kicad/pcbnew/zones_convert_to_polygons_a...

163 lines
7.0 KiB
C++

/**
* @file zones_convert_to_polygons_aux_functions.cpp
*/
#include "fctsys.h"
#include "polygons_defs.h"
#include "PolyLine.h"
#include "wxPcbStruct.h"
#include "trigo.h"
#include "class_board.h"
#include "class_module.h"
#include "class_zone.h"
#include "pcbnew.h"
#include "zones.h"
/**
* Function BuildUnconnectedThermalStubsPolygonList
* Creates a set of polygons corresponding to stubs created by thermal shapes on pads
* which are not connected to a zone (dangling bridges)
* @param aCornerBuffer = a std::vector<CPolyPt> where to store polygons
* @param aPcb = the board.
* @param aZone = a pointer to the ZONE_CONTAINER to examine.
* @param aArcCorrection = a pointer to the ZONE_CONTAINER to examine.
* @param aRoundPadThermalRotation = the rotation in 1.0 degree for thermal stubs in round pads
*/
void BuildUnconnectedThermalStubsPolygonList( std::vector<CPolyPt>& aCornerBuffer,
BOARD* aPcb,
ZONE_CONTAINER* aZone,
double aArcCorrection,
int aRoundPadThermalRotation )
{
std::vector<wxPoint> corners_buffer; // a local polygon buffer to store one stub
corners_buffer.reserve( 4 );
wxPoint ptTest[4];
int zone_clearance = aZone->m_ZoneClearance;
EDA_RECT item_boundingbox;
EDA_RECT zone_boundingbox = aZone->GetBoundingBox();
int biggest_clearance = aPcb->GetBiggestClearanceValue();
biggest_clearance = max( biggest_clearance, zone_clearance );
zone_boundingbox.Inflate( biggest_clearance );
// half size of the pen used to draw/plot zones outlines
int pen_radius = aZone->m_ZoneMinThickness / 2;
// Calculate thermal bridge half width
int thermbridgeWidth = aZone->m_ThermalReliefCopperBridge / 2;
for( MODULE* module = aPcb->m_Modules; module; module = module->Next() )
{
for( D_PAD* pad = module->m_Pads; pad != NULL; pad = pad->Next() )
{
// check
if( !pad->IsOnLayer( aZone->GetLayer() ) )
continue;
if( pad->GetNet() != aZone->GetNet() )
continue;
item_boundingbox = pad->GetBoundingBox();
item_boundingbox.Inflate( aZone->m_ThermalReliefGap );
if( !( item_boundingbox.Intersects( zone_boundingbox ) ) )
continue;
// Thermal bridges are like a segment from a starting point inside the pad
// to an ending point outside the pad
wxPoint startpoint, endpoint;
endpoint.x = ( pad->m_Size.x / 2 ) + aZone->m_ThermalReliefGap;
endpoint.y = ( pad->m_Size.y / 2 ) + aZone->m_ThermalReliefGap;
int copperThickness = aZone->m_ThermalReliefCopperBridge - aZone->m_ZoneMinThickness;
if( copperThickness < 0 )
copperThickness = 0;
startpoint.x = min( pad->m_Size.x, copperThickness );
startpoint.y = min( pad->m_Size.y, copperThickness );
startpoint.x /= 2;
startpoint.y /= 2;
// This is CIRCLE pad tweak (for circle pads the thermal stubs are at 45 deg)
int fAngle = pad->m_Orient;
if( pad->m_PadShape == PAD_CIRCLE )
{
endpoint.x = (int) ( endpoint.x * aArcCorrection );
endpoint.y = endpoint.x;
fAngle = aRoundPadThermalRotation;
}
// contour line width has to be taken into calculation to avoid "thermal stub bleed"
endpoint.x += pen_radius;
endpoint.y += pen_radius;
// compute north, south, west and east points for zone connection.
ptTest[0] = wxPoint( 0, endpoint.y ); // lower point
ptTest[1] = wxPoint( 0, -endpoint.y ); // upper point
ptTest[2] = wxPoint( endpoint.x, 0 ); // right point
ptTest[3] = wxPoint( -endpoint.x, 0 ); // left point
// Test all sides
for( int i = 0; i < 4; i++ )
{
// rotate point
RotatePoint( &ptTest[i], fAngle );
// translate point
ptTest[i] += pad->ReturnShapePos();
if( aZone->HitTestFilledArea( ptTest[i] ) )
continue;
corners_buffer.clear();
// polygons are rectangles with width of copper bridge value
switch( i )
{
case 0: // lower stub
corners_buffer.push_back( wxPoint( -thermbridgeWidth, endpoint.y ) );
corners_buffer.push_back( wxPoint( +thermbridgeWidth, endpoint.y ) );
corners_buffer.push_back( wxPoint( +thermbridgeWidth, startpoint.y ) );
corners_buffer.push_back( wxPoint( -thermbridgeWidth, startpoint.y ) );
break;
case 1: // upper stub
corners_buffer.push_back( wxPoint( -thermbridgeWidth, -endpoint.y ) );
corners_buffer.push_back( wxPoint( +thermbridgeWidth, -endpoint.y ) );
corners_buffer.push_back( wxPoint( +thermbridgeWidth, -startpoint.y ) );
corners_buffer.push_back( wxPoint( -thermbridgeWidth, -startpoint.y ) );
break;
case 2: // right stub
corners_buffer.push_back( wxPoint( endpoint.x, -thermbridgeWidth ) );
corners_buffer.push_back( wxPoint( endpoint.x, thermbridgeWidth ) );
corners_buffer.push_back( wxPoint( +startpoint.x, thermbridgeWidth ) );
corners_buffer.push_back( wxPoint( +startpoint.x, -thermbridgeWidth ) );
break;
case 3: // left stub
corners_buffer.push_back( wxPoint( -endpoint.x, -thermbridgeWidth ) );
corners_buffer.push_back( wxPoint( -endpoint.x, thermbridgeWidth ) );
corners_buffer.push_back( wxPoint( -startpoint.x, thermbridgeWidth ) );
corners_buffer.push_back( wxPoint( -startpoint.x, -thermbridgeWidth ) );
break;
}
// add computed polygon to list
for( unsigned ic = 0; ic < corners_buffer.size(); ic++ )
{
wxPoint cpos = corners_buffer[ic];
RotatePoint( &cpos, fAngle ); // Rotate according to module orientation
cpos += pad->ReturnShapePos(); // Shift origin to position
CPolyPt corner;
corner.x = cpos.x;
corner.y = cpos.y;
corner.end_contour = ( ic < (corners_buffer.size() - 1) ) ? 0 : 1;
aCornerBuffer.push_back( corner );
}
}
}
}
}