kicad/pcbnew/pcb_shape.cpp

1302 lines
35 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2018 Jean-Pierre Charras, jp.charras at wanadoo.fr
* Copyright (C) 2012 SoftPLC Corporation, Dick Hollenbeck <dick@softplc.com>
* Copyright (C) 2011 Wayne Stambaugh <stambaughw@verizon.net>
* Copyright (C) 1992-2020 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <bezier_curves.h>
#include <pcb_screen.h>
#include <bitmaps.h>
#include <pcb_edit_frame.h>
#include <board.h>
#include <footprint.h>
#include <pcb_shape.h>
#include <base_units.h>
#include <geometry/shape_simple.h>
#include <geometry/shape_segment.h>
#include <geometry/shape_circle.h>
#include <geometry/shape_compound.h>
#include <origin_transforms.h>
#include <settings/color_settings.h>
#include <settings/settings_manager.h>
#include <i18n_utility.h>
PCB_SHAPE::PCB_SHAPE( BOARD_ITEM* aParent, KICAD_T idtype ) :
BOARD_ITEM( aParent, idtype )
{
m_angle = 0;
m_filled = false;
m_flags = 0;
m_shape = S_SEGMENT;
m_width = Millimeter2iu( DEFAULT_LINE_WIDTH );
}
PCB_SHAPE::~PCB_SHAPE()
{
}
void PCB_SHAPE::SetPosition( const wxPoint& aPos )
{
m_start = aPos;
}
wxPoint PCB_SHAPE::GetPosition() const
{
if( m_shape == S_POLYGON )
return (wxPoint) m_poly.CVertex( 0 );
else
return m_start;
}
double PCB_SHAPE::GetLength() const
{
double length = 0.0;
switch( m_shape )
{
case S_CURVE:
for( size_t ii = 1; ii < m_bezierPoints.size(); ++ii )
length += GetLineLength( m_bezierPoints[ ii - 1], m_bezierPoints[ii] );
break;
case S_SEGMENT:
length = GetLineLength( GetStart(), GetEnd() );
break;
case S_POLYGON:
for( int ii = 0; ii < m_poly.COutline( 0 ).SegmentCount(); ii++ )
length += m_poly.COutline( 0 ).CSegment( ii ).Length();
break;
case S_ARC:
length = 2 * M_PI * GetRadius() * ( GetAngle() / 3600.0 );
break;
default:
wxASSERT_MSG( false, "PCB_SHAPE::GetLength not implemented for shape"
+ ShowShape( GetShape() ) );
break;
}
return length;
}
void PCB_SHAPE::Move( const wxPoint& aMoveVector )
{
// Move vector should not affect start/end for polygon since it will
// be applied directly to polygon outline.
if( m_shape != S_POLYGON )
{
m_start += aMoveVector;
m_end += aMoveVector;
}
switch ( m_shape )
{
case S_POLYGON:
m_poly.Move( VECTOR2I( aMoveVector ) );
break;
case S_ARC:
m_thirdPoint += aMoveVector;
break;
case S_CURVE:
m_bezierC1 += aMoveVector;
m_bezierC2 += aMoveVector;
for( wxPoint& pt : m_bezierPoints)
pt += aMoveVector;
break;
default:
break;
}
}
void PCB_SHAPE::Scale( double aScale )
{
auto scalePt = [&]( wxPoint& pt )
{
pt.x = KiROUND( pt.x * aScale );
pt.y = KiROUND( pt.y * aScale );
};
int radius = GetRadius();
scalePt( m_start );
scalePt( m_end );
// specific parameters:
switch( m_shape )
{
case S_CURVE:
scalePt( m_bezierC1 );
scalePt( m_bezierC2 );
break;
case S_ARC:
scalePt( m_thirdPoint );
break;
case S_CIRCLE: // ring or circle
m_end.x = m_start.x + KiROUND( radius * aScale );
m_end.y = m_start.y;
break;
case S_POLYGON: // polygon
{
std::vector<wxPoint> pts;
for( const VECTOR2I& pt : m_poly.Outline( 0 ).CPoints() )
{
pts.emplace_back( pt );
scalePt( pts.back() );
}
SetPolyPoints( pts );
}
break;
default:
break;
}
}
void PCB_SHAPE::Rotate( const wxPoint& aRotCentre, double aAngle )
{
switch( m_shape )
{
case S_ARC:
case S_SEGMENT:
case S_CIRCLE:
// these can all be done by just rotating the constituent points
RotatePoint( &m_start, aRotCentre, aAngle );
RotatePoint( &m_end, aRotCentre, aAngle );
RotatePoint( &m_thirdPoint, aRotCentre, aAngle );
break;
case S_RECT:
if( KiROUND( aAngle ) % 900 == 0 )
