kicad/pcbnew/python/plugins/FootprintWizardBase.py

889 lines
28 KiB
Python

# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
# MA 02110-1301, USA.
#
from __future__ import division
import pcbnew
import math
class FootprintWizard(pcbnew.FootprintWizardPlugin):
"""!
A class to simplify many aspects of footprint creation, leaving only
the foot-print specific routines to the wizards themselves.
Inherit this class to make a new wizard.
Provides simplified access to helpers like drawing functions, a transform
matrix stack and simple parameter checking.
Generally, you need to implement:
GetValue()
GenerateParameterList()
CheckParameters()
BuildThisFootprint()
GetName()
GetDescription()
"""
# Copy units from pcbnew
uMM = pcbnew.uMM
uMils = pcbnew.uMils
uFloat = pcbnew.uFloat
uInteger = pcbnew.uInteger
uBool = pcbnew.uBool
uRadians = pcbnew.uRadians
uDegrees = pcbnew.uDegrees
uPercent = pcbnew.uPercent
uString = pcbnew.uString
def __init__(self):
pcbnew.FootprintWizardPlugin.__init__(self)
self.GenerateParameterList()
def GetName(self):
"""!
Return the name of the footprint wizard
"""
raise NotImplementedError
def GetDescription(self):
"""!
Return the footprint wizard description
"""
raise NotImplementedError
def GetValue(self):
"""!
Return the value (name) of the generated footprint
"""
raise NotImplementedError
def GenerateParameterList(self):
"""!
Footprint parameter specification is done here
"""
raise NotImplementedError
def CheckParameters(self):
"""!
Any custom parameter checking should be performed here
"""
raise NotImplementedError
def BuildThisFootprint(self):
"""!
Draw the footprint.
This is specific to each footprint class, you need to implement
this to draw what you want
"""
raise NotImplementedError
# Do not override this method!
def BuildFootprint(self):
"""!
Actually make the footprint. We defer all but the set-up to
the implementing class
"""
self.buildmessages = ""
self.module = pcbnew.FOOTPRINT(None) # create a new module
# Perform default checks on all parameters
for p in self.params:
p.ClearErrors()
p.Check() # use defaults
self.CheckParameters() # User error checks
if self.AnyErrors(): # Errors were detected!
self.buildmessages = ("Cannot build footprint: "
"Parameters have errors:\n")
for p in self.params:
if len(p.error_list) > 0:
self.buildmessages += "['{page}']['{name}']:\n".format(
page=p.page, name=p.name)
for error in p.error_list:
self.buildmessages += "\t" + error + "\n"
return
self.buildmessages = (
"Building new {name} footprint with the following parameters:\n"
.format(name=self.name))
self.buildmessages += self.Show()
self.draw = FootprintWizardDrawingAids(
self.module)
self.module.SetValue(self.GetValue())
self.module.SetReference("%s**" % self.GetReferencePrefix())
fpid = pcbnew.LIB_ID("", self.module.GetValue()) # the lib name (empty) and the name in library
self.module.SetFPID(fpid)
self.SetModule3DModel() # add a 3D module if specified
thick = self.GetTextThickness()
self.module.Reference().SetTextThickness(thick)
self.module.Value().SetTextThickness(thick)
self.BuildThisFootprint() # implementer's build function
return
def SetModule3DModel(self):
"""!
If your plug-in sets a 3D model, override this function
"""
pass
def GetTextSize(self):
"""!
Get the default text size for the footprint. Override to change it.
Defaults to IPC nominal of 1.0mm
"""
return pcbnew.FromMM(1.0)
def GetTextThickness(self):
"""!
Thicker than IPC guidelines (10% of text height = 0.12mm)
as 5 wires/mm is a common silk screen limitation
"""
return pcbnew.FromMM(0.15)
class FootprintWizardDrawingAids:
"""!
Collection of handy functions to simplify drawing shapes from within
footprint wizards
A "drawing context" is provided which can be used to set and retain
settings such as line thickness and layer. The DC also contains a
"transform stack", which allows easy positioning and transforming of
drawn elements without lots of geometric book-keeping.
