kicad/pcbnew/connectivity_algo.h

927 lines
20 KiB
C++

/*
* This program source code file is part of KICAD, a free EDA CAD application.
*
* Copyright (C) 2013-2017 CERN
* @author Maciej Suminski <maciej.suminski@cern.ch>
* @author Tomasz Wlostowski <tomasz.wlostowski@cern.ch>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
// #define CONNECTIVITY_DEBUG
#ifndef __CONNECTIVITY_ALGO_H
#define __CONNECTIVITY_ALGO_H
#include <class_board.h>
#include <class_pad.h>
#include <class_module.h>
#include <class_zone.h>
#include <geometry/shape_poly_set.h>
#include <geometry/poly_grid_partition.h>
#include <memory>
#include <algorithm>
#include <functional>
#include <vector>
#include <deque>
#include <connectivity.h>
class CN_ITEM;
class CN_CONNECTIVITY_ALGO_IMPL;
class CN_RATSNEST_NODES;
class CN_CLUSTER;
class BOARD;
class BOARD_CONNECTED_ITEM;
class BOARD_ITEM;
class ZONE_CONTAINER;
class CN_ANCHOR
{
public:
CN_ANCHOR()
{
m_item = nullptr;
}
CN_ANCHOR( const VECTOR2I& aPos, CN_ITEM* aItem )
{
m_pos = aPos;
m_item = aItem;
assert( m_item );
}
bool Valid() const;
CN_ITEM* Item() const
{
return m_item;
}
BOARD_CONNECTED_ITEM* Parent() const;
const VECTOR2I& Pos() const
{
return m_pos;
}
bool IsDirty() const;
/// Returns tag, common identifier for connected nodes
inline int GetTag() const
{
return m_tag;
}
/// Sets tag, common identifier for connected nodes
inline void SetTag( int aTag )
{
m_tag = aTag;
}
/// Decides whether this node can be a ratsnest line target
inline void SetNoLine( bool aEnable )
{
m_noline = aEnable;
}
/// Returns true if this node can be a target for ratsnest lines
inline const bool& GetNoLine() const
{
return m_noline;
}
inline void SetCluster( std::shared_ptr<CN_CLUSTER> aCluster )
{
m_cluster = aCluster;
}
inline std::shared_ptr<CN_CLUSTER> GetCluster() const
{
return m_cluster;
}
// Tag used for unconnected items.
static const int TAG_UNCONNECTED = -1;
private:
/// Position of the anchor
VECTOR2I m_pos;
/// Item owning the anchor
CN_ITEM* m_item = nullptr;
/// Tag for quick connection resolution
int m_tag = -1;
/// Whether it the node can be a target for ratsnest lines
bool m_noline = false;
/// Cluster to which the anchor belongs
std::shared_ptr<CN_CLUSTER> m_cluster;
};
typedef std::shared_ptr<CN_ANCHOR> CN_ANCHOR_PTR;
typedef std::vector<CN_ANCHOR_PTR> CN_ANCHORS;
class CN_EDGE
{
public:
CN_EDGE() {};
CN_EDGE( CN_ANCHOR_PTR aSource, CN_ANCHOR_PTR aTarget, int aWeight = 0 ) :
m_source( aSource ),
m_target( aTarget ),
m_weight( aWeight ) {}
CN_ANCHOR_PTR GetSourceNode() const { return m_source; }
CN_ANCHOR_PTR GetTargetNode() const { return m_target; }
int GetWeight() const { return m_weight; }
void SetSourceNode( const CN_ANCHOR_PTR& aNode ) { m_source = aNode; }
void SetTargetNode( const CN_ANCHOR_PTR& aNode ) { m_target = aNode; }
void SetWeight( unsigned int weight ) { m_weight = weight; }
private:
CN_ANCHOR_PTR m_source;
CN_ANCHOR_PTR m_target;