{
RotatePoint( &m_start, aRotCentre, aAngle );
RotatePoint( &m_end, aRotCentre, aAngle );
break;
}
// Convert non-cartesian-rotated rect to a diamond
m_shape = S_POLYGON;
m_poly.RemoveAllContours();
m_poly.NewOutline();
m_poly.Append( m_start );
m_poly.Append( m_end.x, m_start.y );
m_poly.Append( m_end );
m_poly.Append( m_start.x, m_end.y );
KI_FALLTHROUGH;
case S_POLYGON:
m_poly.Rotate( -DECIDEG2RAD( aAngle ), VECTOR2I( aRotCentre ) );
break;
case S_CURVE:
RotatePoint( &m_start, aRotCentre, aAngle);
RotatePoint( &m_end, aRotCentre, aAngle);
RotatePoint( &m_bezierC1, aRotCentre, aAngle);
RotatePoint( &m_bezierC2, aRotCentre, aAngle);
for( wxPoint& pt : m_bezierPoints )
RotatePoint( &pt, aRotCentre, aAngle);
break;
default:
wxFAIL_MSG( "PCB_SHAPE::Rotate not implemented for "
+ PCB_SHAPE_TYPE_T_asString( m_shape ) );
break;
}
}
void PCB_SHAPE::Flip( const wxPoint& aCentre, bool aFlipLeftRight )
{
if( aFlipLeftRight )
{
m_start.x = aCentre.x - ( m_start.x - aCentre.x );
m_end.x = aCentre.x - ( m_end.x - aCentre.x );
}
else
{
m_start.y = aCentre.y - ( m_start.y - aCentre.y );
m_end.y = aCentre.y - ( m_end.y - aCentre.y );
}
switch ( m_shape )
{
case S_ARC:
if( aFlipLeftRight )
m_thirdPoint.x = aCentre.x - ( m_thirdPoint.x - aCentre.x );
else
m_thirdPoint.y = aCentre.y - ( m_thirdPoint.y - aCentre.y );
m_angle = -m_angle;
break;
case S_POLYGON:
m_poly.Mirror( aFlipLeftRight, !aFlipLeftRight, VECTOR2I( aCentre ) );
break;
case S_CURVE:
{
if( aFlipLeftRight )
{
m_bezierC1.x = aCentre.x - ( m_bezierC1.x - aCentre.x );
m_bezierC2.x = aCentre.x - ( m_bezierC2.x - aCentre.x );
}
else
{
m_bezierC1.y = aCentre.y - ( m_bezierC1.y - aCentre.y );
m_bezierC2.y = aCentre.y - ( m_bezierC2.y - aCentre.y );
}
// Rebuild the poly points shape
std::vector<wxPoint> ctrlPoints = { m_start, m_bezierC1, m_bezierC2, m_end };
BEZIER_POLY converter( ctrlPoints );
converter.GetPoly( m_bezierPoints, m_width );
}
break;
case S_SEGMENT:
case S_RECT:
case S_CIRCLE:
break;
default:
wxFAIL_MSG( "PCB_SHAPE::Flip not implemented for "
+ PCB_SHAPE_TYPE_T_asString( m_shape ) );
break;
}
SetLayer( FlipLayer( GetLayer(), GetBoard()->GetCopperLayerCount() ) );
}
void PCB_SHAPE::RebuildBezierToSegmentsPointsList( int aMinSegLen )
{
// Has meaning only for S_CURVE DRAW_SEGMENT shape
if( m_shape != S_CURVE )
{
m_bezierPoints.clear();
return;
}
// Rebuild the m_BezierPoints vertex list that approximate the Bezier curve
m_bezierPoints = buildBezierToSegmentsPointsList( aMinSegLen );
}
const std::vector<wxPoint> PCB_SHAPE::buildBezierToSegmentsPointsList( int aMinSegLen ) const
{
std::vector<wxPoint> bezierPoints;
// Rebuild the m_BezierPoints vertex list that approximate the Bezier curve
std::vector<wxPoint> ctrlPoints = { m_start, m_bezierC1, m_bezierC2, m_end };
BEZIER_POLY converter( ctrlPoints );
converter.GetPoly( bezierPoints, aMinSegLen );
return bezierPoints;
}
wxPoint PCB_SHAPE::GetCenter() const
{
wxPoint c;
switch( m_shape )
{
case S_ARC:
case S_CIRCLE:
c = m_start;
break;
case S_SEGMENT:
// Midpoint of the line
c = ( GetStart() + GetEnd() ) / 2;
break;
case S_POLYGON:
case S_RECT:
case S_CURVE:
c = GetBoundingBox().Centre();
break;
default:
wxFAIL_MSG( "PCB_SHAPE::GetCentre not implemented for "
+ PCB_SHAPE_TYPE_T_asString( m_shape ) );
break;
}
return c;
}
wxPoint PCB_SHAPE::GetArcEnd() const
{
wxPoint endPoint( m_end ); // start of arc
switch( m_shape )
{
case S_ARC:
endPoint = m_thirdPoint;
break;
default:
break;
}
return endPoint; // after rotation, the end of the arc.