"""
# directions (in degrees, compass-like)
dirN = 0
dirNE = 45
dirE = 90
dirSE = 135
dirS = 180
dirSW = 225
dirW = 270
dirNW = 315
# Flip constants
flipNone = 0 # no flip transform
flipX = 1 # flip X values, i.e. about the Y-axis
flipY = 2 # flip Y values, i.e. about the X-axis
flipBoth = 3 # flip X and Y values, equivalent to a 180-degree rotation
xfrmIDENTITY = [1, 0, 0, 0, 1, 0] # no transform
# these values come from our KiCad Library Convention 0.11
defaultLineThickness = pcbnew.FromMM(0.15)
def DefaultGraphicLayer(self):
return pcbnew.F_SilkS
def DefaultTextValueLayer(self):
return pcbnew.F_Fab
def __init__(self, module):
self.module = module
# drawing context defaults
self.dc = {
'layer': self.DefaultGraphicLayer(),
'lineThickness': self.defaultLineThickness,
'transforms': [],
'transform': self.xfrmIDENTITY
}
def PushTransform(self, mat):
"""!
Add a transform to the top of the stack and recompute the
overall transform
@param mat: the transform matrix to add to the stack
"""
self.dc['transforms'].append(mat)
self.RecomputeTransforms()
def PopTransform(self, num=1):
"""!
Remove a transform from the top of the stack and recompute the
overall transform
@param num: the number of transforms to pop from the stack.
@return the last popped transform
"""
for i in range(num):
mat = self.dc['transforms'].pop()
self.RecomputeTransforms()
return mat
def ResetTransform(self):
"""!
Reset the transform stack to the identity matrix.
"""
self.dc['transforms'] = []
self.RecomputeTransforms()
def _ComposeMatricesWithIdentity(self, mats):
"""!
Compose a sequence of matrices together by sequential
pre-multiplication with the identity matrix.
@param mats: list of matrices to compose
@return: the composed transform matrix
"""
x = self.xfrmIDENTITY
for mat in mats:
# Pre-compose with each transform in turn
x = [
x[0] * mat[0] + x[1] * mat[3],
x[0] * mat[1] + x[1] * mat[4],
x[0] * mat[2] + x[1] * mat[5] + x[2],
x[3] * mat[0] + x[4] * mat[3],
x[3] * mat[1] + x[4] * mat[4],
x[3] * mat[2] + x[4] * mat[5] + x[5]]
return x
def RecomputeTransforms(self):
"""!
Re-compute the transform stack into a single transform and
store in the DC
"""
self.dc['transform'] = self._ComposeMatricesWithIdentity(
self.dc['transforms'])
def TransformTranslate(self, x, y, push=True):
"""!
Set up and return a transform matrix representing a translation
optionally pushing onto the stack
( 1 0 x )
( 0 1 y )
@param x: translation in x-direction
@param y: translation in y-direction
@param push: add this transform to the current stack
@return the generated transform matrix
"""
mat = [1, 0, x, 0, 1, y]
if push:
self.PushTransform(mat)
return mat
def TransformFlipOrigin(self, flip, push=True):
"""!
Set up and return a transform matrix representing a horizontal,
vertical or both flip about the origin
@param flip: one of flipNone, flipX, flipY, flipBoth
@param push: add this transform to the current stack
@return the generated transform matrix
"""
mat = None
if flip == self.flipX:
mat = [-1, 0, 0, 0, 1, 0]
elif flip == self.flipY:
mat = [1, 0, 0, 0, -1, 0]
elif flip == self.flipBoth:
mat = [-1, 0, 0, 0, -1, 0]
elif flip == self.flipNone:
mat = self.xfrmIDENTITY
else:
raise ValueError
if push:
self.PushTransform(mat)
return mat
def TransformFlip(self, x, y, flip=flipNone, push=True):
"""!
Set up and return a transform matrix representing a horizontal,
vertical or both flip about a point (x,y)
This is performed by a translate-to-origin, flip, translate-
back sequence.
