413 lines
9.7 KiB
C++
413 lines
9.7 KiB
C++
/**
|
|
* @file length.h
|
|
* @brief The physical length library. Made for nanometer scale.
|
|
*/
|
|
|
|
/* sorry if it is not styled correctly, i'll work on it further */
|
|
|
|
#ifndef LENGTH_H_INCLUDED
|
|
#define LENGTH_H_INCLUDED 1
|
|
|
|
#include <math.h>
|
|
|
|
/*!
|
|
* Length template class.
|
|
* @param T actual type holding a value (be aware of precision and range!)
|
|
* @param P power of length unit: 1 - length, 2 - area, 3 - volume, -1 - lin. density etc...
|
|
* This class check length dimension in compile time. In runtime it behaves
|
|
* exactly like contained type t (which should be numeric type, like int or double)
|
|
* This class can be replaced with its contained type or simple stub.
|
|
* Check rules:
|
|
* - comparisons (< = etc.), addition, subtraction require values of same dimension
|
|
* e. g. length with length, area with area etc.
|
|
* - multiplication and division result have appropriate dimension (powers
|
|
* added and subtracted respectively)
|
|
* - sqrt and cbrt have appropriate dimensions (P/2 and P/3).
|
|
* Limitations:
|
|
* - functions which should not be applied to dimensioned values are not implemeted:
|
|
* they include algebraic (exp, log...), trigo (sin, cos...), hyperbolic (sinh, cosh..)
|
|
* - pow function is not implemented as it is require dimension check in runtime
|
|
* you should use multiplication, division, sqrt and cbrt functions instead.
|
|
* - sqrt and cbrt result type should be instantiated before they used
|
|
* Be aware when using them in complex formulae, e. g.
|
|
* LENGTH< double, 1 > len = cbrt(vol) - is ok, but
|
|
* LENGTH< double, 2 > vol = sqrt(area*area*area*area)/length - will fail
|
|
* if LENGTH<..., 4> is not instantiated
|
|
* - non-integer power values do not supported
|
|
* they should be implemented carefully using natural fractions, not floats, to be exact
|
|
* but they are very rare so you should not worry about.
|
|
* e. g. linear electric noise density should be in mV/sqrt(m)
|
|
* - automatic numeric type casts are not performed. You even have to manually
|
|
* cast LENGTH< short > to LENGTH< int > or LENGTH< float >
|
|
* to LENGTH< double >. Anyway it is not such trouble as progremmer should be
|
|
* very careful when mixing numeric types and avoid automatic casts.
|
|
*
|
|
*/
|
|
|
|
template < typename T = double, int P = 1 > class LENGTH;
|
|
|
|
/*!
|
|
* Length units.
|
|
*/
|
|
|
|
template <typename T> class LENGTH_UNITS;
|
|
|
|
/*!
|
|
* The template that "inflate" LENGTH< T, 0 > class to T. Used with (*) and (/).
|
|
*/
|
|
template < typename T, int P > struct LENGTH_TRAITS
|
|
{
|
|
typedef LENGTH<T, P> flat;
|
|
};
|
|
|
|
template < typename T > struct LENGTH_TRAITS< T, 0 >
|
|
{
|
|
/* length dimension to power 0 is just a number, so LENGTH<T, 0> should be automatically converted to T */
|
|
typedef T flat;
|
|
};
|
|
|
|
/*!