unsigned int m_weight = 0;
};
class CN_CLUSTER
{
private:
bool m_conflicting = false;
int m_originNet = 0;
CN_ITEM* m_originPad = nullptr;
std::vector<CN_ITEM*> m_items;
public:
CN_CLUSTER();
~CN_CLUSTER();
bool HasValidNet() const
{
return m_originNet >= 0;
}
int OriginNet() const
{
return m_originNet;
}
wxString OriginNetName() const;
bool Contains( const CN_ITEM* aItem );
bool Contains( const BOARD_CONNECTED_ITEM* aItem );
void Dump();
int Size() const
{
return m_items.size();
}
bool HasNet() const
{
return m_originNet >= 0;
}
bool IsOrphaned() const
{
return m_originPad == nullptr;
}
bool IsConflicting() const
{
return m_conflicting;
}
void Add( CN_ITEM* item );
using ITER = decltype(m_items)::iterator;
ITER begin() { return m_items.begin(); };
ITER end() { return m_items.end(); };
};
typedef std::shared_ptr<CN_CLUSTER> CN_CLUSTER_PTR;
// a lightweight intrusive list container
template <class T>
class INTRUSIVE_LIST
{
public:
INTRUSIVE_LIST<T>()
{
ListClear();
}
void ListClear()
{
m_prev = nullptr;
m_next = nullptr;
m_root = (T*) this;
m_count = 1;
}
T* ListRemove()
{
if( m_prev )
m_prev->m_next = m_next;
if( m_next )
m_next->m_prev = m_prev;
m_root->m_count--;
T* rv = nullptr;
if( m_prev )
rv = m_prev;
else if( m_next )
rv = m_next;
m_root = nullptr;
m_prev = nullptr;
m_next = nullptr;
return rv;
}
int ListSize() const
{
return m_root ? m_root->m_count : 0;
}
void ListInsert( T* item )
{
if( !m_root )
m_root = item;
if( m_next )
m_next->m_prev = item;
item->m_prev = (T*) this;
item->m_next = m_next;
item->m_root = m_root;
m_root->m_count++;
m_next = item;
}
T* ListNext() const { return m_next; };
T* ListPrev() const { return m_prev; };
private:
int m_count;
T* m_prev;
T* m_next;
T* m_root;
};
// basic connectivity item
class CN_ITEM : public INTRUSIVE_LIST<CN_ITEM>
{
private:
BOARD_CONNECTED_ITEM* m_parent;
using CONNECTED_ITEMS = std::vector<CN_ITEM*>;
// list of items physically connected (touching)
CONNECTED_ITEMS m_connected;
CN_ANCHORS m_anchors;
// visited flag for the BFS scan
bool m_visited;
// can the net propagator modify the netcode?
bool m_canChangeNet;
// valid flag, used to identify garbage items (we use lazy removal)
bool m_valid;
// dirty flag, used to identify recently added item not yet scanned into the connectivity search
bool m_dirty;
public:
void Dump();
CN_ITEM( BOARD_CONNECTED_ITEM* aParent, bool aCanChangeNet, int aAnchorCount = 2 )
{
m_parent = aParent;
m_canChangeNet = aCanChangeNet;
m_visited = false;
m_valid = true;
m_dirty = true;
m_anchors.reserve( 2 );
}
virtual ~CN_ITEM() {};
CN_ANCHOR_PTR AddAnchor( const VECTOR2I& aPos )
{
m_anchors.emplace_back( std::make_shared<CN_ANCHOR> ( aPos, this ) );
//printf("%p add %d\n", this, m_anchors.size() );
return m_anchors.back();
}
CN_ANCHORS& Anchors()
{
return m_anchors;
}
void SetValid( bool aValid )
{
m_valid = aValid;
}
bool Valid() const
{
return m_valid;
}
void SetDirty( bool aDirty )
