kicad/common/gal/cairo/cairo_gal.cpp

979 lines
26 KiB
C++

/*
* This program source code file is part of KICAD, a free EDA CAD application.
*
* Copyright (C) 2012 Torsten Hueter, torstenhtr <at> gmx.de
* Copyright (C) 2012 Kicad Developers, see change_log.txt for contributors.
*
* CAIRO_GAL - Graphics Abstraction Layer for Cairo
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <wx/dcbuffer.h>
#include <wx/image.h>
#include <wx/log.h>
#include <gal/cairo/cairo_gal.h>
#include <gal/definitions.h>
#include <limits>
using namespace KiGfx;
CAIRO_GAL::CAIRO_GAL( wxWindow* aParent, wxEvtHandler* aMouseListener,
wxEvtHandler* aPaintListener, const wxString& aName ) :
wxWindow( aParent, wxID_ANY, wxDefaultPosition, wxDefaultSize, wxEXPAND, aName )
{
// Default values
fillColor = COLOR4D( 0, 0, 0, 1 );
strokeColor = COLOR4D( 1, 1, 1, 1 );
screenSize = VECTOR2D( aParent->GetSize() );
parentWindow = aParent;
mouseListener = aMouseListener;
paintListener = aPaintListener;
isGrouping = false;
isInitialized = false;
isDeleteSavedPixels = false;
zoomFactor = 1.0;
groupCounter = 0;
SetSize( aParent->GetSize() );
// Connecting the event handlers
Connect( wxEVT_PAINT, wxPaintEventHandler( CAIRO_GAL::onPaint ) );
// Mouse events are skipped to the parent
Connect( wxEVT_MOTION, wxMouseEventHandler( CAIRO_GAL::skipMouseEvent ) );
Connect( wxEVT_MOUSEWHEEL, wxMouseEventHandler( CAIRO_GAL::skipMouseEvent ) );
Connect( wxEVT_RIGHT_DOWN, wxMouseEventHandler( CAIRO_GAL::skipMouseEvent ) );
Connect( wxEVT_RIGHT_UP, wxMouseEventHandler( CAIRO_GAL::skipMouseEvent ) );
Connect( wxEVT_LEFT_DOWN, wxMouseEventHandler( CAIRO_GAL::skipMouseEvent ) );
Connect( wxEVT_LEFT_UP, wxMouseEventHandler( CAIRO_GAL::skipMouseEvent ) );
Connect( wxEVT_MIDDLE_DOWN, wxMouseEventHandler( CAIRO_GAL::skipMouseEvent ) );
Connect( wxEVT_MIDDLE_UP, wxMouseEventHandler( CAIRO_GAL::skipMouseEvent ) );
#if defined _WIN32 || defined _WIN64
Connect( wxEVT_ENTER_WINDOW, wxMouseEventHandler( CAIRO_GAL::skipMouseEvent ) );
#endif
// Initialize the cursor shape
SetCursorColor( COLOR4D( 1.0, 1.0, 1.0, 1.0 ) );
initCursor( 21 );
// Allocate memory
allocateBitmaps();
// Set grid defaults
SetGridColor( COLOR4D( 0.5, 0.5, 0.5, 0.3 ) );
SetCoarseGrid( 10 );
SetGridLineWidth( 0.5 );
}
CAIRO_GAL::~CAIRO_GAL()
{
deinitSurface();
delete cursorPixels;
delete cursorPixelsSaved;
ClearCache();
deleteBitmaps();
}
void CAIRO_GAL::onPaint( wxPaintEvent& aEvent )
{
PostPaint();
}
void CAIRO_GAL::ResizeScreen( int aWidth, int aHeight )
{
deleteBitmaps();
screenSize = VECTOR2D( aWidth, aHeight );
// Recreate the bitmaps
allocateBitmaps();
SetSize( wxSize( aWidth, aHeight ) );
}