|
|
* The template for value type conversions
|
|
*/
|
|
template < typename T > struct LENGTH_CASTS
|
|
{
|
|
/*! This function to convert length value to given type T. */
|
|
template< typename X > static T cast( const X x )
|
|
{
|
|
return T( x );
|
|
}
|
|
};
|
|
|
|
template <> struct LENGTH_CASTS < int >
|
|
{
|
|
static int cast( const double x )
|
|
{
|
|
return floor( x + 0.5 );
|
|
}
|
|
};
|
|
|
|
template <> struct LENGTH_CASTS < long >
|
|
{
|
|
static long cast( const double x )
|
|
{
|
|
return floor( x + 0.5 );
|
|
}
|
|
};
|
|
|
|
/** Forward declaration for LIMITED_INT to use with casts. */
|
|
template < typename T > class LIMITED_INT;
|
|
|
|
template < typename T > struct LENGTH_CASTS < LIMITED_INT< T > >
|
|
{
|
|
static LIMITED_INT< T > cast( const double x )
|
|
{
|
|
return LIMITED_INT< T > ( floor( x + 0.5 ) );
|
|
}
|
|
};
|
|
|
|
template< typename T, int P > class LENGTH
|
|
{
|
|
friend class LENGTH_UNITS< T >;
|
|
friend class LENGTH_TRAITS< T, P >;
|
|
template < typename Y, int R > friend class LENGTH;
|
|
protected:
|
|
|
|
T u;
|
|
|
|
LENGTH( T units ) : u( units )
|
|
{
|
|
}
|
|
|
|
static T RawValue( const LENGTH<T, P> &x )
|
|
{
|
|
return x.u;
|
|
}
|
|
|
|
static T RawValue( const T& x )
|
|
{
|
|
return x;
|
|
}
|
|
|
|
public:
|
|
typedef T value_type;
|
|
|
|
enum
|
|
{
|
|
dimension = P
|
|
};
|
|
|
|
template< typename U > LENGTH( const LENGTH< U, P > &orig )
|
|
: u( LENGTH_CASTS < T >::cast( orig.u ) )
|
|
{
|
|
}
|
|
|
|
LENGTH( void ) : u()
|
|
{
|
|
}
|
|
|
|
static LENGTH<T, P> zero ( void )
|
|
{
|
|
return T(0);
|
|
}
|
|
|
|
/* Do not use this, please */
|
|
static LENGTH<T, P> quantum ( void )
|
|
{
|
|
return T(1);
|
|
}
|
|
|
|
LENGTH<T, P> & operator = ( const LENGTH<T, P> & y )
|
|
{
|
|
this->u = y.u;
|
|
return *this;
|
|
}
|
|
|
|
template< typename Y > operator LENGTH< Y, P > ( void )
|
|
{
|
|
return LENGTH< Y, P >( this->u );
|
|
}
|
|
|
|
/*************************/
|
|
/* comparisons and tests */
|
|
/*************************/
|
|
bool operator ==( const LENGTH < T, P > y ) const
|
|
{
|
|
return u == y.u;
|
|
}
|
|
|
|
bool operator !=( const LENGTH < T, P > y ) const
|
|
{
|
|
return u != y.u;
|
|
}
|
|
|
|
bool operator <( const LENGTH < T, P > y ) const
|
|
{
|
|
return u < y.u;
|
|
}
|
|
|
|
bool operator >=( const LENGTH < T, P > y ) const
|
|
{
|
|
return u >= y.u;
|
|
}
|
|
|
|
bool operator >( const LENGTH < T, P > y ) const
|
|
{
|
|
return u > y.u;
|
|
}
|
|
|
|
bool operator <=( const LENGTH < T, P > y ) const
|
|
{
|
|
return u <= y.u;
|
|
}
|
|
|
|
bool operator !( void ) const
|
|
{
|
|
return !u;
|
|
}
|
|
|
|
/*************************/
|
|
/* basic arithmetic */
|
|
/*************************/
|
|
LENGTH< T, P > operator - ( void ) const
|
|
{
|
|
LENGTH< T, P > z;
|
|
z.u = -u;
|
|
return z;
|
|
}
|
|
|
|
LENGTH< T, P >& operator -= ( const LENGTH< T, P > y )
|
|
{
|
|
u -= y.u;
|
|
return *this;
|
|
}
|
|
|
|
friend LENGTH< T, P > operator - ( const LENGTH< T, P > x, const LENGTH< T, P > y )
|
|
{
|
|
LENGTH< T, P > z = x;
|
|
z -= y;
|
|
return z;
|
|
}
|
|
|
|
LENGTH< T, P >& operator += ( const LENGTH< T, P > y )
|
|
{
|
|
u += y.u;
|
|
return *this;
|
|
}
|
|
|
|
friend LENGTH< T, P > operator + ( const LENGTH< T, P > x, const LENGTH< T, P > y )
|
|
{
|
|
LENGTH< T, P > z = x;
|
|
z += y;
|
|
return z;
|
|
}
|
|
|
|
LENGTH< T, P >& operator *= ( const T y )
|
|
{
|
|
u *= y;
|
|
return *this;
|
|
}
|
|
|
|
LENGTH< T, P > operator * ( const T & y) const
|
|
{
|
|
LENGTH< T, P > z = *this;
|
|