@param x: the x coordinate of the flip point
@param y: the y coordinate of the flip point
@param flip: one of flipNone, flipX, flipY, flipBoth
@param push: add this transform to the current stack
@return the generated transform matrix
"""
mats = [self.TransformTranslate(x, y, push=False),
self.TransformFlipOrigin(flip, push=False),
self.TransformTranslate(-x, -y, push=False)]
# Distil into a single matrix
mat = self._ComposeMatricesWithIdentity(mats)
if push:
self.PushTransform(mat)
return mat
def TransformRotationOrigin(self, rot, push=True):
"""!
Set up and return a transform matrix representing a rotation
about the origin, and optionally push onto the stack
( cos(t) -sin(t) 0 )
( sin(t) cos(t) 0 )
@param rot: the rotation angle in degrees
@param push: add this transform to the current stack
@return the generated transform matrix
"""
rads = rot * math.pi / 180
mat = [math.cos(rads), -math.sin(rads), 0,
math.sin(rads), math.cos(rads), 0]
if push:
self.PushTransform(mat)
return mat
def TransformRotation(self, x, y, rot, push=True):
"""!
Set up and return a transform matrix representing a rotation
about the point (x,y), and optionally push onto the stack
This is performed by a translate-to-origin, rotate, translate-
back sequence
@param x: the x coordinate of the rotation centre
@param y: the y coordinate of the rotation centre
@param rot: the rotation angle in degrees
@param push: add this transform to the current stack
@return the generated transform matrix
"""
mats = [self.TransformTranslate(x, y, push=False),
self.TransformRotationOrigin(rot, push=False),
self.TransformTranslate(-x, -y, push=False)]
# Distil into a single matrix
mat = self._ComposeMatricesWithIdentity(mats)
if push:
self.PushTransform(mat)
return mat
def TransformScaleOrigin(self, sx, sy=None, push=True):
"""!
Set up and return a transform matrix representing a scale about
the origin, and optionally push onto the stack
( sx 0 0 )
( 0 sy 0 )
@param sx: the scale factor in the x direction
@param sy: the scale factor in the y direction
@param push: add this transform to the current stack
@return the generated transform matrix
"""
if sy is None:
sy = sx
mat = [sx, 0, 0, 0, sy, 0]
if push:
self.PushTransform(mat)
return mat
def TransformPoint(self, x, y, mat=None):
"""!
Return a point (x, y) transformed by the given matrix, or if
that is not given, the drawing context transform
@param x: the x coordinate of the point to transform
@param y: the y coordinate of the point to transform
@param mat: the transform matrix to use or None to use the current DC's
@return: the transformed point as a wxPoint
"""
if not mat:
mat = self.dc['transform']
return pcbnew.wxPoint(x * mat[0] + y * mat[1] + mat[2],
x * mat[3] + y * mat[4] + mat[5])
def SetLineThickness(self, lineThickness):
"""!
Set the current pen lineThickness used for subsequent drawing
operations
@param lineThickness: the new line thickness to set
"""
self.dc['lineThickness'] = lineThickness
def SetLineTickness(self, lineThickness):
"""!
Old version of SetLineThickness.
Does the same thing, but is is only here for compatibility with old
scripts.
Set the current pen lineThickness used for subsequent drawing
operations
@param lineThickness: the new line thickness to set
"""
self.SetLineThickness(lineThickness)
def GetLineThickness(self):
"""!
Get the current drawing context line thickness
"""
return self.dc['lineThickness']
def SetLayer(self, layer):
"""!
Set the current drawing layer, used for subsequent drawing
operations
"""
self.dc['layer'] = layer
def GetLayer(self):
"""!
Return the current drawing layer, used for drawing operations
"""
return self.dc['layer']
def Line(self, x1, y1, x2, y2):
"""!
