kicad/pcbnew/gen_self.h

511 lines
15 KiB
C++

/****************************************************/
/* Gestion des composants specifiques aux microndes */
/* Generation d'une self */
/****************************************************/
/* Fichier GEN_SELF.H */
/* Fonctions locales */
static void Exit_Self(WinEDA_DrawPanel * Panel, wxDC *DC);
static EDGE_MODULE * gen_arc(EDGE_MODULE * PtSegm, int cX, int cY, int angle);
static void ShowCadreSelf(WinEDA_DrawPanel * panel, wxDC * DC, bool erase);
/* structures locales */
class SELFPCB // Definition d'une self constituee par une piste
{
public:
int forme; // Serpentin, spirale ..
int orient; // 0..3600
int valeur; // Valeur de la self
wxPoint m_Start;
wxPoint m_End; // Coord du point de depart et d'arrivee
wxSize m_Size;
D_PAD * pt_pad_start, *pt_pad_end; // Pointeurs sur les pads d'extremite
int lng; // Longueur de la piste constituant la self
int m_Width; // m_Size.xur de la piste
int nbrin; // Parametres de calcul: nombre de brins
int lbrin; // longueur du brin
int rayon; // Rayon des raccords entre brins
int delta; // distance aux pads
};
/* Variables locales */
static SELFPCB Mself;
static int Self_On;
static int Bl_X0, Bl_Y0 , Bl_Xf, Bl_Yf; // Coord du cadre insrcivant la self
/*************************************************************************/
static void ShowCadreSelf(WinEDA_DrawPanel * panel, wxDC * DC, bool erase)
/*************************************************************************/
/* Routine d'affichage a l'ecran du cadre de la self */
{
int deltaX, deltaY;
/* Calcul de l'orientation et de la taille de la fenetre:
- orient = vert ou Horiz ( dimension max)
- Size.x = Size.y / 2
*/
GRSetDrawMode(DC, GR_XOR);
if( erase)/* effacement du cadre */
{
GRRect( & panel->m_ClipBox, DC, Bl_X0, Bl_Y0, Bl_Xf, Bl_Yf, YELLOW);
}
deltaX = (panel->GetScreen()->m_Curseur.x - Mself.m_Start.x) / 4;
deltaY = (panel->GetScreen()->m_Curseur.y - Mself.m_Start.y) / 4;
Mself.orient = 900;
if( abs(deltaX) > abs(deltaY) ) Mself.orient = 0;
if(Mself.orient == 0)
{
Bl_X0 = Mself.m_Start.x;
Bl_Y0 = Mself.m_Start.y - deltaX;
Bl_Xf = panel->GetScreen()->m_Curseur.x;
Bl_Yf = Mself.m_Start.y + deltaX;
}
else
{
Bl_X0 = Mself.m_Start.x - deltaY;
Bl_Y0 = Mself.m_Start.y;
Bl_Xf = Mself.m_Start.x + deltaY;
Bl_Yf = panel->GetScreen()->m_Curseur.y;
}
GRRect( & panel->m_ClipBox, DC, Bl_X0, Bl_Y0, Bl_Xf, Bl_Yf,YELLOW);
}
/*************************************************/
void Exit_Self(WinEDA_DrawPanel * Panel, wxDC *DC)
/*************************************************/
/* Routine de fermeture de l'application : ferme les commandes en cours */
{
if(Self_On)
{
Self_On = 0;
Panel->ManageCurseur(Panel, DC, 0); /* efface cadre */
Panel->ManageCurseur = NULL;
Panel->ForceCloseManageCurseur = NULL;
}
}
/*******************************************/
void WinEDA_PcbFrame::Begin_Self( wxDC *DC)
/*******************************************/
/*