{
m_dirty = aDirty;
}
bool Dirty() const
{
return m_dirty;
}
BOARD_CONNECTED_ITEM* Parent() const
{
return m_parent;
}
const CONNECTED_ITEMS& ConnectedItems() const
{
return m_connected;
}
void ClearConnections()
{
m_connected.clear();
}
void SetVisited( bool aVisited )
{
m_visited = aVisited;
}
bool Visited() const
{
return m_visited;
}
bool CanChangeNet() const
{
return m_canChangeNet;
}
static void Connect( CN_ITEM* a, CN_ITEM* b )
{
bool foundA = false, foundB = false;
for( auto item : a->m_connected )
{
if( item == b )
{
foundA = true;
break;
}
}
for( auto item : b->m_connected )
{
if( item == a )
{
foundB = true;
break;
}
}
if( !foundA )
a->m_connected.push_back( b );
if( !foundB )
b->m_connected.push_back( a );
}
void RemoveInvalidRefs();
virtual int AnchorCount() const;
virtual const VECTOR2I GetAnchor( int n ) const;
int Net() const;
};
typedef std::shared_ptr<CN_ITEM> CN_ITEM_PTR;
class CN_LIST
{
private:
bool m_dirty;
std::vector<CN_ANCHOR_PTR> m_anchors;
protected:
std::vector<CN_ITEM*> m_items;
void addAnchor( VECTOR2I pos, CN_ITEM* item )
{
m_anchors.push_back( item->AddAnchor( pos ) );
}
private:
void sort()
{
if( m_dirty )
{
std::sort( m_anchors.begin(), m_anchors.end() );
m_dirty = false;
}
}
public:
CN_LIST()
{
m_dirty = false;
};
void Clear()
{
for( auto item : m_items )
delete item;
m_items.clear();
}
using ITER = decltype(m_items)::iterator;
ITER begin() { return m_items.begin(); };
ITER end() { return m_items.end(); };
template <class T>
void FindNearby( VECTOR2I aPosition, int aDistMax, T aFunc, bool aDirtyOnly = false );
template <class T>
void FindNearby( BOX2I aBBox, T aFunc, bool aDirtyOnly = false );
void SetDirty( bool aDirty = true )
{
m_dirty = aDirty;
}
bool IsDirty() const
{
return m_dirty;
}
void ClearConnections()
{
for( auto& anchor : m_anchors )
anchor->Item()->ClearConnections();
}
void RemoveInvalidItems( std::vector<CN_ITEM*>& aGarbage );
void ClearDirtyFlags()
{
for( auto item : m_items )
item->SetDirty( false );
SetDirty( false );
}
void MarkAllAsDirty()
{
for( auto item : m_items )
item->SetDirty( true );
SetDirty( true );
}
int Size() const
{
return m_items.size();
}
};
class CN_PAD_LIST : public CN_LIST
{
public:
CN_ITEM* Add( D_PAD* pad )
{
auto item = new CN_ITEM( pad, false, 2 );
addAnchor( pad->ShapePos(), item );
m_items.push_back( item );
SetDirty();
return item;
};
};
class CN_TRACK_LIST : public CN_LIST
{
public:
CN_ITEM* Add( TRACK* track )
{
auto item = new CN_ITEM( track, true );
m_items.push_back( item );
addAnchor( track->GetStart(), item );
addAnchor( track->GetEnd(), item );
SetDirty();
return item;
};
};
class CN_VIA_LIST : public CN_LIST
{
public:
CN_ITEM* Add( VIA* via )
{
auto item = new CN_ITEM( via, true );
m_items.push_back( item );
addAnchor( via->GetStart(), item );
SetDirty();
return item;
};
};
class CN_ZONE : public CN_ITEM
{
public:
CN_ZONE( ZONE_CONTAINER* aParent, bool aCanChangeNet, int aSubpolyIndex ) :
