kicad/pcbnew/router/pns_walkaround.cpp

312 lines
9.0 KiB
C++

/*
* KiRouter - a push-and-(sometimes-)shove PCB router
*
* Copyright (C) 2013-2014 CERN
* Copyright (C) 2016-2021 KiCad Developers, see AUTHORS.txt for contributors.
* Author: Tomasz Wlostowski <tomasz.wlostowski@cern.ch>
*
* This program is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <core/optional.h>
#include <geometry/shape_line_chain.h>
#include "pns_walkaround.h"
#include "pns_optimizer.h"
#include "pns_utils.h"
#include "pns_router.h"
#include "pns_debug_decorator.h"
namespace PNS {
void WALKAROUND::start( const LINE& aInitialPath )
{
m_iteration = 0;
m_iterationLimit = 50;
}
NODE::OPT_OBSTACLE WALKAROUND::nearestObstacle( const LINE& aPath )
{
NODE::OPT_OBSTACLE obs = m_world->NearestObstacle(
&aPath, m_itemMask, m_restrictedSet.empty() ? nullptr : &m_restrictedSet );
if( m_restrictedSet.empty() )
return obs;
else if( obs && m_restrictedSet.find ( obs->m_item ) != m_restrictedSet.end() )
return obs;
return NODE::OPT_OBSTACLE();
}
WALKAROUND::WALKAROUND_STATUS WALKAROUND::singleStep( LINE& aPath, bool aWindingDirection )
{
OPT<OBSTACLE>& current_obs =
aWindingDirection ? m_currentObstacle[0] : m_currentObstacle[1];
if( !current_obs )
return DONE;
VECTOR2I initialLast = aPath.CPoint( -1 );
SHAPE_LINE_CHAIN path_walk;
bool s_cw = aPath.Walkaround( current_obs->m_hull, path_walk, aWindingDirection );
PNS_DBG( Dbg(), BeginGroup, "hull/walk" );
char name[128];
snprintf( name, sizeof( name ), "hull-%s-%d", aWindingDirection ? "cw" : "ccw", m_iteration );
PNS_DBG( Dbg(), AddLine, current_obs->m_hull, RED, 1, name );
snprintf( name, sizeof( name ), "path-%s-%d", aWindingDirection ? "cw" : "ccw", m_iteration );
PNS_DBG( Dbg(), AddLine, aPath.CLine(), GREEN, 1, name );
snprintf( name, sizeof( name ), "result-%s-%d", aWindingDirection ? "cw" : "ccw", m_iteration );
PNS_DBG( Dbg(), AddLine, path_walk, BLUE, 10000, name );
PNS_DBG( Dbg(), Message, wxString::Format( "Stat cw %d", !!s_cw ) );
PNS_DBGN( Dbg(), EndGroup );
path_walk.Simplify();
aPath.SetShape( path_walk );
// If the end of the line is inside an obstacle, additional walkaround iterations are not
// going to help. Exit now to prevent pegging the iteration limiter and causing lag.
if( current_obs && current_obs->m_hull.PointInside( initialLast ) &&
!current_obs->m_hull.PointOnEdge( initialLast ) )
{
return ALMOST_DONE;
}
current_obs = nearestObstacle( LINE( aPath, path_walk ) );
return IN_PROGRESS;
}
const WALKAROUND::RESULT WALKAROUND::Route( const LINE& aInitialPath )
{
LINE path_cw( aInitialPath ), path_ccw( aInitialPath );
WALKAROUND_STATUS s_cw = IN_PROGRESS, s_ccw = IN_PROGRESS;
SHAPE_LINE_CHAIN best_path;
RESULT result;
// special case for via-in-the-middle-of-track placement
if( aInitialPath.PointCount() <= 1 )
{
if( aInitialPath.EndsWithVia() && m_world->CheckColliding( &aInitialPath.Via(),
m_itemMask ) )
return RESULT( STUCK, STUCK );
return RESULT( DONE, DONE, aInitialPath, aInitialPath );
}
start( aInitialPath );
m_currentObstacle[0] = m_currentObstacle[1] = nearestObstacle( aInitialPath );
m_recursiveBlockageCount = 0;
result.lineCw = aInitialPath;
result.lineCcw = aInitialPath;
if( m_forceWinding )
{
s_cw = m_forceCw ? IN_PROGRESS : STUCK;
s_ccw = m_forceCw ? STUCK : IN_PROGRESS;
m_forceSingleDirection = true;
}
else
{
m_forceSingleDirection = false;
}
// In some situations, there isn't a trivial path (or even a path at all). Hitting the
// iteration limit causes lag, so we can exit out early if the walkaround path gets very long
// compared with the initial path. If the length exceeds the initial length times this factor,
// fail out.
