kicad/3d-viewer/3d_canvas/create_3Dgraphic_brd_items.cpp

858 lines
32 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2015-2016 Mario Luzeiro <mrluzeiro@ua.pt>
* Copyright (C) 1992-2021 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
/**
* @file create_graphic_brd_items.cpp
* @brief This file implements the creation of 2D graphic primitives of pcb items:
* pads, tracks, drawsegments, texts....
* It is based on the function found in the files:
* board_items_to_polygon_shape_transform.cpp
*/
#include "../3d_rendering/3d_render_raytracing/shapes2D/ring_2d.h"
#include "../3d_rendering/3d_render_raytracing/shapes2D/filled_circle_2d.h"
#include "../3d_rendering/3d_render_raytracing/shapes2D/round_segment_2d.h"
#include "../3d_rendering/3d_render_raytracing/shapes2D/triangle_2d.h"
#include <board_adapter.h>
#include <board.h>
#include <footprint.h>
#include <pad.h>
#include <pcb_text.h>
#include <fp_shape.h>
#include <zone.h>
#include <kicad_string.h>
#include <fp_text.h>
#include <convert_basic_shapes_to_polygon.h>
#include <trigo.h>
#include <geometry/shape_segment.h>
#include <geometry/geometry_utils.h>
#include <geometry/shape_circle.h>
#include <geometry/shape_rect.h>
#include <geometry/shape_simple.h>
#include <gr_text.h>
#include <utility>
#include <vector>
#include <wx/log.h>
// These variables are parameters used in addTextSegmToContainer.
// But addTextSegmToContainer is a call-back function,
// so we cannot send them as arguments.
static int s_textWidth;
static CONTAINER_2D_BASE* s_dstcontainer = nullptr;
static float s_biuTo3Dunits;
static const BOARD_ITEM* s_boardItem = nullptr;
// This is a call back function, used by GRText to draw the 3D text shape:
void addTextSegmToContainer( int x0, int y0, int xf, int yf, void* aData )
{
const SFVEC2F start3DU( x0 * s_biuTo3Dunits, -y0 * s_biuTo3Dunits );
const SFVEC2F end3DU ( xf * s_biuTo3Dunits, -yf * s_biuTo3Dunits );
if( Is_segment_a_circle( start3DU, end3DU ) )
s_dstcontainer->Add( new FILLED_CIRCLE_2D( start3DU, ( s_textWidth / 2 ) * s_biuTo3Dunits,
*s_boardItem) );
else
s_dstcontainer->Add( new ROUND_SEGMENT_2D( start3DU, end3DU, s_textWidth * s_biuTo3Dunits,
*s_boardItem ) );
}
// Based on
// void PCB_TEXT::TransformTextShapeWithClearanceToPolygon
// board_items_to_polygon_shape_transform.cpp
void BOARD_ADAPTER::addShapeWithClearance( const PCB_TEXT* aText, CONTAINER_2D_BASE* aDstContainer,
PCB_LAYER_ID aLayerId, int aClearanceValue )
{
wxSize size = aText->GetTextSize();
if( aText->IsMirrored() )
size.x = -size.x;
s_boardItem = (const BOARD_ITEM *) &aText;
s_dstcontainer = aDstContainer;
s_textWidth = aText->GetEffectiveTextPenWidth() + ( 2 * aClearanceValue );
s_biuTo3Dunits = m_biuTo3Dunits;
// not actually used, but needed by GRText
const COLOR4D dummy_color;
// Use the actual text width to generate segments. The segment position depend on
// text thickness and justification
bool isBold = aText->IsBold();
int penWidth = aText->GetEffectiveTextPenWidth();
GRText( nullptr, aText->GetTextPos(), dummy_color, aText->GetShownText(),
aText->GetTextAngle(), size, aText->GetHorizJustify(), aText->GetVertJustify(),
penWidth, aText->IsItalic(), isBold, addTextSegmToContainer );
}
void BOARD_ADAPTER::addShapeWithClearance( const DIMENSION_BASE* aDimension,
CONTAINER_2D_BASE* aDstContainer,
PCB_LAYER_ID aLayerId, int aClearanceValue )
{
addShapeWithClearance( &aDimension->Text(), aDstContainer, aLayerId, aClearanceValue );
const int linewidth = aDimension->GetLineThickness() + ( 2 * aClearanceValue );