void CAIRO_GAL::skipMouseEvent( wxMouseEvent& aEvent )
{
// Post the mouse event to the event listener registered in constructor, if any
if( mouseListener )
wxPostEvent( mouseListener, aEvent );
}
void CAIRO_GAL::initSurface()
{
if( isInitialized )
return;
// The size of the client area needs to be greater than zero
clientRectangle = parentWindow->GetClientRect();
if( clientRectangle.width == 0 || clientRectangle.height == 0 )
throw EXCEPTION_ZERO_CLIENT_RECTANGLE;
// Create the Cairo surface
cairoSurface = cairo_image_surface_create_for_data( (unsigned char*) bitmapBuffer,
CAIRO_FORMAT_RGB24, clientRectangle.width,
clientRectangle.height, stride );
cairoImage = cairo_create ( cairoSurface );
#ifdef __WXDEBUG__
cairo_status_t status = cairo_status( cairoImage );
wxASSERT_MSG( status == CAIRO_STATUS_SUCCESS, "Cairo context creation error" );
#endif /* __WXDEBUG__ */
// -----------------------------------------------------------------
cairo_set_antialias( cairoImage, CAIRO_ANTIALIAS_SUBPIXEL );
// Clear the screen
ClearScreen();
// Compute the world <-> screen transformations
ComputeWorldScreenMatrix();
cairo_matrix_init( &cairoWorldScreenMatrix, worldScreenMatrix.m_data[0][0],
worldScreenMatrix.m_data[1][0], worldScreenMatrix.m_data[0][1],
worldScreenMatrix.m_data[1][1], worldScreenMatrix.m_data[0][2],
worldScreenMatrix.m_data[1][2] );
cairo_set_matrix( cairoImage, &cairoWorldScreenMatrix );
isSetAttributes = false;
// Start drawing with a new path
cairo_new_path( cairoImage );
isElementAdded = true;
cairo_set_line_join( cairoImage, CAIRO_LINE_JOIN_ROUND );
cairo_set_line_cap( cairoImage, CAIRO_LINE_CAP_ROUND );
lineWidth = 0;
isDeleteSavedPixels = true;
isInitialized = true;
}
void CAIRO_GAL::deinitSurface()
{
if( !isInitialized )
return;
// Destroy Cairo objects
cairo_destroy( cairoImage );
cairo_surface_destroy( cairoSurface );
isInitialized = false;
}
unsigned int CAIRO_GAL::getGroupNumber()
{
wxASSERT_MSG( groups.size() < std::numeric_limits<unsigned int>::max(),
wxT( "There are no free slots to store a group" ) );
while( groups.find( groupCounter ) != groups.end() )
{
groupCounter++;
}
return groupCounter++;
}
void CAIRO_GAL::BeginDrawing() throw( int )
{
initSurface();
cairo_push_group( cairoImage );
}
void CAIRO_GAL::EndDrawing()
{
// Force remaining objects to be drawn
Flush();
cairo_pop_group_to_source( cairoImage );
cairo_paint_with_alpha( cairoImage, fillColor.a );
// This code was taken from the wxCairo example - it's not the most efficient one
// Here is a good place for optimizations
// Now translate the raw image data from the format stored
// by cairo into a format understood by wxImage.