}
wxPoint PCB_SHAPE::GetArcMid() const
{
wxPoint endPoint( m_end );
switch( m_shape )
{
case S_ARC:
// rotate the starting point of the arc, given by m_End, through half
// the angle m_Angle to get the middle of the arc.
// m_Start is the arc centre
endPoint = m_end; // m_End = start point of arc
RotatePoint( &endPoint, m_start, -m_angle / 2.0 );
break;
default:
break;
}
return endPoint; // after rotation, the end of the arc.
}
double PCB_SHAPE::GetArcAngleStart() const
{
// due to the Y axis orient atan2 needs - y value
double angleStart = ArcTangente( GetArcStart().y - GetCenter().y,
GetArcStart().x - GetCenter().x );
// Normalize it to 0 ... 360 deg, to avoid discontinuity for angles near 180 deg
// because 180 deg and -180 are very near angles when ampping betewwen -180 ... 180 deg.
// and this is not easy to handle in calculations
NORMALIZE_ANGLE_POS( angleStart );
return angleStart;
}
double PCB_SHAPE::GetArcAngleEnd() const
{
// due to the Y axis orient atan2 needs - y value
double angleStart = ArcTangente( GetArcEnd().y - GetCenter().y,
GetArcEnd().x - GetCenter().x );
// Normalize it to 0 ... 360 deg, to avoid discontinuity for angles near 180 deg
// because 180 deg and -180 are very near angles when ampping betewwen -180 ... 180 deg.
// and this is not easy to handle in calculations
NORMALIZE_ANGLE_POS( angleStart );
return angleStart;
}
void PCB_SHAPE::SetArcGeometry( const wxPoint& aStart, const wxPoint& aMid, const wxPoint& aEnd )
{
SetArcStart( aStart );
SetArcEnd( aEnd );
// Sadly we currently store center and angle rather than mid. So we have to calculate
// those.
wxPoint center = GetArcCenter( aStart, aMid, aEnd );
VECTOR2D startLine = aStart - center;
VECTOR2D endLine = aEnd - center;
bool clockwise = GetAngle() > 0;
double angle = RAD2DECIDEG( endLine.Angle() - startLine.Angle() );
if( clockwise && angle < 0.0 )
angle += 3600.0;
else if( !clockwise && angle > 0.0 )
angle -= 3600.0;
SetAngle( angle, false );
SetCenter( center );
}
void PCB_SHAPE::SetAngle( double aAngle, bool aUpdateEnd )
{
// m_Angle must be >= -360 and <= +360 degrees
m_angle = NormalizeAngle360Max( aAngle );
if( aUpdateEnd )
{
m_thirdPoint = m_end;
RotatePoint( &m_thirdPoint, m_start, -m_angle );
}
}
FOOTPRINT* PCB_SHAPE::GetParentFootprint() const
{
if( !m_parent || m_parent->Type() != PCB_FOOTPRINT_T )
return NULL;
return (FOOTPRINT*) m_parent;
}
void PCB_SHAPE::GetMsgPanelInfo( EDA_DRAW_FRAME* aFrame, std::vector<MSG_PANEL_ITEM>& aList )
{
EDA_UNITS units = aFrame->GetUserUnits();
ORIGIN_TRANSFORMS originTransforms = aFrame->GetOriginTransforms();
wxString msg;
aList.emplace_back( _( "Type" ), _( "Drawing" ) );
if( IsLocked() )
aList.emplace_back( _( "Status" ), _( "locked" ) );
wxString shape = _( "Shape" );
switch( m_shape )
{
case S_CIRCLE:
aList.emplace_back( shape, _( "Circle" ) );
msg = MessageTextFromValue( units, GetLineLength( m_start, m_end ) );
aList.emplace_back( _( "Radius" ), msg );
break;
case S_ARC:
aList.emplace_back( shape, _( "Arc" ) );
msg.Printf( wxT( "%.1f" ), m_angle / 10.0 );
aList.emplace_back( _( "Angle" ), msg );
msg = MessageTextFromValue( units, GetLineLength( m_start, m_end ) );
aList.emplace_back( _( "Radius" ), msg );
break;
case S_CURVE:
aList.emplace_back( shape, _( "Curve" ) );
msg = MessageTextFromValue( units, GetLength() );
aList.emplace_back( _( "Length" ), msg );
break;
case S_POLYGON:
aList.emplace_back( shape, _( "Polygon" ) );
msg.Printf( "%d", GetPolyShape().Outline(0).PointCount() );