for( const std::shared_ptr<SHAPE>& shape : aDimension->GetShapes() )
{
switch( shape->Type() )
{
case SH_SEGMENT:
{
const SEG& seg = static_cast<const SHAPE_SEGMENT*>( shape.get() )->GetSeg();
const SFVEC2F start3DU( seg.A.x * m_biuTo3Dunits, -seg.A.y * m_biuTo3Dunits );
const SFVEC2F end3DU( seg.B.x * m_biuTo3Dunits, -seg.B.y * m_biuTo3Dunits );
aDstContainer->Add( new ROUND_SEGMENT_2D( start3DU, end3DU, linewidth * m_biuTo3Dunits,
*aDimension ) );
break;
}
case SH_CIRCLE:
{
int radius = static_cast<const SHAPE_CIRCLE*>( shape.get() )->GetRadius();
int deltar = aDimension->GetLineThickness();
SFVEC2F center( shape->Centre().x * m_biuTo3Dunits,
shape->Centre().y * m_biuTo3Dunits );
aDstContainer->Add( new RING_2D( center, ( radius - deltar ) * m_biuTo3Dunits,
( radius + deltar ) * m_biuTo3Dunits, *aDimension ) );
break;
}
default:
break;
}
}
}
// Based on
// void FOOTPRINT::TransformFPShapesWithClearanceToPolygonSet
// board_items_to_polygon_shape_transform.cpp#L204
void BOARD_ADAPTER::addFootprintShapesWithClearance( const FOOTPRINT* aFootprint,
CONTAINER_2D_BASE* aDstContainer,
PCB_LAYER_ID aLayerId, int aInflateValue )
{
std::vector<FP_TEXT*> texts; // List of FP_TEXT to convert
FP_SHAPE* outline;
for( BOARD_ITEM* item : aFootprint->GraphicalItems() )
{
switch( item->Type() )
{
case PCB_FP_TEXT_T:
{
FP_TEXT* text = static_cast<FP_TEXT*>( item );
if( text->GetLayer() == aLayerId && text->IsVisible() )
texts.push_back( text );
}
break;
case PCB_FP_SHAPE_T:
{
outline = (FP_SHAPE*) item;
if( outline->GetLayer() != aLayerId )
break;
addShapeWithClearance( (const PCB_SHAPE*) outline, aDstContainer, aLayerId, 0 );
}
break;
default:
break;
}
}
// Convert texts for footprints
if( aFootprint->Reference().GetLayer() == aLayerId && aFootprint->Reference().IsVisible() )
texts.push_back( &aFootprint->Reference() );
if( aFootprint->Value().GetLayer() == aLayerId && aFootprint->Value().IsVisible() )
texts.push_back( &aFootprint->Value() );
s_boardItem = (const BOARD_ITEM *)&aFootprint->Value();
s_dstcontainer = aDstContainer;
s_biuTo3Dunits = m_biuTo3Dunits;
for( FP_TEXT* text : texts )
{
s_textWidth = text->GetEffectiveTextPenWidth() + ( 2 * aInflateValue );
wxSize size = text->GetTextSize();
bool isBold = text->IsBold();
int penWidth = text->GetEffectiveTextPenWidth();
if( text->IsMirrored() )
size.x = -size.x;
GRText( nullptr, text->GetTextPos(), BLACK, text->GetShownText(), text->GetDrawRotation(),
size, text->GetHorizJustify(), text->GetVertJustify(), penWidth, text->IsItalic(),
isBold, addTextSegmToContainer );
}
}
void BOARD_ADAPTER::createTrack( const TRACK* aTrack, CONTAINER_2D_BASE* aDstContainer,
int aClearanceValue )
{
SFVEC2F start3DU( aTrack->GetStart().x * m_biuTo3Dunits,
-aTrack->GetStart().y * m_biuTo3Dunits ); // y coord is inverted
switch( aTrack->Type() )
{
case PCB_VIA_T:
{
const float radius = ( ( aTrack->GetWidth() / 2 ) + aClearanceValue ) * m_biuTo3Dunits;
aDstContainer->Add( new FILLED_CIRCLE_2D( start3DU, radius, *aTrack ) );
break;
}
case PCB_ARC_T:
{
const ARC* arc = static_cast<const ARC*>( aTrack );
VECTOR2D center( arc->GetCenter() );
double arc_angle = arc->GetAngle();
double radius = arc->GetRadius();
int arcsegcount = GetArcToSegmentCount( radius, Millimeter2iu( 0.005), arc_angle/10 );
int circlesegcount;
// We need a circle to segment count. However, the arc angle can be small, and the
// radius very big. so we calculate a reasonable value for circlesegcount.