z *= y;
|
|
return z;
|
|
}
|
|
|
|
template < int R >
|
|
typename LENGTH_TRAITS< T, P + R >::flat operator * ( const LENGTH<T, R> &y ) const
|
|
{
|
|
LENGTH< T, P > z;
|
|
z.u = u * y.u;
|
|
return z;
|
|
}
|
|
|
|
LENGTH< T, P > friend operator * ( const T &y, const LENGTH<T, P> &x )
|
|
{
|
|
return x.u * y;
|
|
}
|
|
|
|
LENGTH< T, P >& operator /= ( const T y )
|
|
{
|
|
u /= y;
|
|
return *this;
|
|
}
|
|
|
|
LENGTH< T, P > operator / ( const T &y ) const
|
|
{
|
|
return u / y;
|
|
}
|
|
|
|
template < int R >
|
|
typename LENGTH_TRAITS< T, P - R >::flat operator / ( const LENGTH<T, R> &y ) const
|
|
{
|
|
return u / y.u;
|
|
}
|
|
|
|
LENGTH< T, -P > friend operator / ( const T &y, const LENGTH< T, P > &x )
|
|
{
|
|
return y / x.u;
|
|
}
|
|
|
|
/******************************/
|
|
/* algebraic functions */
|
|
/******************************/
|
|
friend LENGTH< T, P > abs( LENGTH< T, P > y )
|
|
{
|
|
return 0 < y.u? y : -y;
|
|
}
|
|
|
|
friend LENGTH< T, P > max( LENGTH< T, P > x, LENGTH< T, P > y )
|
|
{
|
|
LENGTH< T, P > z;
|
|
z.u = hypot( x.u, y.u );
|
|
return z;
|
|
}
|
|
|
|
friend LENGTH< T, P > sqrt( LENGTH< T, P*2 > y )
|
|
{
|
|
LENGTH< T, P > z;
|
|
z.u = sqrt( y.u );
|
|
return z;
|
|
}
|
|
|
|
friend LENGTH< T, P > cbrt( LENGTH< T, P*3 > y )
|
|
{
|
|
LENGTH< T, P > z;
|
|
z.u = cbrt( y.u );
|
|
return z;
|
|
}
|
|
|
|
friend LENGTH< T, P > hypot( LENGTH< T, P > x, LENGTH< T, P > y )
|
|
{
|
|
LENGTH< T, P > z;
|
|
z.u = hypot( x.u, y.u );
|
|
return z;
|
|
}
|
|
|
|
friend double atan2( LENGTH< T, P > x, LENGTH< T, P > y )
|
|
{
|
|
return atan2( double ( x.u ), double( y.u ) );
|
|
}
|
|
|
|
};
|
|
|
|
/*!
|
|
* Units of length
|
|
*
|
|
* How to use them:
|
|
* there are several functions, named LENGTH_UNITS< T >::METRE, which return
|
|
* named unit (1 meter in example) which have type LENGTH< T, P >.
|
|
* to get specific length you should use a multiplication:
|
|
* 3*LENGTH_UNITS::metre() gives 3 metres
|
|
* 0.01*LENGTH_UNITS::metre() gives 0.01 inch
|
|
* to get numeric value of length in specific units you should use a division
|
|
* length/LENGTH_UNITS::metre() gives number of metres in length
|
|
* legnth/LENGTH_UNITS::foot() gives number of feet in length
|
|
*
|
|
* Really these units are used in NEWPCB and printing routines, as EESCHEMA
|
|
* is going to use relative units.
|
|
*/
|
|
|
|
template < typename T > class LENGTH_UNITS {
|
|
protected:
|
|
enum
|
|
{
|
|
METRE = 1000000000, /*!< The ONLY constant connecting length to the real world */
|
|
|
|
INCH = METRE / 10000 * 254
|
|
};
|
|
|
|
public:
|
|
/*! One metre. */
|
|
static LENGTH< T, 1 > metre( void )
|
|
{
|
|
return T( METRE );
|
|
}
|
|
|
|
/*! One decimetre. */
|
|
static LENGTH< T, 1 > decimetre( void )
|
|
{
|
|
return T( METRE / 10 );
|
|
}
|
|
|
|
static LENGTH< T, 1 > centimetre( void )
|
|
{
|
|
return T( METRE / 100 );
|
|
}
|
|
|
|
static LENGTH< T, 1 > millimetre( void )
|
|
{
|
|
return T( METRE / 1000 );
|
|
}
|
|
|
|
static LENGTH< T, 1 > micrometre( void )
|
|
{
|
|
return T( METRE / 1000000 );
|
|
}
|
|
|
|
static LENGTH< T, 1 > foot( void )
|
|
{
|
|
return T( INCH * 12 );
|
|
}
|
|
|
|
static LENGTH< T, 1 > inch( void )
|
|
{
|
|
return T( INCH );
|
|
}
|
|
|
|
static LENGTH< T, 1 > mil( void )
|
|
{
|
|
return T( INCH / 1000 );
|
|
}
|
|
};
|
|
|
|
/**
|
|
* Shortcut to get units of given length type
|
|
*/
|
|
template < typename T, int D > class LENGTH_UNITS< LENGTH< T, D > >: public LENGTH_UNITS< T >
|
|
{
|
|
};
|
|
|
|
#endif /* def LENGTH_H_INCLUDED */
|