Routine d'initialisation d'un trace de self
*/
{
if ( Self_On )
{
Genere_Self(DC);
return;
}
Mself.m_Start = GetScreen()->m_Curseur;
Self_On = 1;
/* Mise a jour de l'origine des coord relatives */
GetScreen()->m_O_Curseur = GetScreen()->m_Curseur;
Affiche_Status_Box();
Bl_X0 = Mself.m_Start.x; Bl_Y0 = Mself.m_Start.y;
Bl_Xf = Bl_X0; Bl_Yf = Bl_Y0;
DrawPanel->ManageCurseur = ShowCadreSelf;
DrawPanel->ForceCloseManageCurseur = Exit_Self;
DrawPanel->ManageCurseur(DrawPanel, DC, 0); /* Affiche cadre */
}
/**********************************************/
MODULE * WinEDA_PcbFrame::Genere_Self( wxDC *DC)
/**********************************************/
/* Genere une self en forme de serpentin
- longueur Mself.lng
- Extremites Mself.m_Start et Mself.m_End
- Contrainte: m_Start.x = m_End.x ( self verticale )
ou m_Start.y = m_End.y ( self horizontale )
On doit determiner:
Mself.nbrin = nombre de segments perpendiculaires a la direction
( le serpention aura nbrin + 1 demicercles + 2 1/4 de cercle)
Mself.lbrin = longueur d'un brin
Mself.rayon = rayon des parties arrondies du serpentin
Mself.delta = segments raccord entre extremites et le serpention lui meme
Les equations sont
Mself.m_Size.x = 2*Mself.rayon + Mself.lbrin
Mself.m_Size.y = 2*Mself.delta + 2*Mself.nbrin*Mself.rayon
Mself.lng = 2*Mself.delta // Raccords au serpentin
+ (Mself.nbrin-2) * Mself.lbrin //longueur des brins sauf 1er et dernier
+ (Mself.nbrin+1) * ( PI * Mself.rayon) // longueur des arrondis
+ Mself.lbrin/2 - Melf.rayon*2) // longueur du 1er et dernier brin
Les contraintes sont:
nbrin >= 2
Mself.rayon < Mself.m_Size.x
Mself.m_Size.y = Mself.rayon*4 + 2*Mself.raccord
Mself.lbrin > Mself.rayon *2
Le calcul est conduit de la facon suivante:
Initialement:
nbrin = 2
rayon = 4 * m_Size.x (valeur fixe arbitraire)
puis:
on augmente le nombre de brins jusqu'a la longueur desiree
( le rayon est diminue si necessaire )
*/
{
EDGE_MODULE * PtSegm, * LastSegm, *FirstSegm, * newedge;
MODULE * Module;
D_PAD * PtPad;
int ii, ll, lextbrin;
float fcoeff;
bool abort = FALSE;
wxString msg;
DrawPanel->ManageCurseur(DrawPanel, DC, FALSE); /* efface cadre */
DrawPanel->ManageCurseur = NULL;
DrawPanel->ForceCloseManageCurseur = NULL;
if(Self_On == 0)
{
DisplayError(this, wxT("Starting point not init..")); return NULL;
}
Self_On = 0;
Mself.m_End = m_CurrentScreen->m_Curseur;
/* Agencement des parametres pour simplifier le calcul : */
/* le point de depart doit avoir la coord depart < celle du point de fin */
if(Mself.orient == 0) // Self horizontale
{
Mself.m_End.y = Mself.m_Start.y;
if(Mself.m_Start.x > Mself.m_End.x) EXCHG(Mself.m_Start.x,Mself.m_End.x);
Mself.m_Size.y = Mself.m_End.x - Mself.m_Start.x;
Mself.lng = Mself.m_Size.y;
}
else // Self verticale
{
Mself.m_End.x = Mself.m_Start.x;
if(Mself.m_Start.y > Mself.m_End.y) EXCHG(Mself.m_Start.y,Mself.m_End.y);
Mself.m_Size.y = Mself.m_End.y - Mself.m_Start.y;
Mself.lng = Mself.m_Size.y;
}