if( arcsegcount <= 1 ) // The arc will be approximated by a segment
circlesegcount = 1;
else
{
double cnt = arcsegcount * 3600/std::abs( arc_angle );
#define SEG_CNT_MAX 128
if( cnt < SEG_CNT_MAX )
{
circlesegcount = (int)cnt;
if( circlesegcount == 0 )
circlesegcount = 1;
}
else
{
circlesegcount = SEG_CNT_MAX;
}
}
transformArcToSegments( wxPoint( center.x, center.y ), arc->GetStart(),
arc_angle, circlesegcount,
arc->GetWidth() + 2 * aClearanceValue, aDstContainer, *arc );
break;
}
case PCB_TRACE_T: // Track is a usual straight segment
{
SFVEC2F end3DU( aTrack->GetEnd().x * m_biuTo3Dunits, -aTrack->GetEnd().y * m_biuTo3Dunits );
// Cannot add segments that have the same start and end point
if( Is_segment_a_circle( start3DU, end3DU ) )
{
const float radius = ((aTrack->GetWidth() / 2) + aClearanceValue) * m_biuTo3Dunits;
aDstContainer->Add( new FILLED_CIRCLE_2D( start3DU, radius, *aTrack ) );
}
else
{
const float width = (aTrack->GetWidth() + 2 * aClearanceValue ) * m_biuTo3Dunits;
aDstContainer->Add( new ROUND_SEGMENT_2D( start3DU, end3DU, width, *aTrack ) );
}
break;
}
default:
break;
}
}
void BOARD_ADAPTER::createPadWithClearance( const PAD* aPad, CONTAINER_2D_BASE* aDstContainer,
PCB_LAYER_ID aLayer, wxSize aClearanceValue ) const
{
SHAPE_POLY_SET poly;
// Our shape-based builder can't handle negative or differing x:y clearance values (the
// former are common for solder paste while the later get generated when a relative paste
// margin is used with an oblong pad). So we apply this huge hack and fake a larger pad to
// run the general-purpose polygon builder on.
// Of course being a hack it falls down when dealing with custom shape pads (where the size
// is only the size of the anchor), so for those we punt and just use aClearanceValue.x.