CN_ITEM( aParent, aCanChangeNet ),
m_subpolyIndex( aSubpolyIndex )
{
SHAPE_LINE_CHAIN outline = aParent->GetFilledPolysList().COutline( aSubpolyIndex );
outline.SetClosed( true );
outline.Simplify();
m_cachedPoly.reset( new POLY_GRID_PARTITION( outline, 16 ) );
}
int SubpolyIndex() const
{
return m_subpolyIndex;
}
bool ContainsAnchor( const CN_ANCHOR_PTR anchor ) const
{
return m_cachedPoly->ContainsPoint( anchor->Pos() );
}
bool ContainsPoint( const VECTOR2I p ) const
{
return m_cachedPoly->ContainsPoint( p );
}
const BOX2I& BBox() const
{
return m_cachedPoly->BBox();
}
virtual int AnchorCount() const;
virtual const VECTOR2I GetAnchor( int n ) const;
private:
std::vector<VECTOR2I> m_testOutlinePoints;
std::unique_ptr<POLY_GRID_PARTITION> m_cachedPoly;
int m_subpolyIndex;
};
class CN_ZONE_LIST : public CN_LIST
{
public:
CN_ZONE_LIST() {}
const std::vector<CN_ITEM*> Add( ZONE_CONTAINER* zone )
{
const auto& polys = zone->GetFilledPolysList();
std::vector<CN_ITEM*> rv;
for( int j = 0; j < polys.OutlineCount(); j++ )
{
CN_ZONE* zitem = new CN_ZONE( zone, false, j );
const auto& outline = zone->GetFilledPolysList().COutline( j );
for( int k = 0; k < outline.PointCount(); k++ )
addAnchor( outline.CPoint( k ), zitem );
m_items.push_back( zitem );
rv.push_back( zitem );
SetDirty();
}
return rv;
};
template <class T>
void FindNearbyZones( BOX2I aBBox, T aFunc, bool aDirtyOnly = false );
};
template <class T>
void CN_LIST::FindNearby( BOX2I aBBox, T aFunc, bool aDirtyOnly )
{
for( auto p : m_anchors )
{
if( p->Valid() && aBBox.Contains( p->Pos() ) )
if( !aDirtyOnly || p->IsDirty() )
aFunc( p );
}
}
template <class T>
void CN_ZONE_LIST::FindNearbyZones( BOX2I aBBox, T aFunc, bool aDirtyOnly )
{
for( auto item : m_items )
{
auto zone = static_cast<CN_ZONE*> ( item );
if( aBBox.Intersects( zone->BBox() ) )
{
if( !aDirtyOnly || zone->Dirty() )
{
aFunc( zone );
}
}
}
}
template <class T>
void CN_LIST::FindNearby( VECTOR2I aPosition, int aDistMax, T aFunc, bool aDirtyOnly )
{
/* Search items in m_Candidates that position is <= aDistMax from aPosition
* (Rectilinear distance)
* m_Candidates is sorted by X then Y values, so a fast binary search is used
* to locate the "best" entry point in list
* The best entry is a pad having its m_Pos.x == (or near) aPosition.x
* All candidates are near this candidate in list
* So from this entry point, a linear search is made to find all candidates
*/
sort();
int idxmax = m_anchors.size() - 1;
int delta = idxmax + 1;
int idx = 0; // Starting index is the beginning of list
while( delta )
{
// Calculate half size of remaining interval to test.
// Ensure the computed value is not truncated (too small)
if( (delta & 1) && ( delta > 1 ) )
delta++;
delta /= 2;
auto p = m_anchors[idx];
int dist = p->Pos().x - aPosition.x;
if( std::abs( dist ) <= aDistMax )
{
break; // A good entry point is found. The list can be scanned from this point.