Draw a line from (x1, y1) to (x2, y2)
"""
outline = pcbnew.FP_SHAPE(self.module)
outline.SetWidth(self.GetLineThickness())
outline.SetLayer(self.GetLayer())
outline.SetShape(pcbnew.S_SEGMENT)
start = self.TransformPoint(x1, y1)
end = self.TransformPoint(x2, y2)
outline.SetStartEnd(start, end)
self.module.Add(outline)
def Circle(self, x, y, r, filled=False):
"""!
Draw a circle at (x,y) of radius r
If filled is true, the thickness and radius of the line will be set
such that the circle appears filled
@param x: the x coordinate of the arc centre
@param y: the y coordinate of the arc centre
@param r: the circle's radius
@param filled: True to draw a filled circle, False to use the current
DC line thickness
"""
circle = pcbnew.FP_SHAPE(self.module)
start = self.TransformPoint(x, y)
if filled:
circle.SetWidth(r)
end = self.TransformPoint(x, y + r/2)
else:
circle.SetWidth(self.dc['lineThickness'])
end = self.TransformPoint(x, y + r)
circle.SetLayer(self.dc['layer'])
circle.SetShape(pcbnew.S_CIRCLE)
circle.SetStartEnd(start, end)
self.module.Add(circle)
def MyCmp(self, n1, n2):
"""
replace the cmp() of python2
"""
if n1 < n2:
return -1
if n1 > n2:
return 1
return 0
def Arc(self, cx, cy, sx, sy, a):
"""!
Draw an arc based on centre, start and angle
The transform matrix is applied
Note that this won't work properly if the result is not a
circular arc (e.g. a horizontal scale)
@param cx: the x coordinate of the arc centre
@param cy: the y coordinate of the arc centre
@param sx: the x coordinate of the arc start point
@param sy: the y coordinate of the arc start point
@param a: the arc's central angle (in deci-degrees)
"""
circle = pcbnew.FP_SHAPE(self.module)
circle.SetWidth(self.dc['lineThickness'])
center = self.TransformPoint(cx, cy)
start = self.TransformPoint(sx, sy)
circle.SetLayer(self.dc['layer'])
circle.SetShape(pcbnew.S_ARC)
# check if the angle needs to be reverse (a flip scaling)
if self.MyCmp(self.dc['transform'][0], 0) != self.MyCmp(self.dc['transform'][4], 0):
a = -a
circle.SetAngle(a)
circle.SetStartEnd(center, start)
self.module.Add(circle)
def HLine(self, x, y, l):
"""!
Draw a horizontal line from (x,y), rightwards
@param x: line start x coordinate
@param y: line start y coordinate
@param l: line length
"""
self.Line(x, y, x + l, y)
def VLine(self, x, y, l):
"""!
Draw a vertical line from (x1,y1), downwards
@param x: line start x coordinate
@param y: line start y coordinate
@param l: line length
"""
self.Line(x, y, x, y + l)
def Polyline(self, pts, mirrorX=None, mirrorY=None):
"""!
Draw a polyline, optionally mirroring around the given points
@param pts: list of polyline vertices (list of (x, y))
@param mirrorX: x coordinate of mirror point (None for no x-flip)
@param mirrorY: y coordinate of mirror point (None for no y-flip)
"""
def _PolyLineInternal(pts):
if len(pts) < 2:
return
for i in range(0, len(pts) - 1):
self.Line(pts[i][0], pts[i][1], pts[i+1][0], pts[i+1][1])
_PolyLineInternal(pts) # original
if mirrorX is not None and mirrorY is not None:
self.TransformFlip(mirrorX, mirrorY, self.flipBoth) # both
_PolyLineInternal(pts)
self.PopTransform()
elif mirrorX is not None:
self.TransformFlip(mirrorX, 0, self.flipX)
_PolyLineInternal(pts)
self.PopTransform()
elif mirrorY is not None:
self.TransformFlip(0, mirrorY, self.flipY)
_PolyLineInternal(pts)
self.PopTransform()
def Reference(self, x, y, size, orientation_degree=0):
"""!
Draw the module's reference as the given point.