if( ( aClearanceValue.x < 0 || aClearanceValue.x != aClearanceValue.y )
&& aPad->GetShape() != PAD_SHAPE::CUSTOM )
{
PAD dummy( *aPad );
dummy.SetSize( aPad->GetSize() + aClearanceValue + aClearanceValue );
dummy.TransformShapeWithClearanceToPolygon( poly, aLayer, 0, ARC_HIGH_DEF, ERROR_INSIDE );
aClearanceValue = { 0, 0 };
}
else
{
auto padShapes = std::static_pointer_cast<SHAPE_COMPOUND>( aPad->GetEffectiveShape() );
for( const SHAPE* shape : padShapes->Shapes() )
{
switch( shape->Type() )
{
case SH_SEGMENT:
{
const SHAPE_SEGMENT* seg = (SHAPE_SEGMENT*) shape;
const SFVEC2F start3DU( seg->GetSeg().A.x * m_biuTo3Dunits,
-seg->GetSeg().A.y * m_biuTo3Dunits );
const SFVEC2F end3DU ( seg->GetSeg().B.x * m_biuTo3Dunits,
-seg->GetSeg().B.y * m_biuTo3Dunits );
const int width = seg->GetWidth() + aClearanceValue.x * 2;
// Cannot add segments that have the same start and end point
if( Is_segment_a_circle( start3DU, end3DU ) )
{
aDstContainer->Add( new FILLED_CIRCLE_2D( start3DU,
( width / 2) * m_biuTo3Dunits,
*aPad ) );
}
else
{
aDstContainer->Add( new ROUND_SEGMENT_2D( start3DU, end3DU,
width * m_biuTo3Dunits,
*aPad ) );
}
}
break;
case SH_CIRCLE:
{
const SHAPE_CIRCLE* circle = (SHAPE_CIRCLE*) shape;
const int radius = circle->GetRadius() + aClearanceValue.x;
const SFVEC2F center( circle->GetCenter().x * m_biuTo3Dunits,
-circle->GetCenter().y * m_biuTo3Dunits );
aDstContainer->Add( new FILLED_CIRCLE_2D( center, radius * m_biuTo3Dunits,
*aPad ) );
}
break;
case SH_RECT:
{
SHAPE_RECT* rect = (SHAPE_RECT*) shape;
poly.NewOutline();
poly.Append( rect->GetPosition() );
poly.Append( rect->GetPosition().x + rect->GetSize().x, rect->GetPosition().y );
poly.Append( rect->GetPosition() + rect->GetSize() );
poly.Append( rect->GetPosition().x, rect->GetPosition().y + rect->GetSize().y );
}
break;
case SH_SIMPLE:
poly.AddOutline( static_cast<const SHAPE_SIMPLE*>( shape )->Vertices() );
break;
case SH_POLY_SET:
poly = *(SHAPE_POLY_SET*) shape;
break;
case SH_ARC:
{
SHAPE_ARC* arc = (SHAPE_ARC*) shape;
SHAPE_LINE_CHAIN l = arc->ConvertToPolyline();
for( int i = 0; i < l.SegmentCount(); i++ )
{
SHAPE_SEGMENT seg( l.Segment( i ).A, l.Segment( i ).B, arc->GetWidth() );
const SFVEC2F start3DU( seg.GetSeg().A.x * m_biuTo3Dunits,
-seg.GetSeg().A.y * m_biuTo3Dunits );
const SFVEC2F end3DU( seg.GetSeg().B.x * m_biuTo3Dunits,
-seg.GetSeg().B.y * m_biuTo3Dunits );
const int width = arc->GetWidth() + aClearanceValue.x * 2;
// Cannot add segments that have the same start and end point
if( Is_segment_a_circle( start3DU, end3DU ) )
{
aDstContainer->Add( new FILLED_CIRCLE_2D( start3DU,
( width / 2) * m_biuTo3Dunits,
*aPad ) );
}
else
{
aDstContainer->Add( new ROUND_SEGMENT_2D( start3DU, end3DU,
width * m_biuTo3Dunits,
*aPad ) );
}
}
}
break;
default:
wxFAIL_MSG( "BOARD_ADAPTER::createPadWithClearance no implementation for "
+ SHAPE_TYPE_asString( shape->Type() ) );
