kicad/pcbnew/router/pns_optimizer.h

357 lines
10 KiB
C++

/*
* KiRouter - a push-and-(sometimes-)shove PCB router
*
* Copyright (C) 2013-2014 CERN
* Copyright (C) 2016-2021 KiCad Developers, see AUTHORS.txt for contributors.
*
* @author Tomasz Wlostowski <tomasz.wlostowski@cern.ch>
*
* This program is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef __PNS_OPTIMIZER_H
#define __PNS_OPTIMIZER_H
#include <unordered_map>
#include <memory>
#include <geometry/shape_index_list.h>
#include <geometry/shape_line_chain.h>
#include "range.h"
namespace PNS {
class NODE;
class ROUTER;
class LINE;
class DIFF_PAIR;
class ITEM;
class JOINT;
class OPT_CONSTRAINT;
/**
* Calculate the cost of a given line, taking corner angles and total length into account.
*/
class COST_ESTIMATOR
{
public:
COST_ESTIMATOR() :
m_lengthCost( 0 ),
m_cornerCost( 0 )
{}
COST_ESTIMATOR( const COST_ESTIMATOR& aB ) :
m_lengthCost( aB.m_lengthCost ),
m_cornerCost( aB.m_cornerCost )
{}
~COST_ESTIMATOR() {};
static int CornerCost( const SEG& aA, const SEG& aB );
static int CornerCost( const SHAPE_LINE_CHAIN& aLine );
static int CornerCost( const LINE& aLine );
void Add( const LINE& aLine );
void Remove( const LINE& aLine );
void Replace( const LINE& aOldLine, const LINE& aNewLine );
bool IsBetter( const COST_ESTIMATOR& aOther, double aLengthTolerance,
double aCornerTollerace ) const;
double GetLengthCost() const { return m_lengthCost; }
double GetCornerCost() const { return m_cornerCost; }
private:
double m_lengthCost;
int m_cornerCost;
};
/**
* Perform various optimizations of the lines being routed, attempting to make the lines shorter
* and less cornery.
*
* There are 3 kinds of optimizations so far:
* - Merging obtuse segments (MERGE_OBTUSE): tries to join together as many obtuse segments
* as possible without causing collisions.
* - Rerouting path between pair of line corners with a 2-segment "\__" line and iteratively
* repeating the procedure as long as the total cost of the line keeps decreasing.
* - "Smart Pads" - that is, rerouting pad/via exits to make them look nice (SMART_PADS).
*/
class OPTIMIZER
{
public:
enum OptimizationEffort
{
MERGE_SEGMENTS = 0x01, ///< Reduce corner cost iteratively
SMART_PADS = 0x02, ///< Reroute pad exits
MERGE_OBTUSE = 0x04, ///< Reduce corner cost by merging obtuse segments
FANOUT_CLEANUP = 0x08, ///< Simplify pad-pad and pad-via connections if possible
KEEP_TOPOLOGY = 0x10,
PRESERVE_VERTEX = 0x20,
RESTRICT_VERTEX_RANGE = 0x40,
MERGE_COLINEAR = 0x80, ///< Merge co-linear segments
RESTRICT_AREA = 0x100,
LIMIT_CORNER_COUNT = 0x200 ///< Do not attempt to optimize if the resulting line's
///< corner count is outside the predefined range
};
OPTIMIZER( NODE* aWorld );
~OPTIMIZER();
///< A quick shortcut to optimize a line without creating and setting up an optimizer.