The actual setting of the reference is not done in this drawing
aid - that is up to the wizard
@param x: the x position of the reference
@param y: the y position of the reference
@param size: the text size (in both directions)
@param orientation_degree: text orientation in degrees
"""
text_size = pcbnew.wxSize(size, size)
self.module.Reference().SetPos0(self.TransformPoint(x, y))
self.module.Reference().SetPosition(
self.module.Reference().GetPos0())
self.module.Reference().SetTextSize(text_size)
# internal angles are in 0.1 deg
self.module.Reference().SetTextAngle(orientation_degree * 10)
def Value(self, x, y, size, orientation_degree=0):
"""!
As for references, draw the module's value
@param x: the x position of the value
@param y: the y position of the value
@param size: the text size (in both directions)
@param orientation_degree: text orientation in degrees
"""
text_size = pcbnew.wxSize(size, size)
self.module.Value().SetPos0(self.TransformPoint(x, y))
self.module.Value().SetPosition(self.module.Value().GetPos0())
self.module.Value().SetTextSize(text_size)
self.module.Value().SetLayer(self.DefaultTextValueLayer())
# internal angles are in 0.1 deg
self.module.Value().SetTextAngle(orientation_degree * 10)
def Box(self, x, y, w, h):
"""!
Draw a rectangular box, centred at (x,y), with given width and
height
@param x: the x coordinate of the box's centre
@param y: the y coordinate of the box's centre
@param w: the width of the box
@param h: the height of the box
"""
pts = [[x - w/2, y - h/2], # left
[x + w/2, y - h/2], # right
[x + w/2, y + h/2], # bottom
[x - w/2, y + h/2], # top
[x - w/2, y - h/2]] # close
self.Polyline(pts)
def NotchedCircle(self, x, y, r, notch_w, notch_h, rotate=0):
"""!
Circle radius r centred at (x, y) with a raised or depressed notch
at the top
Notch height is measured from the top of the circle radius
@param x: the x coordinate of the circle's centre
@param y: the y coordinate of the circle's centre
@param r: the radius of the circle
@param notch_w: the width of the notch
@param notch_h: the height of the notch
@param rotate: the rotation of the whole figure, in degrees
"""
self.TransformRotation(x, y, rotate)
# find the angle where the notch vertical meets the circle
angle_intercept = math.asin(notch_w/(2 * r))
# and find the co-ords of this point
sx = math.sin(angle_intercept) * r
sy = -math.cos(angle_intercept) * r
# NOTE: this may be out by a factor of ten one day
arc_angle = (math.pi * 2 - angle_intercept * 2) * (1800/math.pi)
self.Arc(x, y, sx, sy, arc_angle)
pts = [[sx, sy],
[sx, -r - notch_h],
[-sx, -r - notch_h],
[-sx, sy]]
self.Polyline(pts)
self.PopTransform()
def NotchedBox(self, x, y, w, h, notchW, notchH, rotate=0):
"""!
Draw a box with a notch in the centre of the top edge
@param x: the x coordinate of the circle's centre
@param y: the y coordinate of the circle's centre
@param w: the width of the box
@param h: the height of the box
@param notchW: the width of the notch
@param notchH: the height of the notch
@param rotate: the rotation of the whole figure, in degrees
"""
self.TransformRotation(x, y, rotate)
# limit to half the overall width
notchW = min(x + w/2, notchW)
# draw notch
self.Polyline([ # three sides of box
(x - w/2, y - h/2),
(x - w/2, y + h/2),
(x + w/2, y + h/2),
(x + w/2, y - h/2),
# the notch
(notchW/2, y - h/2),
(notchW/2, y - h/2 + notchH),
(-notchW/2, y - h/2 + notchH),
(-notchW/2, y - h/2),
(x - w/2, y - h/2)
])
self.PopTransform()
def BoxWithDiagonalAtCorner(self, x, y, w, h,
setback=pcbnew.FromMM(1.27), flip=flipNone):
"""!
Draw a box with a diagonal at the top left corner.