break;
}
}
}
if( !poly.IsEmpty() )
{
if( aClearanceValue.x )
poly.Inflate( aClearanceValue.x, 32 );
// Add the PAD polygon
ConvertPolygonToTriangles( poly, *aDstContainer, m_biuTo3Dunits, *aPad );
}
}
OBJECT_2D* BOARD_ADAPTER::createPadWithDrill( const PAD* aPad, int aInflateValue )
{
wxSize drillSize = aPad->GetDrillSize();
if( !drillSize.x || !drillSize.y )
{
wxLogTrace( m_logTrace, wxT( "BOARD_ADAPTER::createPadWithDrill - found an invalid pad" ) );
return nullptr;
}
if( drillSize.x == drillSize.y ) // usual round hole
{
const int radius = ( drillSize.x / 2 ) + aInflateValue;
const SFVEC2F center( aPad->GetPosition().x * m_biuTo3Dunits,
-aPad->GetPosition().y * m_biuTo3Dunits );
return new FILLED_CIRCLE_2D( center, radius * m_biuTo3Dunits, *aPad );
}
else // Oblong hole
{
const SHAPE_SEGMENT* seg = aPad->GetEffectiveHoleShape();
float width = seg->GetWidth() + aInflateValue * 2;
SFVEC2F start3DU( seg->GetSeg().A.x * m_biuTo3Dunits,
-seg->GetSeg().A.y * m_biuTo3Dunits );
SFVEC2F end3DU ( seg->GetSeg().B.x * m_biuTo3Dunits,
-seg->GetSeg().B.y * m_biuTo3Dunits );
return new ROUND_SEGMENT_2D( start3DU, end3DU, width * m_biuTo3Dunits, *aPad );
}
return nullptr;
}
void BOARD_ADAPTER::addPadsWithClearance( const FOOTPRINT* aFootprint,
CONTAINER_2D_BASE* aDstContainer,
PCB_LAYER_ID aLayerId, int aInflateValue,
bool aSkipNPTHPadsWihNoCopper, bool aSkipPlatedPads,
bool aSkipNonPlatedPads )
{
for( PAD* pad : aFootprint->Pads() )
{
if( !pad->IsOnLayer( aLayerId ) )
continue;
// Skip pad annulus when not connected on this layer (if removing is enabled)
if( !pad->FlashLayer( aLayerId ) && IsCopperLayer( aLayerId ) )
continue;
// NPTH pads are not drawn on layers if the
// shape size and pos is the same as their hole:
if( aSkipNPTHPadsWihNoCopper && ( pad->GetAttribute() == PAD_ATTRIB::NPTH ) )
{
if( pad->GetDrillSize() == pad->GetSize() && pad->GetOffset() == wxPoint( 0, 0 ) )
{
switch( pad->GetShape() )
{
case PAD_SHAPE::CIRCLE:
if( pad->GetDrillShape() == PAD_DRILL_SHAPE_CIRCLE )
continue;
break;
case PAD_SHAPE::OVAL:
if( pad->GetDrillShape() != PAD_DRILL_SHAPE_CIRCLE )
continue;
break;
default:
break;
}
}
}
const bool isPlated = ( ( aLayerId == F_Cu ) && pad->FlashLayer( F_Mask ) ) ||
( ( aLayerId == B_Cu ) && pad->FlashLayer( B_Mask ) );
if( aSkipPlatedPads && isPlated )
continue;
if( aSkipNonPlatedPads && !isPlated )
continue;
wxSize margin( aInflateValue, aInflateValue );
switch( aLayerId )
{
case F_Mask:
case B_Mask:
margin.x += pad->GetSolderMaskMargin();
margin.y += pad->GetSolderMaskMargin();
break;
case F_Paste:
case B_Paste:
margin += pad->GetSolderPasteMargin();
break;
default:
break;
}
createPadWithClearance( pad, aDstContainer, aLayerId, margin );
}
}
// based on TransformArcToPolygon function from
// common/convert_basic_shapes_to_polygon.cpp