unsigned char* wxOutputPtr = wxOutput;
for( size_t count = 0; count < bufferSize; count++ )
{
unsigned int value = bitmapBuffer[count];
*wxOutputPtr++ = (value >> 16) & 0xff; // Red pixel
*wxOutputPtr++ = (value >> 8) & 0xff; // Green pixel
*wxOutputPtr++ = value & 0xff; // Blue pixel
}
wxImage img( (int) screenSize.x, (int) screenSize.y, (unsigned char*) wxOutput, true );
wxBitmap bmp( img );
wxClientDC client_dc( this );
wxBufferedDC dc;
dc.Init( &client_dc, bmp );
deinitSurface();
}
void CAIRO_GAL::SaveScreen()
{
// Copy the current bitmap to the backup buffer
int offset = 0;
for( int j = 0; j < screenSize.y; j++ )
{
for( int i = 0; i < stride; i++ )
{
bitmapBufferBackup[offset + i] = bitmapBuffer[offset + i];
offset += stride;
}
}
}
void CAIRO_GAL::RestoreScreen()
{
int offset = 0;
for( int j = 0; j < screenSize.y; j++ )
{
for( int i = 0; i < stride; i++ )
{
bitmapBuffer[offset + i] = bitmapBufferBackup[offset + i];
offset += stride;
}
}
}
void CAIRO_GAL::DrawLine( const VECTOR2D& aStartPoint, const VECTOR2D& aEndPoint )
{
cairo_move_to( cairoImage, aStartPoint.x, aStartPoint.y );
cairo_line_to( cairoImage, aEndPoint.x, aEndPoint.y );
isElementAdded = true;
}
void CAIRO_GAL::DrawSegment( const VECTOR2D& aStartPoint, const VECTOR2D& aEndPoint, double aWidth )
{
if( isFillEnabled )
{
SetLineWidth( aWidth );
cairo_move_to( cairoImage, (double) aStartPoint.x, (double) aStartPoint.y );
cairo_line_to( cairoImage, (double) aEndPoint.x, (double) aEndPoint.y );
}
else
{
VECTOR2D startEndVector = aEndPoint - aStartPoint;
double lineAngle = atan2( startEndVector.y, startEndVector.x );
double lineLength = startEndVector.EuclideanNorm();
cairo_save( cairoImage );
cairo_translate( cairoImage, aStartPoint.x, aStartPoint.y );
cairo_rotate( cairoImage, lineAngle );
cairo_arc( cairoImage, 0.0, 0.0, aWidth / 2.0, M_PI / 2.0, 3.0 * M_PI / 2.0 );
cairo_arc( cairoImage, lineLength, 0.0, aWidth / 2.0, -M_PI / 2.0, M_PI / 2.0 );
cairo_move_to( cairoImage, 0.0, aWidth / 2.0 );
cairo_line_to( cairoImage, lineLength, aWidth / 2.0 );
cairo_move_to( cairoImage, 0.0, -aWidth / 2.0 );
cairo_line_to( cairoImage, lineLength, -aWidth / 2.0 );
cairo_restore( cairoImage );
}
isElementAdded = true;
}
void CAIRO_GAL::DrawCircle( const VECTOR2D& aCenterPoint, double aRadius )
{
// A circle is drawn using an arc
cairo_new_sub_path( cairoImage );
cairo_arc( cairoImage, aCenterPoint.x, aCenterPoint.y, aRadius, 0.0, 2 * M_PI );
isElementAdded = true;
}
void CAIRO_GAL::DrawArc( const VECTOR2D& aCenterPoint, double aRadius, double aStartAngle,
double aEndAngle )
{
SWAP( aStartAngle, >, aEndAngle );
cairo_new_sub_path( cairoImage );
cairo_arc( cairoImage, aCenterPoint.x, aCenterPoint.y, aRadius, aStartAngle, aEndAngle );
isElementAdded = true;
}
void CAIRO_GAL::DrawPolyline( std::deque<VECTOR2D>& aPointList )
{
bool isFirstPoint = true;
// Iterate over the point list and draw the segments
for( std::deque<VECTOR2D>::const_iterator it = aPointList.begin(); it != aPointList.end(); ++it )
{
if( isFirstPoint )
{
cairo_move_to( cairoImage, it->x, it->y );
isFirstPoint = false;
}
else
{
cairo_line_to( cairoImage, it->x, it->y );
}
}
isElementAdded = true;
}
void CAIRO_GAL::DrawPolygon( const std::deque<VECTOR2D>& aPointList )
