kicad/common/geometry/shape_arc.cpp

268 lines
6.6 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2017 CERN
* @author Tomasz Wlostowski <tomasz.wlostowski@cern.ch>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <algorithm>
#include <vector>
#include <geometry/geometry_utils.h>
#include <geometry/shape_arc.h>
#include <geometry/shape_line_chain.h>
bool SHAPE_ARC::Collide( const SEG& aSeg, int aClearance ) const
{
int minDist = aClearance + m_width / 2;
auto centerDist = aSeg.Distance( m_pc );
auto p1 = GetP1();
if( centerDist < minDist )
return true;
auto ab = (aSeg.B - aSeg.A );
auto ac = ( m_pc - aSeg.A );
auto lenAbSq = ab.SquaredEuclideanNorm();
auto lambda = (double) ac.Dot( ab ) / (double) lenAbSq;
if( lambda >= 0.0 && lambda <= 1.0 )
{
VECTOR2I p;
p.x = (double) aSeg.A.x * lambda + (double) aSeg.B.x * (1.0 - lambda);
p.y = (double) aSeg.A.y * lambda + (double) aSeg.B.y * (1.0 - lambda);
auto p0pdist = ( m_p0 - p ).EuclideanNorm();
if( p0pdist < minDist )
return true;
auto p1pdist = ( p1 - p ).EuclideanNorm();
if( p1pdist < minDist )
return true;
}
auto p0dist = aSeg.Distance( m_p0 );
if( p0dist > minDist )
return true;
auto p1dist = aSeg.Distance( p1 );
if( p1dist > minDist )
return false;
return true;
}
#if 0
bool SHAPE_ARC::ConstructFromCorners( VECTOR2I aP0, VECTOR2I aP1, double aCenterAngle )
{
VECTOR2D mid = ( VECTOR2D( aP0 ) + VECTOR2D( aP1 ) ) * 0.5;
VECTOR2D chord = VECTOR2D( aP1 ) - VECTOR2D( aP0 );
double c = (aP1 - aP0).EuclideanNorm() / 2;
VECTOR2D d = chord.Rotate( M_PI / 2.0 ).Resize( c );
m_pc = mid + d * ( 1.0 / tan( aCenterAngle / 2.0 * M_PI / 180.0 ) );
m_p0 = aP0;
m_p1 = aP1;
return true;
}
bool SHAPE_ARC::ConstructFromCornerAndAngles( VECTOR2I aP0,
double aStartAngle,
double aCenterAngle,
double aRadius )
{
m_p0 = aP0;
auto d1 = VECTOR2D( 1.0, 0.0 ).Rotate( aStartAngle * M_PI / 180.0 ) * aRadius;
auto d2 =
VECTOR2D( 1.0, 0.0 ).Rotate( (aStartAngle + aCenterAngle) * M_PI / 180.0 ) * aRadius;
m_pc = m_p0 - (VECTOR2I) d1;
m_p1 = m_pc + (VECTOR2I) d2;
if( aCenterAngle < 0 )
std::swap( m_p0, m_p1 );
return true;
}
bool SHAPE_ARC::ConstructFromCenterAndAngles( VECTOR2I aCenter, double aRadius, double aStartAngle, double aCenterAngle )
{
double ea = aStartAngle + aCenterAngle;
m_fullCircle = false;
m_pc = aCenter;
m_p0.x = (int) ( (double) aCenter.x + aRadius * cos( aStartAngle * M_PI / 180.0 ) );
m_p0.y = (int) ( (double) aCenter.y + aRadius * sin( aStartAngle * M_PI / 180.0 ) );
m_p1.x = (int) ( (double) aCenter.x + aRadius * cos( ea * M_PI / 180.0 ) );
m_p1.y = (int) ( (double) aCenter.y + aRadius * sin( ea * M_PI / 180.0 ) );
if( aCenterAngle == 360.0 )
{
m_fullCircle = true;
return true;
}
else if ( aCenterAngle < 0.0 )
{
std::swap(m_p0, m_p1);
}
return true;
}
#endif
const VECTOR2I SHAPE_ARC::GetP1() const
{
VECTOR2D rvec = m_p0 - m_pc;
auto ca = m_centralAngle * M_PI / 180.0;
VECTOR2I p1;
p1.x = (int) ( m_pc.x + rvec.x * cos( ca ) - rvec.y * sin( ca ) );
p1.y = (int) ( m_pc.y + rvec.x * sin( ca ) + rvec.y * cos( ca ) );
return p1;
}
const BOX2I SHAPE_ARC::BBox( int aClearance ) const
{
BOX2I bbox;
std::vector<VECTOR2I> points;
points.push_back( m_pc );
points.push_back( m_p0 );
points.push_back( GetP1() );
double start_angle = GetStartAngle();
double end_angle = start_angle + GetCentralAngle();
// we always count quadrants clockwise (increasing angle)
if( start_angle > end_angle )
std::swap( start_angle, end_angle );
int quad_angle_start = std::ceil( start_angle / 90.0 );
int quad_angle_end = std::floor( end_angle / 90.0 );
// count through quadrants included in arc
for( int quad_angle = quad_angle_start; quad_angle <= quad_angle_end; ++quad_angle )
{
const int radius = GetRadius();
VECTOR2I quad_pt = m_pc;
switch( quad_angle % 4 )
{
case 0: quad_pt += { radius, 0 }; break;
case 1:
case -3: quad_pt += { 0, radius }; break;
case 2:
case -2: quad_pt += { -radius, 0 }; break;
case 3:
case -1: quad_pt += { 0, -radius }; break;
default: assert( false );
}
points.push_back( quad_pt );
}
bbox.Compute( points );
if( aClearance != 0 )
bbox.Inflate( aClearance );
return bbox;
}
bool SHAPE_ARC::Collide( const VECTOR2I& aP, int aClearance ) const
{
assert( false );
return false;
}
double SHAPE_ARC::GetStartAngle() const
{
VECTOR2D d( m_p0 - m_pc );
auto ang = 180.0 / M_PI * atan2( d.y, d.x );
return ang;
}
double SHAPE_ARC::GetEndAngle() const
{
double a = GetStartAngle() + m_centralAngle;
if( a < 0.0 )
a += 360.0;
else if ( a >= 360.0 )
a -= 360.0;
return a;
}
double SHAPE_ARC::GetCentralAngle() const
{
return m_centralAngle;
}
int SHAPE_ARC::GetRadius() const
{
return (m_p0 - m_pc).EuclideanNorm();
}
const SHAPE_LINE_CHAIN SHAPE_ARC::ConvertToPolyline( double aAccuracy ) const
{
SHAPE_LINE_CHAIN rv;
double r = GetRadius();
double sa = GetStartAngle();
auto c = GetCenter();
int n;
if( r == 0.0 )
{
n = 0;
}
else
{
n = GetArcToSegmentCount( r, aAccuracy, m_centralAngle );
}
for( int i = 0; i <= n ; i++ )
{
double a = sa + m_centralAngle * (double) i / (double) n;
double x = c.x + r * cos( a * M_PI / 180.0 );
double y = c.y + r * sin( a * M_PI / 180.0 );
rv.Append( (int) x, (int) y );
}
return rv;
}