aList.emplace_back( _( "Points" ), msg );
break;
case S_RECT:
aList.emplace_back( shape, _( "Rectangle" ) );
msg = MessageTextFromValue( units, std::abs( m_end.x - m_start.x ) );
aList.emplace_back( _( "Width" ), msg );
msg = MessageTextFromValue( units, std::abs( m_end.y - m_start.y ) );
aList.emplace_back( _( "Height" ), msg );
break;
case S_SEGMENT:
{
aList.emplace_back( shape, _( "Segment" ) );
msg = MessageTextFromValue( units, GetLineLength( m_start, m_end ) );
aList.emplace_back( _( "Length" ), msg );
// angle counter-clockwise from 3'o-clock
const double deg = RAD2DEG( atan2( (double)( m_start.y - m_end.y ),
(double)( m_end.x - m_start.x ) ) );
aList.emplace_back( _( "Angle" ), wxString::Format( "%.1f", deg ) );
}
break;
default:
aList.emplace_back( shape, _( "Unrecognized" ) );
break;
}
aList.emplace_back( _( "Layer" ), GetLayerName() );
aList.emplace_back( _( "Width" ), MessageTextFromValue( units, m_width ) );
}
const EDA_RECT PCB_SHAPE::GetBoundingBox() const
{
EDA_RECT bbox;
bbox.SetOrigin( m_start );
switch( m_shape )
{
case S_RECT:
{
std::vector<wxPoint> pts = GetRectCorners();
bbox = EDA_RECT(); // re-init for merging
for( wxPoint& pt : pts )
bbox.Merge( pt );
}
break;
case S_SEGMENT:
bbox.SetEnd( m_end );
break;
case S_CIRCLE:
bbox.Inflate( GetRadius() );
break;
case S_ARC:
computeArcBBox( bbox );
break;
case S_POLYGON:
{
if( m_poly.IsEmpty() )
break;
FOOTPRINT* parentFootprint = GetParentFootprint();
bbox = EDA_RECT(); // re-init for merging
for( auto iter = m_poly.CIterate(); iter; iter++ )
{
wxPoint pt( iter->x, iter->y );
if( parentFootprint ) // Transform, if we belong to a footprint
{
RotatePoint( &pt, parentFootprint->GetOrientation() );
pt += parentFootprint->GetPosition();
}
bbox.Merge( pt );
}
}
break;
case S_CURVE:
bbox.Merge( m_bezierC1 );
bbox.Merge( m_bezierC2 );
bbox.Merge( m_end );
break;
default:
wxFAIL_MSG( "PCB_SHAPE::GetBoundingBox not implemented for "
+ PCB_SHAPE_TYPE_T_asString( m_shape ) );
break;
}
bbox.Inflate( m_width / 2 );
bbox.Normalize();
return bbox;
}
bool PCB_SHAPE::HitTest( const wxPoint& aPosition, int aAccuracy ) const
{
int maxdist = aAccuracy + ( m_width / 2 );
switch( m_shape )
{
case S_CIRCLE:
{
int radius = GetRadius();
int dist = KiROUND( EuclideanNorm( aPosition - GetCenter() ) );
if( IsFilled() ) // Filled circle hit-test
{
if( dist <= radius + maxdist )
return true;
}
else // Ring hit-test
{
if( abs( radius - dist ) <= maxdist )
return true;
}
}
break;
case S_ARC:
{
wxPoint relPos = aPosition - GetCenter();
int radius = GetRadius();
int dist = KiROUND( EuclideanNorm( relPos ) );
if( abs( radius - dist ) <= maxdist )
{
// For arcs, the test point angle must be >= arc angle start
// and <= arc angle end
// However angle values > 360 deg are not easy to handle
// so we calculate the relative angle between arc start point and teast point
// this relative arc should be < arc angle if arc angle > 0 (CW arc)
// and > arc angle if arc angle < 0 (CCW arc)
double arc_angle_start = GetArcAngleStart(); // Always 0.0 ... 360 deg, in 0.1 deg
double arc_hittest = ArcTangente( relPos.y, relPos.x );
// Calculate relative angle between the starting point of the arc, and the test point
arc_hittest -= arc_angle_start;
// Normalise arc_hittest between 0 ... 360 deg
NORMALIZE_ANGLE_POS( arc_hittest );
// Check angle: inside the arc angle when it is > 0
// and outside the not drawn arc when it is < 0
if( GetAngle() >= 0.0 )
{
if( arc_hittest <= GetAngle() )
return true;