static bool Optimize( LINE* aLine, int aEffortLevel, NODE* aWorld,
const VECTOR2I aV = VECTOR2I(0, 0) );
bool Optimize( LINE* aLine, LINE* aResult = nullptr, LINE* aRoot = nullptr );
bool Optimize( DIFF_PAIR* aPair );
void SetWorld( NODE* aNode ) { m_world = aNode; }
void CacheRemove( ITEM* aItem );
void ClearCache( bool aStaticOnly = false );
void SetCollisionMask( int aMask )
{
m_collisionKindMask = aMask;
}
void SetEffortLevel( int aEffort )
{
m_effortLevel = aEffort;
}
void SetPreserveVertex( const VECTOR2I& aV )
{
m_preservedVertex = aV;
m_effortLevel |= OPTIMIZER::PRESERVE_VERTEX;
}
void SetRestrictVertexRange( int aStart, int aEnd )
{
m_restrictedVertexRange.first = aStart;
m_restrictedVertexRange.second = aEnd;
m_effortLevel |= OPTIMIZER::RESTRICT_VERTEX_RANGE;
}
void SetRestrictArea( const BOX2I& aArea, bool aStrict = true )
{
m_restrictArea = aArea;
m_restrictAreaIsStrict = aStrict;
}
void ClearConstraints();
void AddConstraint ( OPT_CONSTRAINT *aConstraint );
private:
static const int MaxCachedItems = 256;
typedef std::vector<SHAPE_LINE_CHAIN> BREAKOUT_LIST;
struct CACHE_VISITOR;
struct CACHED_ITEM
{
int m_hits;
bool m_isStatic;
};
bool mergeObtuse( LINE* aLine );
bool mergeFull( LINE* aLine );
bool mergeColinear( LINE* aLine );
bool runSmartPads( LINE* aLine );
bool mergeStep( LINE* aLine, SHAPE_LINE_CHAIN& aCurrentLine, int step );
bool fanoutCleanup( LINE * aLine );
bool mergeDpSegments( DIFF_PAIR *aPair );
bool mergeDpStep( DIFF_PAIR *aPair, bool aTryP, int step );
bool checkColliding( ITEM* aItem, bool aUpdateCache = true );
bool checkColliding( LINE* aLine, const SHAPE_LINE_CHAIN& aOptPath );
void cacheAdd( ITEM* aItem, bool aIsStatic );
void removeCachedSegments( LINE* aLine, int aStartVertex = 0, int aEndVertex = -1 );
bool checkConstraints( int aVertex1, int aVertex2, LINE* aOriginLine,
const SHAPE_LINE_CHAIN& aCurrentPath,
const SHAPE_LINE_CHAIN& aReplacement );
BREAKOUT_LIST circleBreakouts( int aWidth, const SHAPE* aShape, bool aPermitDiagonal ) const;
BREAKOUT_LIST rectBreakouts( int aWidth, const SHAPE* aShape, bool aPermitDiagonal ) const;
BREAKOUT_LIST customBreakouts( int aWidth, const ITEM* aItem, bool aPermitDiagonal ) const;
BREAKOUT_LIST computeBreakouts( int aWidth, const ITEM* aItem, bool aPermitDiagonal ) const;
int smartPadsSingle( LINE* aLine, ITEM* aPad, bool aEnd, int aEndVertex );
ITEM* findPadOrVia( int aLayer, int aNet, const VECTOR2I& aP ) const;
private:
SHAPE_INDEX_LIST<ITEM*> m_cache;
std::vector<OPT_CONSTRAINT*> m_constraints;
std::unordered_map<ITEM*, CACHED_ITEM> m_cacheTags;
NODE* m_world;
int m_collisionKindMask;
int m_effortLevel;
VECTOR2I m_preservedVertex;
std::pair<int, int> m_restrictedVertexRange;
BOX2I m_restrictArea;
bool m_restrictAreaIsStrict;
};
class OPT_CONSTRAINT
{
public:
OPT_CONSTRAINT( NODE* aWorld ) :
m_world( aWorld )
{
m_priority = 0;
};
virtual ~OPT_CONSTRAINT()
{