@param x: the x coordinate of the circle's centre
@param y: the y coordinate of the circle's centre
@param w: the width of the box
@param h: the height of the box
@param setback: the set-back of the diagonal, in both x and y
@param flip: one of flipNone, flipX, flipY or flipBoth to change the
diagonal corner
"""
self.TransformFlip(x, y, flip, push=True)
pts = [[x - w/2 + setback, y - h/2],
[x - w/2, y - h/2 + setback],
[x - w/2, y + h/2],
[x + w/2, y + h/2],
[x + w/2, y - h/2],
[x - w/2 + setback, y - h/2]]
self.Polyline(pts)
self.PopTransform()
def BoxWithOpenCorner(self, x, y, w, h,
setback=pcbnew.FromMM(1.27), flip=flipNone):
"""!
Draw a box with an opening at the top left corner
@param x: the x coordinate of the circle's centre
@param y: the y coordinate of the circle's centre
@param w: the width of the box
@param h: the height of the box
@param setback: the set-back of the opening, in both x and y
@param flip: one of flipNone, flipX, flipY or flipBoth to change the
open corner position
"""
self.TransformTranslate(x, y)
self.TransformFlipOrigin(flip)
pts = [[- w/2, - h/2 + setback],
[- w/2, + h/2],
[+ w/2, + h/2],
[+ w/2, - h/2],
[- w/2 + setback, - h/2]]
self.Polyline(pts)
self.PopTransform(num=2)
def RoundedBox(self, x, y, w, h, rad):
"""!
Draw a box with rounded corners (i.e. a 90-degree circular arc)
:param x: the x coordinate of the box's centre
:param y: the y coordinate of the box's centre
:param w: the width of the box
:param h: the height of the box
:param rad: the radius of the corner rounds
"""
x_inner = w - rad * 2
y_inner = h - rad * 2
x_left = x - w / 2
y_top = y - h / 2
# Draw straight sections
self.HLine(x_left + rad, y_top, x_inner)
self.HLine(x_left + rad, -y_top, x_inner)
self.VLine(x_left, y_top + rad, y_inner)
self.VLine(-x_left, y_top + rad, y_inner)
# corner arcs
ninety_deg = 90 * 10 # deci-degs
cx = x - w / 2 + rad
cy = y - h / 2 + rad
# top left
self.Arc(+cx, +cy, +x_left, +cy, +ninety_deg)
self.Arc(-cx, +cy, -x_left, +cy, -ninety_deg)
self.Arc(+cx, -cy, +x_left, -cy, -ninety_deg)
self.Arc(-cx, -cy, -x_left, -cy, +ninety_deg)
def ChamferedBox(self, x, y, w, h, chamfer_x, chamfer_y):
"""!
Draw a box with chamfered corners.
:param x: the x coordinate of the box's centre
:param y: the y coordinate of the box's centre
:param w: the width of the box
:param h: the height of the box
:param chamfer_x: the size of the chamfer set-back in the x direction
:param chamfer_y: the size of the chamfer set-back in the y direction
"""
# outermost dimensions
x_left = x - w / 2
y_top = y - h / 2
# x and y coordinates of inner edges of chamfers
x_inner = x_left + chamfer_x
y_inner = y_top + chamfer_y
pts = [
[+x_inner, +y_top],
[-x_inner, +y_top],
[-x_left, +y_inner],
[-x_left, -y_inner],
[-x_inner, -y_top],
[+x_inner, -y_top],
[+x_left, -y_inner],
[+x_left, +y_inner],
[+x_inner, +y_top],
]
self.draw.Polyline(pts)
def MarkerArrow(self, x, y, direction=dirN, width=pcbnew.FromMM(1)):
"""!
Draw a marker arrow facing in the given direction, with the
point at (x,y)
@param x: x position of the arrow tip
@param y: y position of the arrow tip
@param direction: arrow direction in degrees (0 is "north", can use
dir* shorthands)
@param width: arrow width
"""
self.TransformTranslate(x, y)
self.TransformRotationOrigin(direction)
pts = [[0, 0],
[width / 2, width / 2],
[-width / 2, width / 2],
[0, 0]]
self.Polyline(pts)
self.PopTransform(2)