}
else
{
if( arc_hittest >= ( 3600.0 + GetAngle() ) )
return true;
}
}
}
break;
case S_CURVE:
const_cast<PCB_SHAPE*>( this )->RebuildBezierToSegmentsPointsList( m_width );
for( unsigned int i= 1; i < m_bezierPoints.size(); i++)
{
if( TestSegmentHit( aPosition, m_bezierPoints[ i - 1], m_bezierPoints[i], maxdist ) )
return true;
}
break;
case S_SEGMENT:
if( TestSegmentHit( aPosition, m_start, m_end, maxdist ) )
return true;
break;
case S_RECT:
{
std::vector<wxPoint> pts = GetRectCorners();
if( IsFilled() ) // Filled rect hit-test
{
SHAPE_POLY_SET poly;
poly.NewOutline();
for( const wxPoint& pt : pts )
poly.Append( pt );
if( poly.Collide( VECTOR2I( aPosition ), maxdist ) )
return true;
}
else // Open rect hit-test
{
if( TestSegmentHit( aPosition, pts[0], pts[1], maxdist )
|| TestSegmentHit( aPosition, pts[1], pts[2], maxdist )
|| TestSegmentHit( aPosition, pts[2], pts[3], maxdist )
|| TestSegmentHit( aPosition, pts[3], pts[0], maxdist ) )
{
return true;
}
}
}
break;
case S_POLYGON:
if( IsFilled() )
{
return m_poly.Collide( VECTOR2I( aPosition ), maxdist );
}
else
{
SHAPE_POLY_SET::VERTEX_INDEX dummy;
return m_poly.CollideEdge( VECTOR2I( aPosition ), dummy, maxdist );
}
break;
default:
wxFAIL_MSG( "PCB_SHAPE::HitTest (point) not implemented for "
+ PCB_SHAPE_TYPE_T_asString( m_shape ) );
break;
}
return false;
}
bool PCB_SHAPE::HitTest( const EDA_RECT& aRect, bool aContained, int aAccuracy ) const
{
EDA_RECT arect = aRect;
arect.Normalize();
arect.Inflate( aAccuracy );
EDA_RECT arcRect;
EDA_RECT bb = GetBoundingBox();
switch( m_shape )
{
case S_CIRCLE:
// Test if area intersects or contains the circle:
if( aContained )
return arect.Contains( bb );
else
{
// If the rectangle does not intersect the bounding box, this is a much quicker test
if( !aRect.Intersects( bb ) )
{
return false;
}
else
{
return arect.IntersectsCircleEdge( GetCenter(), GetRadius(), GetWidth() );
}
}
break;
case S_ARC:
// Test for full containment of this arc in the rect
if( aContained )
{
return arect.Contains( bb );
}
// Test if the rect crosses the arc
else
{
arcRect = bb.Common( arect );
/* All following tests must pass:
* 1. Rectangle must intersect arc BoundingBox
* 2. Rectangle must cross the outside of the arc
*/
return arcRect.Intersects( arect ) &&
arcRect.IntersectsCircleEdge( GetCenter(), GetRadius(), GetWidth() );
}
break;
case S_RECT:
if( aContained )
{
return arect.Contains( bb );
}
else
{
std::vector<wxPoint> pts = GetRectCorners();
// Account for the width of the lines
arect.Inflate( GetWidth() / 2 );
return ( arect.Intersects( pts[0], pts[1] )
|| arect.Intersects( pts[1], pts[2] )
|| arect.Intersects( pts[2], pts[3] )
|| arect.Intersects( pts[3], pts[0] ) );
}
break;
case S_SEGMENT:
if( aContained )
{
return arect.Contains( GetStart() ) && aRect.Contains( GetEnd() );
}
else
{
// Account for the width of the line
arect.Inflate( GetWidth() / 2 );
return arect.Intersects( GetStart(), GetEnd() );
}
break;
case S_POLYGON:
if( aContained )
{
return arect.Contains( bb );
}
else
{
// Fast test: if aRect is outside the polygon bounding box,
// rectangles cannot intersect
if( !arect.Intersects( bb ) )
return false;
// Account for the width of the line
arect.Inflate( GetWidth() / 2 );
int count = m_poly.TotalVertices();
for( int ii = 0; ii < count; ii++ )
{
auto vertex = m_poly.CVertex( ii );
auto vertexNext = m_poly.CVertex(( ii + 1 ) % count );
// Test if the point is within aRect
if( arect.Contains( ( wxPoint ) vertex ) )
return true;