{
bool isFirstPoint = true;
// Iterate over the point list and draw the polygon
for( std::deque<VECTOR2D>::const_iterator it = aPointList.begin(); it != aPointList.end(); ++it )
{
if( isFirstPoint )
{
cairo_move_to( cairoImage, it->x, it->y );
isFirstPoint = false;
}
else
{
cairo_line_to( cairoImage, it->x, it->y );
}
}
isElementAdded = true;
}
void CAIRO_GAL::DrawRectangle( const VECTOR2D& aStartPoint, const VECTOR2D& aEndPoint )
{
// Calculate the diagonal points
VECTOR2D diagonalPointA( aEndPoint.x, aStartPoint.y );
VECTOR2D diagonalPointB( aStartPoint.x, aEndPoint.y );
// The path is composed from 4 segments
cairo_move_to( cairoImage, aStartPoint.x, aStartPoint.y );
cairo_line_to( cairoImage, diagonalPointA.x, diagonalPointA.y );
cairo_line_to( cairoImage, aEndPoint.x, aEndPoint.y );
cairo_line_to( cairoImage, diagonalPointB.x, diagonalPointB.y );
cairo_close_path( cairoImage );
isElementAdded = true;
}
void CAIRO_GAL::DrawCurve( const VECTOR2D& aStartPoint, const VECTOR2D& aControlPointA,
const VECTOR2D& aControlPointB, const VECTOR2D& aEndPoint )
{
cairo_move_to( cairoImage, aStartPoint.x, aStartPoint.y );
cairo_curve_to( cairoImage, aControlPointA.x, aControlPointA.y, aControlPointB.x,
aControlPointB.y, aEndPoint.x, aEndPoint.y );
cairo_line_to( cairoImage, aEndPoint.x, aEndPoint.y );
isElementAdded = true;
}
void CAIRO_GAL::SetBackgroundColor( const COLOR4D& aColor )
{
backgroundColor = aColor;
}
void CAIRO_GAL::SetIsFill( bool aIsFillEnabled )
{
storePath();
isFillEnabled = aIsFillEnabled;
if( isGrouping )
{
GroupElement groupElement;
groupElement.command = CMD_SET_FILL;
groupElement.boolArgument = aIsFillEnabled;
currentGroup->push_back( groupElement );
}
}
void CAIRO_GAL::SetIsStroke( bool aIsStrokeEnabled )
{
storePath();
isStrokeEnabled = aIsStrokeEnabled;
if( isGrouping )
{
GroupElement groupElement;
groupElement.command = CMD_SET_STROKE;
groupElement.boolArgument = aIsStrokeEnabled;
currentGroup->push_back( groupElement );
}
}
void CAIRO_GAL::SetStrokeColor( const COLOR4D& aColor )
{
storePath();
strokeColor = aColor;
if( isGrouping )
{
GroupElement groupElement;
groupElement.command = CMD_SET_STROKECOLOR;
groupElement.arguments[0] = strokeColor.r;
groupElement.arguments[1] = strokeColor.g;
groupElement.arguments[2] = strokeColor.b;
groupElement.arguments[3] = strokeColor.a;
currentGroup->push_back( groupElement );
}
}
void CAIRO_GAL::SetFillColor( const COLOR4D& aColor )
{
storePath();
fillColor = aColor;
if( isGrouping )
{
GroupElement groupElement;
groupElement.command = CMD_SET_FILLCOLOR;
groupElement.arguments[0] = fillColor.r;
groupElement.arguments[1] = fillColor.g;
groupElement.arguments[2] = fillColor.b;
groupElement.arguments[3] = fillColor.a;
currentGroup->push_back( groupElement );
}
}
void CAIRO_GAL::SetLineWidth( double aLineWidth )
{
storePath();
lineWidth = aLineWidth;
cairo_set_line_width( cairoImage, aLineWidth );
if( isGrouping )
{
GroupElement groupElement;
groupElement.command = CMD_SET_LINE_WIDTH;
groupElement.arguments[0] = aLineWidth;
currentGroup->push_back( groupElement );
}
}
void CAIRO_GAL::ClearScreen()
{
// Clear screen
cairo_set_source_rgba( cairoImage,
backgroundColor.r, backgroundColor.g, backgroundColor.b, 1.0 );