const int maxWalkDistFactor = 10;
long long lengthLimit = aInitialPath.CLine().Length() * maxWalkDistFactor;
while( m_iteration < m_iterationLimit )
{
if( s_cw != STUCK && s_cw != ALMOST_DONE )
s_cw = singleStep( path_cw, true );
if( s_ccw != STUCK && s_ccw != ALMOST_DONE )
s_ccw = singleStep( path_ccw, false );
if( s_cw != IN_PROGRESS )
{
result.lineCw = path_cw;
result.statusCw = s_cw;
}
if( s_ccw != IN_PROGRESS )
{
result.lineCcw = path_ccw;
result.statusCcw = s_ccw;
}
if( s_cw != IN_PROGRESS && s_ccw != IN_PROGRESS )
break;
// Safety valve
if( path_cw.Line().Length() > lengthLimit && path_ccw.Line().Length() > lengthLimit )
break;
m_iteration++;
}
if( s_cw == IN_PROGRESS )
{
result.lineCw = path_cw;
result.statusCw = ALMOST_DONE;
}
if( s_ccw == IN_PROGRESS )
{
result.lineCcw = path_ccw;
result.statusCcw = ALMOST_DONE;
}
if( result.lineCw.SegmentCount() < 1 || result.lineCw.CPoint( 0 ) != aInitialPath.CPoint( 0 ) )
{
result.statusCw = STUCK;
}
if( result.lineCw.PointCount() > 0 && result.lineCw.CPoint( -1 ) != aInitialPath.CPoint( -1 ) )
{
result.statusCw = ALMOST_DONE;
}
if( result.lineCcw.SegmentCount() < 1 ||
result.lineCcw.CPoint( 0 ) != aInitialPath.CPoint( 0 ) )
{
result.statusCcw = STUCK;
}
if( result.lineCcw.PointCount() > 0 &&
result.lineCcw.CPoint( -1 ) != aInitialPath.CPoint( -1 ) )
{
result.statusCcw = ALMOST_DONE;
}
return result;
}
WALKAROUND::WALKAROUND_STATUS WALKAROUND::Route( const LINE& aInitialPath, LINE& aWalkPath,
bool aOptimize )
{
LINE path_cw( aInitialPath ), path_ccw( aInitialPath );
WALKAROUND_STATUS s_cw = IN_PROGRESS, s_ccw = IN_PROGRESS;
SHAPE_LINE_CHAIN best_path;
// special case for via-in-the-middle-of-track placement
if( aInitialPath.PointCount() <= 1 )
{
if( aInitialPath.EndsWithVia() && m_world->CheckColliding( &aInitialPath.Via(),
m_itemMask ) )
return STUCK;
aWalkPath = aInitialPath;
return DONE;
}
start( aInitialPath );
m_currentObstacle[0] = m_currentObstacle[1] = nearestObstacle( aInitialPath );
m_recursiveBlockageCount = 0;
aWalkPath = aInitialPath;
if( m_forceWinding )
{
s_cw = m_forceCw ? IN_PROGRESS : STUCK;
s_ccw = m_forceCw ? STUCK : IN_PROGRESS;
m_forceSingleDirection = true;
}
else
{
m_forceSingleDirection = false;
}
while( m_iteration < m_iterationLimit )
{
if( s_cw != STUCK )
s_cw = singleStep( path_cw, true );
if( s_ccw != STUCK )
s_ccw = singleStep( path_ccw, false );
if( ( s_cw == DONE && s_ccw == DONE ) || ( s_cw == STUCK && s_ccw == STUCK ) )
{
int len_cw = path_cw.CLine().Length();
int len_ccw = path_ccw.CLine().Length();
if( m_forceLongerPath )
aWalkPath = ( len_cw > len_ccw ? path_cw : path_ccw );
else
aWalkPath = ( len_cw < len_ccw ? path_cw : path_ccw );
break;
}
else if( s_cw == DONE && !m_forceLongerPath )
{
aWalkPath = path_cw;
break;
}
else if( s_ccw == DONE && !m_forceLongerPath )
{
aWalkPath = path_ccw;
break;
}
m_iteration++;
}
if( m_iteration == m_iterationLimit )
{
int len_cw = path_cw.CLine().Length();
int len_ccw = path_ccw.CLine().Length();
if( m_forceLongerPath )
aWalkPath = ( len_cw > len_ccw ? path_cw : path_ccw );
else
aWalkPath = ( len_cw < len_ccw ? path_cw : path_ccw );
}
aWalkPath.Line().Simplify();
if( aWalkPath.SegmentCount() < 1 )
return STUCK;
if( aWalkPath.CPoint( -1 ) != aInitialPath.CPoint( -1 ) )
return ALMOST_DONE;
if( aWalkPath.CPoint( 0 ) != aInitialPath.CPoint( 0 ) )
return STUCK;
WALKAROUND_STATUS st = s_ccw == DONE || s_cw == DONE ? DONE : STUCK;
if( st == DONE )
{
if( aOptimize )
OPTIMIZER::Optimize( &aWalkPath, OPTIMIZER::MERGE_OBTUSE, m_world );
}
return st;
}
}