void BOARD_ADAPTER::transformArcToSegments( const wxPoint& aCentre, const wxPoint& aStart,
double aArcAngle, int aCircleToSegmentsCount,
int aWidth, CONTAINER_2D_BASE* aDstContainer,
const BOARD_ITEM& aBoardItem )
{
wxPoint arc_start, arc_end;
int delta = 3600 / aCircleToSegmentsCount; // rotate angle in 0.1 degree
arc_end = arc_start = aStart;
if( aArcAngle != 3600 )
{
RotatePoint( &arc_end, aCentre, -aArcAngle );
}
if( aArcAngle < 0 )
{
std::swap( arc_start, arc_end );
aArcAngle = -aArcAngle;
}
// Compute the ends of segments and creates poly
wxPoint curr_end = arc_start;
wxPoint curr_start = arc_start;
for( int ii = delta; ii < aArcAngle; ii += delta )
{
curr_end = arc_start;
RotatePoint( &curr_end, aCentre, -ii );
const SFVEC2F start3DU( curr_start.x * m_biuTo3Dunits, -curr_start.y * m_biuTo3Dunits );
const SFVEC2F end3DU ( curr_end.x * m_biuTo3Dunits, -curr_end.y * m_biuTo3Dunits );
if( Is_segment_a_circle( start3DU, end3DU ) )
{
aDstContainer->Add( new FILLED_CIRCLE_2D( start3DU, ( aWidth / 2 ) * m_biuTo3Dunits,
aBoardItem ) );
}
else
{
aDstContainer->Add( new ROUND_SEGMENT_2D( start3DU, end3DU, aWidth * m_biuTo3Dunits,
aBoardItem ) );
}
curr_start = curr_end;
}
if( curr_end != arc_end )
{
const SFVEC2F start3DU( curr_end.x * m_biuTo3Dunits, -curr_end.y * m_biuTo3Dunits );
const SFVEC2F end3DU ( arc_end.x * m_biuTo3Dunits, -arc_end.y * m_biuTo3Dunits );
if( Is_segment_a_circle( start3DU, end3DU ) )
{
aDstContainer->Add( new FILLED_CIRCLE_2D( start3DU, ( aWidth / 2 ) * m_biuTo3Dunits,
aBoardItem ) );
}
else
{
aDstContainer->Add( new ROUND_SEGMENT_2D( start3DU, end3DU, aWidth * m_biuTo3Dunits,
aBoardItem ) );
}
}
}
// Based on
// TransformShapeWithClearanceToPolygon
// board_items_to_polygon_shape_transform.cpp#L431
void BOARD_ADAPTER::addShapeWithClearance( const PCB_SHAPE* aShape,
CONTAINER_2D_BASE* aDstContainer, PCB_LAYER_ID aLayerId,
int aClearanceValue )
{
// The full width of the lines to create
// The extra 1 protects the inner/outer radius values from degeneracy
const int linewidth = aShape->GetWidth() + ( 2 * aClearanceValue ) + 1;
switch( aShape->GetShape() )
{
case PCB_SHAPE_TYPE::CIRCLE:
{
const SFVEC2F center3DU( aShape->GetCenter().x * m_biuTo3Dunits,
-aShape->GetCenter().y * m_biuTo3Dunits );
float inner_radius = ( aShape->GetRadius() - linewidth / 2 ) * m_biuTo3Dunits;
float outer_radius = ( aShape->GetRadius() + linewidth / 2 ) * m_biuTo3Dunits;
if( inner_radius < 0 )
inner_radius = 0;
if( aShape->IsFilled() )
aDstContainer->Add( new FILLED_CIRCLE_2D( center3DU, outer_radius, *aShape ) );
else
aDstContainer->Add( new RING_2D( center3DU, inner_radius, outer_radius, *aShape ) );
}
break;
case PCB_SHAPE_TYPE::RECT:
if( aShape->IsFilled() )
{
SHAPE_POLY_SET polyList;
aShape->TransformShapeWithClearanceToPolygon( polyList, aLayerId, 0,
ARC_HIGH_DEF, ERROR_INSIDE );
polyList.Simplify( SHAPE_POLY_SET::PM_FAST );