cairo_rectangle( cairoImage, 0.0, 0.0, screenSize.x, screenSize.y );
cairo_fill( cairoImage );
}
void CAIRO_GAL::SetLayerDepth( double aLayerDepth )
{
super::SetLayerDepth( aLayerDepth );
if( isInitialized )
{
storePath();
cairo_pop_group_to_source( cairoImage );
cairo_paint_with_alpha( cairoImage, fillColor.a );
cairo_push_group( cairoImage );
}
}
void CAIRO_GAL::Transform( MATRIX3x3D aTransformation )
{
cairo_matrix_t cairoTransformation;
cairo_matrix_init( &cairoTransformation,
aTransformation.m_data[0][0],
aTransformation.m_data[1][0],
aTransformation.m_data[0][1],
aTransformation.m_data[1][1],
aTransformation.m_data[0][2],
aTransformation.m_data[1][2] );
cairo_transform( cairoImage, &cairoTransformation );
}
void CAIRO_GAL::Rotate( double aAngle )
{
storePath();
cairo_rotate( cairoImage, aAngle );
if( isGrouping )
{
GroupElement groupElement;
groupElement.command = CMD_ROTATE;
groupElement.arguments[0] = aAngle;
currentGroup->push_back( groupElement );
}
}
void CAIRO_GAL::Translate( const VECTOR2D& aTranslation )
{
storePath();
cairo_translate( cairoImage, aTranslation.x, aTranslation.y );
if( isGrouping )
{
GroupElement groupElement;
groupElement.command = CMD_TRANSLATE;
groupElement.arguments[0] = aTranslation.x;
groupElement.arguments[1] = aTranslation.y;
currentGroup->push_back( groupElement );
}
}
void CAIRO_GAL::Scale( const VECTOR2D& aScale )
{
storePath();
cairo_scale( cairoImage, aScale.x, aScale.y );
if( isGrouping )
{
GroupElement groupElement;
groupElement.command = CMD_SCALE;
groupElement.arguments[0] = aScale.x;
groupElement.arguments[1] = aScale.y;
currentGroup->push_back( groupElement );
}
}
void CAIRO_GAL::Save()
{
storePath();
cairo_save( cairoImage );
if( isGrouping )
{
GroupElement groupElement;
groupElement.command = CMD_SAVE;
currentGroup->push_back( groupElement );
}
}
void CAIRO_GAL::Restore()
{
storePath();
cairo_restore( cairoImage );
if( isGrouping )
{
GroupElement groupElement;
groupElement.command = CMD_RESTORE;
currentGroup->push_back( groupElement );
}
}
int CAIRO_GAL::BeginGroup()
{
initSurface();
// If the grouping is started: the actual path is stored in the group, when
// a attribute was changed or when grouping stops with the end group method.
storePath();
Group group;
int groupNumber = getGroupNumber();
groups.insert( std::make_pair( groupNumber, group ) );
currentGroup = &groups[groupNumber];
isGrouping = true;
return groupNumber;
}
void CAIRO_GAL::EndGroup()
{
storePath();
isGrouping = false;
deinitSurface();
}
void CAIRO_GAL::ClearCache()
{
for( int i = groups.size() - 1; i >= 0; --i )
{
DeleteGroup( i );
}
}
void CAIRO_GAL::DeleteGroup( int aGroupNumber )
{
storePath();
// Delete the Cairo paths
std::deque<GroupElement>::iterator it, end;
for( it = groups[aGroupNumber].begin(), end = groups[aGroupNumber].end(); it != end; ++it )
{
if( it->command == CMD_FILL_PATH || it->command == CMD_STROKE_PATH )
{
cairo_path_destroy( it->cairoPath );
}
}
// Delete the group
groups.erase( aGroupNumber );
}
void CAIRO_GAL::DrawGroup( int aGroupNumber )
{
// This method implements a small Virtual Machine - all stored commands
// are executed; nested calling is also possible
storePath();
for( Group::iterator it = groups[aGroupNumber].begin();
it != groups[aGroupNumber].end(); ++it )