};
virtual bool Check( int aVertex1, int aVertex2, const LINE* aOriginLine,
const SHAPE_LINE_CHAIN& aCurrentPath,
const SHAPE_LINE_CHAIN& aReplacement ) = 0;
int GetPriority() const { return m_priority; }
void SetPriority( int aPriority ) { m_priority = aPriority; }
protected:
NODE* m_world;
int m_priority;
};
class ANGLE_CONSTRAINT_45: public OPT_CONSTRAINT
{
public:
ANGLE_CONSTRAINT_45( NODE* aWorld, int aEntryDirectionMask = -1, int aExitDirectionMask = -1 ) :
OPT_CONSTRAINT( aWorld ),
m_entryDirectionMask( aEntryDirectionMask ),
m_exitDirectionMask( aExitDirectionMask )
{
}
virtual ~ANGLE_CONSTRAINT_45() {};
virtual bool Check ( int aVertex1, int aVertex2, const LINE* aOriginLine, const SHAPE_LINE_CHAIN& aCurrentPath, const SHAPE_LINE_CHAIN& aReplacement ) override;
private:
int m_entryDirectionMask;
int m_exitDirectionMask;
};
class AREA_CONSTRAINT : public OPT_CONSTRAINT
{
public:
AREA_CONSTRAINT( NODE* aWorld, const BOX2I& aAllowedArea, bool aAllowedAreaStrict ) :
OPT_CONSTRAINT( aWorld ),
m_allowedArea ( aAllowedArea ),
m_allowedAreaStrict ( aAllowedAreaStrict )
{
};
bool Check( int aVertex1, int aVertex2, const LINE* aOriginLine,
const SHAPE_LINE_CHAIN& aCurrentPath,
const SHAPE_LINE_CHAIN& aReplacement ) override;
private:
BOX2I m_allowedArea;
bool m_allowedAreaStrict;
};
class KEEP_TOPOLOGY_CONSTRAINT: public OPT_CONSTRAINT
{
public:
KEEP_TOPOLOGY_CONSTRAINT( NODE* aWorld ) :
OPT_CONSTRAINT( aWorld )
{
};
bool Check( int aVertex1, int aVertex2, const LINE* aOriginLine,
const SHAPE_LINE_CHAIN& aCurrentPath,
const SHAPE_LINE_CHAIN& aReplacement ) override;
};
class PRESERVE_VERTEX_CONSTRAINT: public OPT_CONSTRAINT
{
public:
PRESERVE_VERTEX_CONSTRAINT( NODE* aWorld, const VECTOR2I& aV ) :
OPT_CONSTRAINT( aWorld ),
m_v( aV )
{
};
bool Check( int aVertex1, int aVertex2, const LINE* aOriginLine,
const SHAPE_LINE_CHAIN& aCurrentPath,
const SHAPE_LINE_CHAIN& aReplacement ) override;
private:
VECTOR2I m_v;
};
class RESTRICT_VERTEX_RANGE_CONSTRAINT: public OPT_CONSTRAINT
{
public:
RESTRICT_VERTEX_RANGE_CONSTRAINT( NODE* aWorld, int aStart, int aEnd ) :
OPT_CONSTRAINT( aWorld ),
m_start( aStart ),
m_end( aEnd )
{
};
virtual bool Check( int aVertex1, int aVertex2, const LINE* aOriginLine,
const SHAPE_LINE_CHAIN& aCurrentPath,
const SHAPE_LINE_CHAIN& aReplacement ) override;
private:
int m_start;
int m_end;
};
class CORNER_COUNT_LIMIT_CONSTRAINT: public OPT_CONSTRAINT
{
public:
CORNER_COUNT_LIMIT_CONSTRAINT( NODE* aWorld, int aMinCorners, int aMaxCorners, int aAngleMask ) :
OPT_CONSTRAINT( aWorld ),
m_minCorners( aMinCorners ),
m_maxCorners( aMaxCorners ),
m_angleMask( aAngleMask )
{
};
virtual bool Check( int aVertex1, int aVertex2, const LINE* aOriginLine,
const SHAPE_LINE_CHAIN& aCurrentPath,
const SHAPE_LINE_CHAIN& aReplacement ) override;
private:
int m_minCorners;
int m_maxCorners;
int m_angleMask;
};
};
#endif // __PNS_OPTIMIZER_H