ConvertPolygonToTriangles( polyList, *aDstContainer, m_biuTo3Dunits, *aShape );
}
else
{
std::vector<wxPoint> pts = aShape->GetRectCorners();
const SFVEC2F topLeft3DU( pts[0].x * m_biuTo3Dunits, -pts[0].y * m_biuTo3Dunits );
const SFVEC2F topRight3DU( pts[1].x * m_biuTo3Dunits, -pts[1].y * m_biuTo3Dunits );
const SFVEC2F botRight3DU( pts[2].x * m_biuTo3Dunits, -pts[2].y * m_biuTo3Dunits );
const SFVEC2F botLeft3DU( pts[3].x * m_biuTo3Dunits, -pts[3].y * m_biuTo3Dunits );
aDstContainer->Add( new ROUND_SEGMENT_2D( topLeft3DU, topRight3DU,
linewidth * m_biuTo3Dunits, *aShape ) );
aDstContainer->Add( new ROUND_SEGMENT_2D( topRight3DU, botRight3DU,
linewidth * m_biuTo3Dunits, *aShape ) );
aDstContainer->Add( new ROUND_SEGMENT_2D( botRight3DU, botLeft3DU,
linewidth * m_biuTo3Dunits, *aShape ) );
aDstContainer->Add( new ROUND_SEGMENT_2D( botLeft3DU, topLeft3DU,
linewidth * m_biuTo3Dunits, *aShape ) );
}
break;
case PCB_SHAPE_TYPE::ARC:
{
unsigned int segCount = GetCircleSegmentCount( aShape->GetBoundingBox().GetSizeMax() );
transformArcToSegments( aShape->GetCenter(), aShape->GetArcStart(), aShape->GetAngle(),
segCount, linewidth, aDstContainer, *aShape );
}
break;
case PCB_SHAPE_TYPE::SEGMENT:
{
const SFVEC2F start3DU( aShape->GetStart().x * m_biuTo3Dunits,
-aShape->GetStart().y * m_biuTo3Dunits );
const SFVEC2F end3DU ( aShape->GetEnd().x * m_biuTo3Dunits,
-aShape->GetEnd().y * m_biuTo3Dunits );
if( Is_segment_a_circle( start3DU, end3DU ) )
{
aDstContainer->Add( new FILLED_CIRCLE_2D( start3DU, ( linewidth / 2 ) * m_biuTo3Dunits,
*aShape ) );
}
else
{
aDstContainer->Add( new ROUND_SEGMENT_2D( start3DU, end3DU, linewidth * m_biuTo3Dunits,
*aShape ) );
}
}
break;
case PCB_SHAPE_TYPE::CURVE:
case PCB_SHAPE_TYPE::POLYGON:
{
SHAPE_POLY_SET polyList;
aShape->TransformShapeWithClearanceToPolygon( polyList, aLayerId, 0,
ARC_HIGH_DEF, ERROR_INSIDE );
polyList.Simplify( SHAPE_POLY_SET::PM_FAST );
if( polyList.IsEmpty() ) // Just for caution
break;
ConvertPolygonToTriangles( polyList, *aDstContainer, m_biuTo3Dunits, *aShape );
}
break;
default:
wxFAIL_MSG( "BOARD_ADAPTER::addShapeWithClearance no implementation for "
+ PCB_SHAPE_TYPE_T_asString( aShape->GetShape() ) );
break;
}
}
// Based on
// TransformSolidAreasShapesToPolygonSet
// board_items_to_polygon_shape_transform.cpp
void BOARD_ADAPTER::addSolidAreasShapes( const ZONE* aZoneContainer,
CONTAINER_2D_BASE* aDstContainer, PCB_LAYER_ID aLayerId )
{
// Copy the polys list because we have to simplify it
SHAPE_POLY_SET polyList = SHAPE_POLY_SET( aZoneContainer->GetFilledPolysList( aLayerId ) );
// This convert the poly in outline and holes
ConvertPolygonToTriangles( polyList, *aDstContainer, m_biuTo3Dunits, *aZoneContainer );
// add filled areas outlines, which are drawn with thick lines segments
// but only if filled polygons outlines have thickness
if( !aZoneContainer->GetFilledPolysUseThickness() )