// Test if this edge intersects aRect
if( arect.Intersects( ( wxPoint ) vertex, ( wxPoint ) vertexNext ) )
return true;
}
}
break;
case S_CURVE:
if( aContained )
{
return arect.Contains( bb );
}
else
{
// Fast test: if aRect is outside the polygon bounding box,
// rectangles cannot intersect
if( !arect.Intersects( bb ) )
return false;
// Account for the width of the line
arect.Inflate( GetWidth() / 2 );
unsigned count = m_bezierPoints.size();
for( unsigned ii = 1; ii < count; ii++ )
{
wxPoint vertex = m_bezierPoints[ ii - 1];
wxPoint vertexNext = m_bezierPoints[ii];
// Test if the point is within aRect
if( arect.Contains( ( wxPoint ) vertex ) )
return true;
// Test if this edge intersects aRect
if( arect.Intersects( vertex, vertexNext ) )
return true;
}
}
break;
default:
wxFAIL_MSG( "PCB_SHAPE::HitTest (rect) not implemented for "
+ PCB_SHAPE_TYPE_T_asString( m_shape ) );
break;
}
return false;
}
wxString PCB_SHAPE::GetSelectMenuText( EDA_UNITS aUnits ) const
{
return wxString::Format( _( "%s on %s" ),
ShowShape( m_shape ),
GetLayerName() );
}
BITMAPS PCB_SHAPE::GetMenuImage() const
{
return BITMAPS::add_dashed_line;
}
EDA_ITEM* PCB_SHAPE::Clone() const
{
return new PCB_SHAPE( *this );
}
const BOX2I PCB_SHAPE::ViewBBox() const
{
// For arcs - do not include the center point in the bounding box,
// it is redundant for displaying an arc
if( m_shape == S_ARC )
{
EDA_RECT bbox;
bbox.SetOrigin( m_end );
computeArcBBox( bbox );
return BOX2I( bbox.GetOrigin(), bbox.GetSize() );
}
BOX2I return_box = EDA_ITEM::ViewBBox();
return_box.Inflate( m_width ); // Technically m_width / 2, but it never hurts to be a
// bit large to account for selection shadows, etc.
return return_box;
}
std::vector<wxPoint> PCB_SHAPE::GetRectCorners() const
{
std::vector<wxPoint> pts;
FOOTPRINT* parentFootprint = GetParentFootprint();
wxPoint topLeft = GetStart();
wxPoint botRight = GetEnd();
// Un-rotate rect topLeft and botRight
if( parentFootprint && KiROUND( parentFootprint->GetOrientation() ) % 900 != 0 )
{
topLeft -= parentFootprint->GetPosition();
RotatePoint( &topLeft, -parentFootprint->GetOrientation() );
botRight -= parentFootprint->GetPosition();
RotatePoint( &botRight, -parentFootprint->GetOrientation() );
}
// Set up the un-rotated 4 corners
pts.emplace_back( topLeft );
pts.emplace_back( botRight.x, topLeft.y );
pts.emplace_back( botRight );
pts.emplace_back( topLeft.x, botRight.y );
// Now re-rotate the 4 corners to get a diamond
if( parentFootprint && KiROUND( parentFootprint->GetOrientation() ) % 900 != 0 )
{
for( wxPoint& pt : pts )
{
RotatePoint( &pt, parentFootprint->GetOrientation() );
pt += parentFootprint->GetPosition();
}
}
return pts;
}
void PCB_SHAPE::computeArcBBox( EDA_RECT& aBBox ) const
{
// Do not include the center, which is not necessarily
// inside the BB of a arc with a small angle
aBBox.SetOrigin( m_end );
wxPoint end = m_end;
RotatePoint( &end, m_start, -m_angle );
aBBox.Merge( end );
// Determine the starting quarter
// 0 right-bottom
// 1 left-bottom
// 2 left-top
// 3 right-top
unsigned int quarter = 0; // assume right-bottom
if( m_end.x < m_start.x )
{
if( m_end.y <= m_start.y )
quarter = 2;
else // ( m_End.y > m_Start.y )
quarter = 1;
}
else if( m_end.x >= m_start.x )
{
if( m_end.y < m_start.y )
quarter = 3;
else if( m_end.x == m_start.x )
quarter = 1;
}
int radius = GetRadius();
int angle = (int) GetArcAngleStart() % 900 + m_angle;
bool directionCW = ( m_angle > 0 ); // Is the direction of arc clockwise?