/* Entree de la vraie longueur desiree */
if( ! g_UnitMetric )
{
fcoeff = 10000.0 ;
msg.Printf( wxT("%1.4f"), Mself.lng /fcoeff);
abort = Get_Message(_("Length(inch):"),msg, this);
}
else
{
fcoeff = 10000.0/25.4 ;
msg.Printf( wxT("%2.3f"), Mself.lng /fcoeff);
abort = Get_Message( _("Length(mm):"),msg, this);
}
if ( abort ) return NULL;
double fval;
if ( ! msg.ToDouble(&fval) )
{
DisplayError(this, _("Incorrect number, abort"));
return NULL;
}
Mself.lng = (int) round( fval * fcoeff );
/* Controle des valeurs ( ii = valeur minimale de la longueur */
if( Mself.lng < Mself.m_Size.y )
{
DisplayError(this, _("Requested length < minimum length"));
return NULL;
}
/* Generation du composant: calcul des elements de la self */
Mself.m_Width = g_DesignSettings.m_CurrentTrackWidth;
Mself.m_Size.x = Mself.m_Size.y / 2 ;
// Choix d'une Valeur de depart raisonnable pour le rayon des arcs de cercle
Mself.rayon = min(Mself.m_Width * 5, Mself.m_Size.x/4);
/* Calcul des parametres */
for ( Mself.nbrin = 2 ; ; Mself.nbrin++)
{
Mself.delta = (Mself.m_Size.y - ( Mself.rayon * 2 * Mself.nbrin ) ) / 2 ;
if(Mself.delta < Mself.m_Size.y / 10) // C.a.d. si m_Size.yeur self > m_Size.yeur specifiee
{ // Reduction du rayon des arrondis
Mself.delta = Mself.m_Size.y / 10;
Mself.rayon = (Mself.m_Size.y - 2*Mself.delta) / ( 2 * Mself.nbrin) ;
if(Mself.rayon < Mself.m_Width)
{ // Rayon vraiment trop petit...
Affiche_Message(_("Unable to create line: Requested length is too big"));
return NULL;
}
}
Mself.lbrin = Mself.m_Size.x - (Mself.rayon * 2);
lextbrin = (Mself.lbrin/2) - Mself.rayon;
ll = 2 * lextbrin ; // Longueur du 1er et dernier brin
ll += 2 * Mself.delta ; // Longueur des raccord au serpentin
ll += Mself.nbrin * (Mself.lbrin - 2); // longueur des autres brins
ll += ((Mself.nbrin+1) * 314 * Mself.rayon) /100 ;
msg.Printf( _("Segm count = %d, Lenght = "), Mself.nbrin);
wxString stlen;
valeur_param(ll, stlen); msg += stlen;
Affiche_Message(msg);
if ( ll >= Mself.lng) break;
}
/* Generation du composant : le calcul est fait self Verticale */
if( Create_1_Module(DC, wxEmptyString) == NULL ) return NULL;
Module = m_Pcb->m_Modules;
Module->m_LibRef = wxT("MuSelf");
Module->m_Attributs = MOD_VIRTUAL | MOD_CMS;
Module->m_Flags = 0;
Module->Draw(DrawPanel, DC, wxPoint(0,0), GR_XOR);
/* Generation des elements speciaux: drawsegments */
LastSegm = (EDGE_MODULE*) Module->m_Drawings;
if( LastSegm ) while( LastSegm->Pnext) LastSegm = (EDGE_MODULE*)LastSegm->Pnext;
FirstSegm = PtSegm = new EDGE_MODULE(Module);
if (LastSegm )
{
LastSegm->Pnext = PtSegm;
PtSegm->Pback = LastSegm;
}
else
{
Module->m_Drawings = PtSegm; PtSegm->Pback = Module;
}
PtSegm->m_Start = Mself.m_Start;
PtSegm->m_End.x = Mself.m_Start.x;
PtSegm->m_End.y = PtSegm->m_Start.y + Mself.delta;
PtSegm->m_Width = Mself.m_Width;
PtSegm->m_Layer = Module->m_Layer;
PtSegm->m_Shape = S_SEGMENT;
newedge = new EDGE_MODULE(Module);
newedge->Copy(PtSegm);
