQUAL( obstacles.size(), 1 );
const auto first = *obstacles.begin();
BOOST_CHECK_EQUAL( first.m_head, v1 );
BOOST_CHECK_EQUAL( first.m_item, v2 );
BOOST_CHECK_EQUAL( first.m_clearance, m_ruleResolver.m_defaultClearance );
}
BOOST_TEST_MESSAGE( "via to via, forced hole to hole violation" );
{
PNS::NODE::OBSTACLES obstacles;
m_ruleResolver.m_defaultClearance = 200000;
m_ruleResolver.m_defaultHole2Hole = 1000000;
world->QueryColliding( v1, obstacles );
dumpObstacles( obstacles );
BOOST_CHECK_EQUAL( obstacles.size(), 1 );
auto iter = obstacles.begin();
const auto first = *iter++;
BOOST_CHECK_EQUAL( first.m_head, v1->Hole() );
BOOST_CHECK_EQUAL( first.m_item, v2->Hole() );
BOOST_CHECK_EQUAL( first.m_clearance, m_ruleResolver.m_defaultHole2Hole );
}
BOOST_TEST_MESSAGE( "via to via, forced copper to hole violation" );
{
PNS::NODE::OBSTACLES obstacles;
m_ruleResolver.m_defaultHole2Hole = 220000;
m_ruleResolver.m_defaultHole2Copper = 1000000;
world->QueryColliding( v1, obstacles );
dumpObstacles( obstacles );
BOOST_CHECK_EQUAL( obstacles.size(), 2 );
auto iter = obstacles.begin();
const auto first = *iter++;
// There is no guarantee on what order the two collisions will be in...
BOOST_CHECK( ( first.m_head == v1 && first.m_item == v2->Hole() )
|| ( first.m_head == v1->Hole() && first.m_item == v2 ) );
BOOST_CHECK_EQUAL( first.m_clearance, m_ruleResolver.m_defaultHole2Copper );
}
}