// Make the angle positive, so we go clockwise and merge points belonging to the arc
if( !directionCW )
{
angle = 900 - angle;
quarter = ( quarter + 3 ) % 4; // -1 modulo arithmetic
}
while( angle > 900 )
{
switch( quarter )
{
case 0: aBBox.Merge( wxPoint( m_start.x, m_start.y + radius ) ); break; // down
case 1: aBBox.Merge( wxPoint( m_start.x - radius, m_start.y ) ); break; // left
case 2: aBBox.Merge( wxPoint( m_start.x, m_start.y - radius ) ); break; // up
case 3: aBBox.Merge( wxPoint( m_start.x + radius, m_start.y ) ); break; // right
}
if( directionCW )
++quarter;
else
quarter += 3; // -1 modulo arithmetic
quarter %= 4;
angle -= 900;
}
aBBox.Inflate( m_width ); // Technically m_width / 2, but it doesn't hurt to have the
// bounding box a bit large to account for drawing clearances,
// etc.
}
void PCB_SHAPE::SetPolyPoints( const std::vector<wxPoint>& aPoints )
{
m_poly.RemoveAllContours();
m_poly.NewOutline();
for ( const wxPoint& p : aPoints )
m_poly.Append( p.x, p.y );
}
std::vector<SHAPE*> PCB_SHAPE::MakeEffectiveShapes() const
{
std::vector<SHAPE*> effectiveShapes;
switch( m_shape )
{
case S_ARC:
effectiveShapes.emplace_back( new SHAPE_ARC( GetCenter(), GetArcStart(),
GetAngle() / 10.0, m_width ) );
break;
case S_SEGMENT:
effectiveShapes.emplace_back( new SHAPE_SEGMENT( GetStart(), GetEnd(), m_width ) );
break;
case S_RECT:
{
std::vector<wxPoint> pts = GetRectCorners();
if( IsFilled() )
{
effectiveShapes.emplace_back( new SHAPE_SIMPLE( pts ) );
}
if( m_width > 0 || !IsFilled() )
{
effectiveShapes.emplace_back( new SHAPE_SEGMENT( pts[0], pts[1], m_width ) );
effectiveShapes.emplace_back( new SHAPE_SEGMENT( pts[1], pts[2], m_width ) );
effectiveShapes.emplace_back( new SHAPE_SEGMENT( pts[2], pts[3], m_width ) );
effectiveShapes.emplace_back( new SHAPE_SEGMENT( pts[3], pts[0], m_width ) );
}
}
break;
case S_CIRCLE:
{
if( IsFilled() )
{
effectiveShapes.emplace_back( new SHAPE_CIRCLE( GetCenter(), GetRadius() ) );
}
if( m_width > 0 || !IsFilled() )
{
// SHAPE_CIRCLE has no ConvertToPolyline() method, so use a 360.0 SHAPE_ARC
SHAPE_ARC circle( GetCenter(), GetEnd(), 360.0 );
SHAPE_LINE_CHAIN l = circle.ConvertToPolyline();
for( int i = 0; i < l.SegmentCount(); i++ )
{
effectiveShapes.emplace_back( new SHAPE_SEGMENT( l.Segment( i ).A,
l.Segment( i ).B, m_width ) );
}
}
break;
}
case S_CURVE:
{
auto bezierPoints = buildBezierToSegmentsPointsList( GetWidth() );
wxPoint start_pt = bezierPoints[0];
for( unsigned int jj = 1; jj < bezierPoints.size(); jj++ )
{
wxPoint end_pt = bezierPoints[jj];
effectiveShapes.emplace_back( new SHAPE_SEGMENT( start_pt, end_pt, m_width ) );
start_pt = end_pt;
}
break;
}
case S_POLYGON:
{
SHAPE_LINE_CHAIN l = GetPolyShape().COutline( 0 );
FOOTPRINT* parentFootprint = dynamic_cast<FOOTPRINT*>( m_parent );
if( parentFootprint )
{
l.Rotate( -parentFootprint->GetOrientationRadians() );
l.Move( parentFootprint->GetPosition() );
}
if( IsFilled() )
{
effectiveShapes.emplace_back( new SHAPE_SIMPLE( l ) );
}
if( m_width > 0 || !IsFilled() )
{
for( int i = 0; i < l.SegmentCount(); i++ )
effectiveShapes.emplace_back( new SHAPE_SEGMENT( l.Segment( i ), m_width ) );
}
}
break;
default:
wxFAIL_MSG( "PCB_SHAPE::MakeEffectiveShapes unsupported PCB_SHAPE shape: "
+ PCB_SHAPE_TYPE_T_asString( m_shape ) );