newedge->AddToChain(PtSegm);
PtSegm = newedge;
PtSegm->m_Start = PtSegm->m_End;
PtSegm = gen_arc(PtSegm,PtSegm->m_End.x - Mself.rayon, PtSegm->m_End.y, -900);
if(lextbrin)
{
newedge = new EDGE_MODULE(Module);
newedge->Copy(PtSegm);
newedge->AddToChain(PtSegm);
PtSegm = newedge;
PtSegm->m_Start = PtSegm->m_End;
PtSegm->m_End.x -= lextbrin;
}
/* Trace du serpentin */
for (ii = 1 ; ii < Mself.nbrin; ii++)
{
int arc_angle;
newedge = new EDGE_MODULE(Module);
newedge->Copy(PtSegm);
newedge->AddToChain(PtSegm);
PtSegm = newedge;
PtSegm->m_Start = PtSegm->m_End;
if( ii & 1) /* brin d'ordre impair : cercles de sens > 0 */
arc_angle = 1800;
else arc_angle = -1800;
PtSegm = gen_arc(PtSegm, PtSegm->m_End.x,
PtSegm->m_End.y + Mself.rayon, arc_angle);
if( ii < Mself.nbrin-1)
{
newedge = new EDGE_MODULE(Module);
newedge->Copy(PtSegm);
newedge->AddToChain(PtSegm);
PtSegm = newedge;
PtSegm->m_Start = PtSegm->m_End;
if( ii & 1) PtSegm->m_End.x += Mself.lbrin;
else PtSegm->m_End.x -= Mself.lbrin;
}
}
/* Trace du point final */
if( ii & 1) /* brin final de sens > 0 */
{
if(lextbrin)
{
newedge = new EDGE_MODULE(Module);
newedge->Copy(PtSegm);
newedge->AddToChain(PtSegm);
PtSegm = newedge;
PtSegm->m_Start = PtSegm->m_End;
PtSegm->m_End.x -= lextbrin;
}
newedge = new EDGE_MODULE(Module);
newedge->Copy(PtSegm);
newedge->AddToChain(PtSegm);
PtSegm = newedge;
PtSegm->m_Start.x = PtSegm->m_End.x; PtSegm->m_Start.y = PtSegm->m_End.y;
PtSegm = gen_arc(PtSegm, PtSegm->m_End.x, PtSegm->m_End.y + Mself.rayon, 900);
}
else
{
if(lextbrin)
{
newedge = new EDGE_MODULE(Module);
newedge->Copy(PtSegm);
newedge->AddToChain(PtSegm);
PtSegm = newedge;
PtSegm->m_Start = PtSegm->m_End;
PtSegm->m_End.x += lextbrin;
}
newedge = new EDGE_MODULE(Module);
newedge->Copy(PtSegm);
newedge->AddToChain(PtSegm);
PtSegm = newedge;
PtSegm->m_Start = PtSegm->m_End;
PtSegm = gen_arc(PtSegm, PtSegm->m_End.x, PtSegm->m_End.y + Mself.rayon, -900);
}
newedge = new EDGE_MODULE(Module);
newedge->Copy(PtSegm);
newedge->AddToChain(PtSegm);
PtSegm = newedge;
PtSegm->m_Start = PtSegm->m_End;
PtSegm->m_End = Mself.m_End;
PtSegm->Pnext = NULL;
/* Rotation de la self si le trace doit etre horizontal : */
LastSegm = PtSegm;
if ( Mself.orient == 0)
{
for( PtSegm = FirstSegm; PtSegm != NULL; PtSegm = (EDGE_MODULE*) PtSegm->Pnext )
{
RotatePoint(&PtSegm->m_Start.x, &PtSegm->m_Start.y,
FirstSegm->m_Start.x, FirstSegm->m_Start.y, 900 );
if( PtSegm != LastSegm )
RotatePoint(&PtSegm->m_End.x, &PtSegm->m_End.y,
FirstSegm->m_Start.x, FirstSegm->m_Start.y, 900 );
}
}
/* Modif position ancre */
Module->m_Pos.x = LastSegm->m_End.x; Module->m_Pos.y = LastSegm->m_End.y;
/* Placement des 2 pads sur extremite */
PtPad = new D_PAD(Module);
Module->m_Pads = PtPad; PtPad->Pback = Module;
PtPad->SetPadName( wxT("1") );
PtPad->m_Pos.x = LastSegm->m_End.x; PtPad->m_Pos.y = LastSegm->m_End.y;
PtPad->m_Pos0.x = PtPad->m_Pos.x - Module->m_Pos.x;
PtPad->m_Pos0.y = PtPad->m_Pos.y - Module->m_Pos.y;