{
switch( it->command )
{
case CMD_SET_FILL:
isFillEnabled = it->boolArgument;
break;
case CMD_SET_STROKE:
isStrokeEnabled = it->boolArgument;
break;
case CMD_SET_FILLCOLOR:
fillColor = COLOR4D( it->arguments[0], it->arguments[1], it->arguments[2],
it->arguments[3] );
break;
case CMD_SET_STROKECOLOR:
strokeColor = COLOR4D( it->arguments[0], it->arguments[1], it->arguments[2],
it->arguments[3] );
break;
case CMD_SET_LINE_WIDTH:
cairo_set_line_width( cairoImage, it->arguments[0] );
break;
case CMD_STROKE_PATH:
cairo_set_source_rgb( cairoImage, strokeColor.r, strokeColor.g, strokeColor.b );
cairo_append_path( cairoImage, it->cairoPath );
cairo_stroke( cairoImage );
break;
case CMD_FILL_PATH:
cairo_set_source_rgb( cairoImage, fillColor.r, fillColor.g, fillColor.b );
cairo_append_path( cairoImage, it->cairoPath );
cairo_fill( cairoImage );
break;
case CMD_TRANSFORM:
cairo_matrix_t matrix;
cairo_matrix_init( &matrix, it->arguments[0], it->arguments[1], it->arguments[2],
it->arguments[3], it->arguments[4], it->arguments[5] );
cairo_transform( cairoImage, &matrix );
break;
case CMD_ROTATE:
cairo_rotate( cairoImage, it->arguments[0] );
break;
case CMD_TRANSLATE:
cairo_translate( cairoImage, it->arguments[0], it->arguments[1] );
break;
case CMD_SCALE:
cairo_scale( cairoImage, it->arguments[0], it->arguments[1] );
break;
case CMD_SAVE:
cairo_save( cairoImage );
break;
case CMD_RESTORE:
cairo_restore( cairoImage );
break;
case CMD_CALL_GROUP:
DrawGroup( it->intArgument );
break;
}
}
}
void CAIRO_GAL::ChangeGroupColor( int aGroupNumber, const COLOR4D& aNewColor )
{
storePath();
for( Group::iterator it = groups[aGroupNumber].begin();
it != groups[aGroupNumber].end(); ++it )
{
if( it->command == CMD_SET_FILLCOLOR || it->command == CMD_SET_STROKECOLOR )
{
it->arguments[0] = aNewColor.r;
it->arguments[1] = aNewColor.g;
it->arguments[2] = aNewColor.b;
it->arguments[3] = aNewColor.a;
}
}
}
void CAIRO_GAL::ChangeGroupDepth( int aGroupNumber, int aDepth )
{
// Cairo does not have any possibilities to change the depth coordinate of stored items,
// it depends only on the order of drawing
}
void CAIRO_GAL::Flush()
{
storePath();
}
void CAIRO_GAL::ComputeWorldScreenMatrix()
{
ComputeWorldScale();
worldScreenMatrix.SetIdentity();
MATRIX3x3D translation;
translation.SetIdentity();
translation.SetTranslation( 0.5 * screenSize );
MATRIX3x3D scale;
scale.SetIdentity();
scale.SetScale( VECTOR2D( worldScale, worldScale ) );
MATRIX3x3D lookat;
lookat.SetIdentity();
lookat.SetTranslation( -lookAtPoint );
worldScreenMatrix = translation * scale * lookat * worldScreenMatrix;
}
void CAIRO_GAL::storePath()
{
if( isElementAdded )
{
isElementAdded = false;
if( !isGrouping )
{
if( isFillEnabled )
{
cairo_set_source_rgb( cairoImage, fillColor.r, fillColor.g, fillColor.b );
cairo_fill_preserve( cairoImage );
}
if( isStrokeEnabled )
{
cairo_set_source_rgb( cairoImage, strokeColor.r, strokeColor.g, strokeColor.b );
cairo_stroke_preserve( cairoImage );
}
}
else
{
// Copy the actual path, append it to the global path list
// then check, if the path needs to be stroked/filled and
// add this command to the group list;
if( isStrokeEnabled )
{
GroupElement groupElement;
groupElement.cairoPath = cairo_copy_path( cairoImage );
