kicad/utils/idftools/dxf2idf.cpp

460 lines
12 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2014 Cirilo Bernardo
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <cstdio>
#include <iostream>
#include <libdxfrw.h>
#include <dxf2idf.h>
// differences in angle smaller than MIN_ANG are considered equal
#define MIN_ANG (0.01)
// min and max bulge bracketing min. arc before transition to line segment
// and max. arc limit
// MIN_BULGE = 0.002 ~0.45 degrees
// MAX_BULGE = 2000 ~89.97 degrees
#define MIN_BULGE 0.002
#define MAX_BULGE 2000.0
DXF2IDF::~DXF2IDF()
{
while( !lines.empty() )
{
#ifdef DEBUG_IDF
IDF3::printSeg( lines.back() );
#endif
delete lines.back();
lines.pop_back();
}
}
bool DXF2IDF::ReadDxf( const std::string& aFile )
{
dxfRW* reader = new dxfRW( aFile.c_str() );
if( !reader )
return false;
bool success = reader->read( this, true );
delete reader;
return success;
}
void DXF2IDF::addLine( const DRW_Line& data )
{
IDF_POINT p1, p2;
p1.x = data.basePoint.x * m_scale;
p1.y = data.basePoint.y * m_scale;
p2.x = data.secPoint.x * m_scale;
p2.y = data.secPoint.y * m_scale;
insertLine( p1, p2 );
return;
}
void DXF2IDF::addCircle( const DRW_Circle& data )
{
IDF_POINT p1, p2;
p1.x = data.basePoint.x * m_scale;
p1.y = data.basePoint.y * m_scale;
p2.x = p1.x + data.radious * m_scale;
p2.y = p1.y;
IDF_SEGMENT* seg = new IDF_SEGMENT( p1, p2, 360, true );
if( seg )
lines.push_back( seg );
return;
}
void DXF2IDF::addArc( const DRW_Arc& data )
{
IDF_POINT p1, p2;
p1.x = data.basePoint.x * m_scale;
p1.y = data.basePoint.y * m_scale;
// note: DXF circles always run CCW
double ea = data.endangle;
while( ea < data.staangle )
ea += M_PI;
p2.x = p1.x + cos( data.staangle ) * data.radious * m_scale;
p2.y = p1.y + sin( data.staangle ) * data.radious * m_scale;
double angle = ( ea - data.staangle ) * 180.0 / M_PI;
IDF_SEGMENT* seg = new IDF_SEGMENT( p1, p2, angle, true );
if( seg )
lines.push_back( seg );
return;
}
bool DXF2IDF::WriteOutline( FILE* aFile, bool isInch )
{
if( lines.empty() )
{
std::cerr << "* DXF2IDF: empty outline\n";
return false;
}
// 1. find lowest X value
// 2. string an outline together
// 3. emit warnings if more than 1 outline
IDF_OUTLINE outline;
IDF3::GetOutline( lines, outline );
if( outline.empty() )
{
std::cerr << "* DXF2IDF::WriteOutline(): no valid outline in file\n";
return false;
}
if( !lines.empty() )
{
std::cerr << "* DXF2IDF::WriteOutline(): WARNING: more than 1 outline in file\n";
std::cerr << "* Only the first outline will be used\n";
}
char loopDir = '1';
if( outline.IsCCW() )
loopDir = '0';
std::list<IDF_SEGMENT*>::iterator bo;
std::list<IDF_SEGMENT*>::iterator eo;
if( outline.size() == 1 )
{
if( !outline.front()->IsCircle() )
{
std::cerr << "* DXF2IDF::WriteOutline(): bad outline\n";
return false;
}
// NOTE: a circle always has an angle of 360, never -360,
// otherwise SolidWorks chokes on the file.
if( isInch )
{
fprintf( aFile, "%c %d %d 0\n", loopDir,
(int) (1000 * outline.front()->startPoint.x),
(int) (1000 * outline.front()->startPoint.y) );
fprintf( aFile, "%c %d %d 360\n", loopDir,
(int) (1000 * outline.front()->endPoint.x),
(int) (1000 * outline.front()->endPoint.y) );
}
else
{
fprintf( aFile, "%c %.3f %.3f 0\n", loopDir,
outline.front()->startPoint.x, outline.front()->startPoint.y );
fprintf( aFile, "%c %.3f %.3f 360\n", loopDir,
outline.front()->endPoint.x, outline.front()->endPoint.y );
}
return true;
}
// ensure that the very last point is the same as the very first point
outline.back()-> endPoint = outline.front()->startPoint;
bo = outline.begin();
eo = outline.end();
// for the first item we write out both points
if( (*bo)->angle < MIN_ANG && (*bo)->angle > -MIN_ANG )
{
if( isInch )
{
fprintf( aFile, "%c %d %d 0\n", loopDir,
(int) (1000 * (*bo)->startPoint.x),
(int) (1000 * (*bo)->startPoint.y) );
fprintf( aFile, "%c %d %d 0\n", loopDir,
(int) (1000 * (*bo)->endPoint.x),
(int) (1000 * (*bo)->endPoint.y) );
}
else
{
fprintf( aFile, "%c %.3f %.3f 0\n", loopDir,
(*bo)->startPoint.x, (*bo)->startPoint.y );
fprintf( aFile, "%c %.3f %.3f 0\n", loopDir,
(*bo)->endPoint.x, (*bo)->endPoint.y );
}
}
else
{
if( isInch )
{
fprintf( aFile, "%c %d %d 0\n", loopDir,