break;
}
return effectiveShapes;
}
std::shared_ptr<SHAPE> PCB_SHAPE::GetEffectiveShape( PCB_LAYER_ID aLayer ) const
{
return std::make_shared<SHAPE_COMPOUND>( MakeEffectiveShapes() );
}
const std::vector<wxPoint> PCB_SHAPE::BuildPolyPointsList() const
{
std::vector<wxPoint> rv;
if( m_poly.OutlineCount() )
{
if( m_poly.COutline( 0 ).PointCount() )
{
for ( auto iter = m_poly.CIterate(); iter; iter++ )
rv.emplace_back( iter->x, iter->y );
}
}
return rv;
}
bool PCB_SHAPE::IsPolyShapeValid() const
{
// return true if the polygonal shape is valid (has more than 2 points)
if( GetPolyShape().OutlineCount() == 0 )
return false;
const SHAPE_LINE_CHAIN& outline = ( (SHAPE_POLY_SET&)GetPolyShape() ).Outline( 0 );
return outline.PointCount() > 2;
}
int PCB_SHAPE::GetPointCount() const
{
// return the number of corners of the polygonal shape
// this shape is expected to be only one polygon without hole
if( GetPolyShape().OutlineCount() )
return GetPolyShape().VertexCount( 0 );
return 0;
}
void PCB_SHAPE::SwapData( BOARD_ITEM* aImage )
{
PCB_SHAPE* image = dynamic_cast<PCB_SHAPE*>( aImage );
assert( image );
std::swap( m_width, image->m_width );
std::swap( m_start, image->m_start );
std::swap( m_end, image->m_end );
std::swap( m_thirdPoint, image->m_thirdPoint );
std::swap( m_shape, image->m_shape );
std::swap( m_angle, image->m_angle );
std::swap( m_bezierC1, image->m_bezierC1 );
std::swap( m_bezierC2, image->m_bezierC2 );
std::swap( m_bezierPoints, image->m_bezierPoints );
std::swap( m_poly, image->m_poly );
std::swap( m_layer, image->m_layer );
std::swap( m_flags, image->m_flags );
std::swap( m_status, image->m_status );
std::swap( m_parent, image->m_parent );
std::swap( m_forceVisible, image->m_forceVisible );
}
bool PCB_SHAPE::cmp_drawings::operator()( const BOARD_ITEM* aFirst, const BOARD_ITEM* aSecond ) const
{
if( aFirst->Type() != aSecond->Type() )
return aFirst->Type() < aSecond->Type();
if( aFirst->GetLayer() != aSecond->GetLayer() )
return aFirst->GetLayer() < aSecond->GetLayer();
if( aFirst->Type() == PCB_SHAPE_T )
{
const PCB_SHAPE* dwgA = static_cast<const PCB_SHAPE*>( aFirst );
const PCB_SHAPE* dwgB = static_cast<const PCB_SHAPE*>( aSecond );
if( dwgA->GetShape() != dwgB->GetShape() )
return dwgA->GetShape() < dwgB->GetShape();
}
return aFirst->m_Uuid < aSecond->m_Uuid;
}
static struct DRAWSEGMENT_DESC
{
DRAWSEGMENT_DESC()
{
PROPERTY_MANAGER& propMgr = PROPERTY_MANAGER::Instance();
REGISTER_TYPE( PCB_SHAPE );
propMgr.InheritsAfter( TYPE_HASH( PCB_SHAPE ), TYPE_HASH( BOARD_ITEM ) );
propMgr.AddProperty( new PROPERTY<PCB_SHAPE, int>( _HKI( "Thickness" ),
&PCB_SHAPE::SetWidth, &PCB_SHAPE::GetWidth, PROPERTY_DISPLAY::DISTANCE ) );
// TODO show certain properties depending on the shape
//propMgr.AddProperty( new PROPERTY<PCB_SHAPE, double>( _HKI( "Angle" ),
// &PCB_SHAPE::SetAngle, &PCB_SHAPE::GetAngle, PROPERTY_DISPLAY::DECIDEGREE ) );
// TODO or may have different names (arcs)
// TODO type?
propMgr.AddProperty( new PROPERTY<PCB_SHAPE, int>( _HKI( "End X" ),
&PCB_SHAPE::SetEndX, &PCB_SHAPE::GetEndX, PROPERTY_DISPLAY::DISTANCE ) );
propMgr.AddProperty( new PROPERTY<PCB_SHAPE, int>( _HKI( "End Y" ),
&PCB_SHAPE::SetEndY, &PCB_SHAPE::GetEndY, PROPERTY_DISPLAY::DISTANCE ) );
}
} _DRAWSEGMENT_DESC;