groupElement.command = CMD_STROKE_PATH;
currentGroup->push_back( groupElement );
}
if( isFillEnabled )
{
GroupElement groupElement;
groupElement.cairoPath = cairo_copy_path( cairoImage );
groupElement.command = CMD_FILL_PATH;
currentGroup->push_back( groupElement );
}
}
cairo_new_path( cairoImage );
}
}
// ---------------
// Cursor handling
// ---------------
void CAIRO_GAL::initCursor( int aCursorSize )
{
cursorPixels = new wxBitmap( aCursorSize, aCursorSize );
cursorPixelsSaved = new wxBitmap( aCursorSize, aCursorSize );
cursorSize = aCursorSize;
wxMemoryDC cursorShape( *cursorPixels );
cursorShape.SetBackground( *wxTRANSPARENT_BRUSH );
wxColour color( cursorColor.r * cursorColor.a * 255, cursorColor.g * cursorColor.a * 255,
cursorColor.b * cursorColor.a * 255, 255 );
wxPen pen = wxPen( color );
cursorShape.SetPen( pen );
cursorShape.Clear();
cursorShape.DrawLine( 0, aCursorSize / 2, aCursorSize, aCursorSize / 2 );
cursorShape.DrawLine( aCursorSize / 2, 0, aCursorSize / 2, aCursorSize );
}
VECTOR2D CAIRO_GAL::ComputeCursorToWorld( const VECTOR2D& aCursorPosition )
{
MATRIX3x3D inverseMatrix = worldScreenMatrix.Inverse();
VECTOR2D cursorPositionWorld = inverseMatrix * aCursorPosition;
return cursorPositionWorld;
}
void CAIRO_GAL::DrawCursor( VECTOR2D aCursorPosition )
{
if( !IsShownOnScreen() )
return;
wxClientDC clientDC( this );
wxMemoryDC cursorSave( *cursorPixelsSaved );
wxMemoryDC cursorShape( *cursorPixels );
// Snap to grid
VECTOR2D cursorPositionWorld = ComputeCursorToWorld( aCursorPosition );
cursorPositionWorld.x = round( cursorPositionWorld.x / gridSize.x ) * gridSize.x;
cursorPositionWorld.y = round( cursorPositionWorld.y / gridSize.y ) * gridSize.y;
aCursorPosition = worldScreenMatrix * cursorPositionWorld;
aCursorPosition = aCursorPosition - VECTOR2D( cursorSize / 2, cursorSize / 2 );
if( !isDeleteSavedPixels )
{
clientDC.Blit( savedCursorPosition.x, savedCursorPosition.y, cursorSize, cursorSize,
&cursorSave, 0, 0 );
}
else
{
isDeleteSavedPixels = false;
}
cursorSave.Blit( 0, 0, cursorSize, cursorSize, &clientDC, aCursorPosition.x,
aCursorPosition.y );
clientDC.Blit( aCursorPosition.x, aCursorPosition.y, cursorSize, cursorSize, &cursorShape, 0,
0, wxOR );
savedCursorPosition.x = (wxCoord) aCursorPosition.x;
savedCursorPosition.y = (wxCoord) aCursorPosition.y;
}
void CAIRO_GAL::DrawGridLine( const VECTOR2D& aStartPoint, const VECTOR2D& aEndPoint )
{
cairo_move_to( cairoImage, aStartPoint.x, aStartPoint.y );
cairo_line_to( cairoImage, aEndPoint.x, aEndPoint.y );
cairo_set_source_rgba( cairoImage, gridColor.r, gridColor.g, gridColor.b, gridColor.a );
cairo_stroke( cairoImage );
}
void CAIRO_GAL::allocateBitmaps()
{
// Create buffer, use the system independent Cairo image backend
stride = cairo_format_stride_for_width( CAIRO_FORMAT_RGB24, screenSize.x );
bufferSize = stride * screenSize.y;
bitmapBuffer = new unsigned int[bufferSize];
bitmapBufferBackup = new unsigned int[bufferSize];
wxOutput = new unsigned char[bufferSize * 3];
}
void CAIRO_GAL::deleteBitmaps()
{
delete[] bitmapBuffer;
delete[] bitmapBufferBackup;
delete[] wxOutput;
}
bool CAIRO_GAL::Show( bool aShow )
{
bool s = wxWindow::Show( aShow );
if( aShow )
wxWindow::Raise();
return s;
}