return;
float line_thickness = aZoneContainer->GetMinThickness() * m_biuTo3Dunits;
for( int i = 0; i < polyList.OutlineCount(); ++i )
{
// Add outline
const SHAPE_LINE_CHAIN& pathOutline = polyList.COutline( i );
for( int j = 0; j < pathOutline.PointCount(); ++j )
{
const VECTOR2I& a = pathOutline.CPoint( j );
const VECTOR2I& b = pathOutline.CPoint( j + 1 );
SFVEC2F start3DU( a.x * m_biuTo3Dunits, -a.y * m_biuTo3Dunits );
SFVEC2F end3DU ( b.x * m_biuTo3Dunits, -b.y * m_biuTo3Dunits );
if( Is_segment_a_circle( start3DU, end3DU ) )
{
float radius = line_thickness/2;
if( radius > 0.0 ) // degenerated circles crash 3D viewer
aDstContainer->Add( new FILLED_CIRCLE_2D( start3DU, radius, *aZoneContainer ) );
}
else
{
aDstContainer->Add( new ROUND_SEGMENT_2D( start3DU, end3DU, line_thickness,
*aZoneContainer ) );
}
}
// Add holes (of the poly, ie: the open parts) for this outline
for( int h = 0; h < polyList.HoleCount( i ); ++h )
{
const SHAPE_LINE_CHAIN& pathHole = polyList.CHole( i, h );
for( int j = 0; j < pathHole.PointCount(); j++ )
{
const VECTOR2I& a = pathHole.CPoint( j );
const VECTOR2I& b = pathHole.CPoint( j + 1 );
SFVEC2F start3DU( a.x * m_biuTo3Dunits, -a.y * m_biuTo3Dunits );
SFVEC2F end3DU ( b.x * m_biuTo3Dunits, -b.y * m_biuTo3Dunits );
if( Is_segment_a_circle( start3DU, end3DU ) )
{
float radius = line_thickness/2;
if( radius > 0.0 ) // degenerated circles crash 3D viewer
aDstContainer->Add( new FILLED_CIRCLE_2D( start3DU, radius,
*aZoneContainer ) );
}
else
{
aDstContainer->Add( new ROUND_SEGMENT_2D( start3DU, end3DU, line_thickness,
*aZoneContainer ) );
}
}
}
}
}
void BOARD_ADAPTER::buildPadOutlineAsSegments( const PAD* aPad, CONTAINER_2D_BASE* aDstContainer,
int aWidth )
{
if( aPad->GetShape() == PAD_SHAPE::CIRCLE ) // Draw a ring
{
const SFVEC2F center3DU( aPad->ShapePos().x * m_biuTo3Dunits,
-aPad->ShapePos().y * m_biuTo3Dunits );
const int radius = aPad->GetSize().x / 2;
const float inner_radius = ( radius - aWidth / 2 ) * m_biuTo3Dunits;
const float outer_radius = ( radius + aWidth / 2 ) * m_biuTo3Dunits;
aDstContainer->Add( new RING_2D( center3DU, inner_radius, outer_radius, *aPad ) );
return;
}
// For other shapes, add outlines as thick segments in polygon buffer
const std::shared_ptr<SHAPE_POLY_SET>& corners = aPad->GetEffectivePolygon();
const SHAPE_LINE_CHAIN& path = corners->COutline( 0 );
for( int j = 0; j < path.PointCount(); j++ )
{
const VECTOR2I& a = path.CPoint( j );
const VECTOR2I& b = path.CPoint( j + 1 );
SFVEC2F start3DU( a.x * m_biuTo3Dunits, -a.y * m_biuTo3Dunits );
SFVEC2F end3DU ( b.x * m_biuTo3Dunits, -b.y * m_biuTo3Dunits );
if( Is_segment_a_circle( start3DU, end3DU ) )
{
aDstContainer->Add( new FILLED_CIRCLE_2D( start3DU, ( aWidth / 2 ) * m_biuTo3Dunits,
*aPad ) );
}
else
{
aDstContainer->Add( new ROUND_SEGMENT_2D( start3DU, end3DU, aWidth * m_biuTo3Dunits,
*aPad ) );
}
}
}