(int) (1000 * (*bo)->startPoint.x),
(int) (1000 * (*bo)->startPoint.y) );
fprintf( aFile, "%c %d %d %.2f\n", loopDir,
(int) (1000 * (*bo)->endPoint.x),
(int) (1000 * (*bo)->endPoint.y),
(*bo)->angle );
}
else
{
fprintf( aFile, "%c %.3f %.3f 0\n", loopDir,
(*bo)->startPoint.x, (*bo)->startPoint.y );
fprintf( aFile, "%c %.3f %.3f %.2f\n", loopDir,
(*bo)->endPoint.x, (*bo)->endPoint.y, (*bo)->angle );
}
}
++bo;
// for all other segments we only write out the last point
while( bo != eo )
{
if( isInch )
{
if( (*bo)->angle < MIN_ANG && (*bo)->angle > -MIN_ANG )
{
fprintf( aFile, "%c %d %d 0\n", loopDir,
(int) (1000 * (*bo)->endPoint.x),
(int) (1000 * (*bo)->endPoint.y) );
}
else
{
fprintf( aFile, "%c %d %d %.2f\n", loopDir,
(int) (1000 * (*bo)->endPoint.x),
(int) (1000 * (*bo)->endPoint.y),
(*bo)->angle );
}
}
else
{
if( (*bo)->angle < MIN_ANG && (*bo)->angle > -MIN_ANG )
{
fprintf( aFile, "%c %.5f %.5f 0\n", loopDir,
(*bo)->endPoint.x, (*bo)->endPoint.y );
}
else
{
fprintf( aFile, "%c %.5f %.5f %.2f\n", loopDir,
(*bo)->endPoint.x, (*bo)->endPoint.y, (*bo)->angle );
}
}
++bo;
}
return true;
}
void DXF2IDF::addHeader( const DRW_Header* data )
{
std::map<std::string, DRW_Variant*>::const_iterator it;
for( it = data->vars.begin(); it != data->vars.end(); ++it )
{
std::string key = ( (*it).first ).c_str();
if( key == "$INSUNITS" )
{
DRW_Variant* var = (*it).second;
switch( var->content.i )
{
case 1: // inches
m_scale = 25.4;
break;
case 2: // feet
m_scale = 304.8;
break;
case 5: // centimeters
m_scale = 10.0;
break;
case 6: // meters
m_scale = 1000.0;
break;
case 8: // microinches
m_scale = 2.54e-5;
break;
case 9: // mils
m_scale = 0.0254;
break;
case 10: // yards
m_scale = 914.4;
break;
case 11: // Angstroms
m_scale = 1.0e-7;
break;
case 12: // nanometers
m_scale = 1.0e-6;
break;
case 13: // micrometers
m_scale = 1.0e-3;
break;
case 14: // decimeters
m_scale = 100.0;
break;
default:
// use the default of 1.0 for:
// 0: Unspecified Units
// 4: mm
// 3: miles
// 7: kilometers
// 15: decameters
// 16: hectometers
// 17: gigameters
// 18: AU
// 19: lightyears
// 20: parsecs
break;
}
}
}
}
void DXF2IDF::addLWPolyline(const DRW_LWPolyline& data )
{
IDF_POINT poly_start;
IDF_POINT seg_start;
IDF_POINT seg_end;
double bulge = 0.0;
if( !data.vertlist.empty() )
{
DRW_Vertex2D* vertex = data.vertlist[0];
seg_start.x = vertex->x * m_scale;
seg_start.y = vertex->y * m_scale;
poly_start = seg_start;
bulge = vertex->bulge;
}
for( size_t i = 1; i < data.vertlist.size(); ++i )
{
DRW_Vertex2D* vertex = data.vertlist[i];
seg_end.x = vertex->x * m_scale;
seg_end.y = vertex->y * m_scale;
if( std::abs( bulge ) < MIN_BULGE )
insertLine( seg_start, seg_end );
else
insertArc( seg_start, seg_end, bulge );
seg_start = seg_end;
bulge = vertex->bulge;
}
// Polyline flags bit 0 indicates closed (1) or open (0) polyline
if( data.flags & 1 )
{
if( std::abs( bulge ) < MIN_BULGE )
insertLine( seg_start, poly_start );
else
insertArc( seg_start, poly_start, bulge );
}
return;
}
void DXF2IDF::addPolyline(const DRW_Polyline& data )
{
IDF_POINT poly_start;
IDF_POINT seg_start;
IDF_POINT seg_end;
if( !data.vertlist.empty() )
{
DRW_Vertex* vertex = data.vertlist[0];
seg_start.x = vertex->basePoint.x * m_scale;
seg_start.y = vertex->basePoint.y * m_scale;
poly_start = seg_start;
}
for( size_t i = 1; i < data.vertlist.size(); ++i )
{
DRW_Vertex* vertex = data.vertlist[i];
seg_end.x = vertex->basePoint.x * m_scale;
seg_end.y = vertex->basePoint.y * m_scale;
insertLine( seg_start, seg_end );
seg_start = seg_end;
}
// Polyline flags bit 0 indicates closed (1) or open (0) polyline
if( data.flags & 1 )
insertLine( seg_start, poly_start );
return;
}
void DXF2IDF::insertLine( const IDF_POINT& aSegStart, const IDF_POINT& aSegEnd )
{
IDF_SEGMENT* seg = new IDF_SEGMENT( aSegStart, aSegEnd );
if( seg )
lines.push_back( seg );
return;
}
void DXF2IDF::insertArc( const IDF_POINT& aSegStart, const IDF_POINT& aSegEnd,
double aBulge )
{
if( aBulge < -MAX_BULGE )
aBulge = -MAX_BULGE;
else if( aBulge > MAX_BULGE )
aBulge = MAX_BULGE;
double ang = 720.0 * atan( aBulge ) / M_PI;
IDF_SEGMENT* seg = new IDF_SEGMENT( aSegStart, aSegEnd, ang, false );
if( seg )
lines.push_back( seg );
return;
}