PtPad->m_Size.x = PtPad->m_Size.y = LastSegm->m_Width;
PtPad->m_Masque_Layer = g_TabOneLayerMask[LastSegm->m_Layer];
PtPad->m_Attribut = SMD;
PtPad->m_PadShape = CIRCLE;
PtPad->m_Rayon = PtPad->m_Size.x / 2;
D_PAD * newpad = new D_PAD(Module);
newpad->Copy(PtPad);
newpad->AddToChain(PtPad);
PtPad = newpad;
PtPad->SetPadName( wxT("2") );
PtPad->m_Pos.x = FirstSegm->m_Start.x; PtPad->m_Pos.y = FirstSegm->m_Start.y;
PtPad->m_Pos0.x = PtPad->m_Pos.x - Module->m_Pos.x;
PtPad->m_Pos0.y = PtPad->m_Pos.y - Module->m_Pos.y;
/* Modif des positions textes */
Module->Display_Infos(this);
Module->m_Value->m_Pos.x = Module->m_Reference->m_Pos.x = ( FirstSegm->m_Start.x + LastSegm->m_End.x ) /2 ;
Module->m_Value->m_Pos.y = Module->m_Reference->m_Pos.y = ( FirstSegm->m_Start.y + LastSegm->m_End.y ) /2 ;
Module->m_Reference->m_Pos.y -= Module->m_Reference->m_Size.y;
Module->m_Value->m_Pos.y += Module->m_Value->m_Size.y;
Module->m_Reference->m_Pos0.x = Module->m_Reference->m_Pos.x - Module->m_Pos.x;
Module->m_Reference->m_Pos0.y = Module->m_Reference->m_Pos.y - Module->m_Pos.y;
Module->m_Value->m_Pos0.x = Module->m_Value->m_Pos.x - Module->m_Pos.x;
Module->m_Value->m_Pos0.y = Module->m_Value->m_Pos.y - Module->m_Pos.y;
/* Init des Coord locales des segments */
for( PtSegm = FirstSegm; PtSegm != NULL; PtSegm = (EDGE_MODULE*) PtSegm->Pnext )
{
PtSegm->m_Start0.x = PtSegm->m_Start.x - Module->m_Pos.x;
PtSegm->m_Start0.y = PtSegm->m_Start.y - Module->m_Pos.y;
PtSegm->m_End0.x = PtSegm->m_End.x - Module->m_Pos.x;
PtSegm->m_End0.y = PtSegm->m_End.y - Module->m_Pos.y;
}
Module->Set_Rectangle_Encadrement();
Module->Draw(DrawPanel, DC, wxPoint(0,0), GR_OR);
return Module;
}
/**************************************************************************/
static EDGE_MODULE * gen_arc(EDGE_MODULE * PtSegm, int cX, int cY, int angle)
/**************************************************************************/
/* Genere un arc de EDGE_MODULE :
de centre cX,cY
d'angle "angle"
de point de depart donne dans la structure pointee par PtSegm, qui doit
entre a jour (type,net..)
Retourne un pointeur sur la derniere structure EDGE_MODULE generee
*/
{
int ii, nb_seg;
float alpha, beta, fsin, fcos;
int x0, xr0, y0, yr0;
EDGE_MODULE * newedge;
angle = -angle;
y0 = PtSegm->m_Start.x - cX; x0 = PtSegm->m_Start.y - cY;
nb_seg = (abs(angle)) / 225 ; if(nb_seg == 0) nb_seg = 1 ;
alpha = ( (float)angle * 3.14159 / 1800 ) / nb_seg;
for ( ii = 1 ; ii <= nb_seg ; ii++ )
{
if( ii > 1)
{
newedge = new EDGE_MODULE( (MODULE*) NULL);
newedge->Copy(PtSegm);
newedge->m_Parent = PtSegm->m_Parent;
newedge->AddToChain(PtSegm);
PtSegm = newedge;
PtSegm->m_Start.x = PtSegm->m_End.x; PtSegm->m_Start.y = PtSegm->m_End.y;
}
beta = (alpha * ii);
fcos = cos(beta); fsin = sin(beta);
xr0 = (int)(x0 * fcos + y0 * fsin);
yr0 = (int)(y0 * fcos - x0 * fsin);
PtSegm->m_End.x = cX + yr0; PtSegm->m_End.y = cY + xr0 ;
}
return( PtSegm );
}