}
else if( p->Pos().x < aPosition.x ) // We should search after this point
{
idx += delta;
if( idx > idxmax )
idx = idxmax;
}
else // We should search before this p
{
idx -= delta;
if( idx < 0 )
idx = 0;
}
}
/* Now explore the candidate list from the "best" entry point found
* (candidate "near" aPosition.x)
* We exp the list until abs(candidate->m_Point.x - aPosition.x) > aDistMashar* Currently a linear search is made because the number of candidates
* having the right X position is usually small
*/
// search next candidates in list
VECTOR2I diff;
for( int ii = idx; ii <= idxmax; ii++ )
{
auto& p = m_anchors[ii];
diff = p->Pos() - aPosition;;
if( std::abs( diff.x ) > aDistMax )
break; // Exit: the distance is to long, we cannot find other candidates
if( std::abs( diff.y ) > aDistMax )
continue; // the y distance is to long, but we can find other candidates
// We have here a good candidate: add it
if( p->Valid() )
if( !aDirtyOnly || p->IsDirty() )
aFunc( p );
}
// search previous candidates in list
for( int ii = idx - 1; ii >=0; ii-- )
{
auto& p = m_anchors[ii];
diff = p->Pos() - aPosition;
if( abs( diff.x ) > aDistMax )
break;
if( abs( diff.y ) > aDistMax )
continue;
// We have here a good candidate:add it
if( p->Valid() )
if( !aDirtyOnly || p->IsDirty() )
aFunc( p );
}
}
class CN_CONNECTIVITY_ALGO
{
public:
enum CLUSTER_SEARCH_MODE
{
CSM_PROPAGATE,
CSM_CONNECTIVITY_CHECK,
CSM_RATSNEST
};
using CLUSTERS = std::vector<CN_CLUSTER_PTR>;
private:
bool m_lastSearchWithZones = false;
class ITEM_MAP_ENTRY
{
public:
ITEM_MAP_ENTRY( CN_ITEM* aItem = nullptr )
{
if( aItem )
m_items.push_back( aItem );
}
void MarkItemsAsInvalid()
{
for( auto item : m_items )
{
item->SetValid( false );
}
}
void Link( CN_ITEM* aItem )
{
m_items.push_back( aItem );
}
const std::list<CN_ITEM*> GetItems() const
{
return m_items;
}
std::list<CN_ITEM*> m_items;
};
CN_PAD_LIST m_padList;
CN_TRACK_LIST m_trackList;
CN_VIA_LIST m_viaList;
CN_ZONE_LIST m_zoneList;
using ITEM_MAP_PAIR = std::pair <const BOARD_CONNECTED_ITEM*, ITEM_MAP_ENTRY>;
std::unordered_map<const BOARD_CONNECTED_ITEM*, ITEM_MAP_ENTRY> m_itemMap;
CLUSTERS m_connClusters;
CLUSTERS m_ratsnestClusters;
std::vector<bool> m_dirtyNets;
void searchConnections( bool aIncludeZones = false );
void update();
void propagateConnections();
template <class Container, class BItem>
void add( Container& c, BItem brditem )
{
auto item = c.Add( brditem );
m_itemMap[ brditem ] = ITEM_MAP_ENTRY( item );
}
bool addConnectedItem( BOARD_CONNECTED_ITEM* aItem );
bool isDirty() const;
void markNetAsDirty( int aNet );
void markItemNetAsDirty( const BOARD_ITEM* aItem );
public:
CN_CONNECTIVITY_ALGO();
~CN_CONNECTIVITY_ALGO();
ITEM_MAP_ENTRY& ItemEntry( const BOARD_CONNECTED_ITEM* aItem )
{
return m_itemMap[ aItem ];
}
bool IsNetDirty( int aNet ) const
{
return m_dirtyNets[ aNet ];
}
void ClearDirtyFlags()
{
for( auto i = m_dirtyNets.begin(); i != m_dirtyNets.end(); ++i )
*i = false;
}
void GetDirtyClusters( CLUSTERS& aClusters )
{
for( auto cl : m_ratsnestClusters )
{
int net = cl->OriginNet();
if( net >= 0 && m_dirtyNets[net] )
aClusters.push_back( cl );
}
}
int NetCount() const
{
return m_dirtyNets.size();
}
void Build( BOARD* aBoard );
void Build( const std::vector<BOARD_ITEM*>& aItems );
void Clear();
bool Remove( BOARD_ITEM* aItem );
bool Add( BOARD_ITEM* aItem );
const CLUSTERS SearchClusters( CLUSTER_SEARCH_MODE aMode, const KICAD_T aTypes[], int aSingleNet );
const CLUSTERS SearchClusters( CLUSTER_SEARCH_MODE aMode );
void PropagateNets();
void FindIsolatedCopperIslands( ZONE_CONTAINER* aZone, std::vector<int>& aIslands );
bool CheckConnectivity( std::vector<CN_DISJOINT_NET_ENTRY>& aReport );
const CLUSTERS& GetClusters();
int GetUnconnectedCount();
};
bool operator<( const CN_ANCHOR_PTR a, const CN_ANCHOR_PTR b );
#endif