kicad/pcbnew/pad_custom_shape_functions.cpp

529 lines
15 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2018 Jean-Pierre Charras, jp.charras at wanadoo.fr
* Copyright (C) 1992-2019 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
/**
* @file class_pad_custom_shape_functions.cpp
* D_PAD functions specific to custom shaped pads.
*/
#include <fctsys.h>
#include <trigo.h>
#include <pcbnew.h>
#include <bezier_curves.h>
#include <class_board.h>
#include <class_board_item.h>
#include <class_drawsegment.h>
#include <class_edge_mod.h>
#include <class_pad.h>
#include <convert_basic_shapes_to_polygon.h>
#include <geometry/convex_hull.h>
#include <geometry/geometry_utils.h>
#include <geometry/shape_rect.h>
void PAD_CS_PRIMITIVE::ExportTo( DRAWSEGMENT* aTarget )
{
aTarget->SetShape( m_Shape );
aTarget->SetWidth( m_Thickness );
aTarget->SetStart( m_Start );
aTarget->SetEnd( m_End );
aTarget->SetBezControl1( m_Ctrl1 );
aTarget->SetBezControl2( m_Ctrl2 );
// in a DRAWSEGMENT the radius of a circle is calculated from the
// center and one point on the circle outline (stored in m_End)
if( m_Shape == S_CIRCLE )
{
wxPoint end = m_Start;
end.x += m_Radius;
aTarget->SetEnd( end );
}
aTarget->SetAngle( m_ArcAngle );
aTarget->SetPolyPoints( m_Poly );
}
void PAD_CS_PRIMITIVE::ExportTo( EDGE_MODULE* aTarget )
{
ExportTo( static_cast<DRAWSEGMENT*>( aTarget ) );
// Initialize coordinates specific to the EDGE_MODULE (m_Start0 and m_End0)
aTarget->SetLocalCoord();
}
void PAD_CS_PRIMITIVE::Move( wxPoint aMoveVector )
{
m_Start += aMoveVector;
m_End += aMoveVector;
m_Ctrl1 += aMoveVector;
m_Ctrl2 += aMoveVector;
for( auto& corner : m_Poly )
corner += aMoveVector;
}
void PAD_CS_PRIMITIVE::Rotate( const wxPoint& aRotCentre, double aAngle )
{
switch( m_Shape )
{
case S_ARC:
case S_SEGMENT:
case S_CIRCLE:
// these can all be done by just rotating the start and end points
RotatePoint( &m_Start, aRotCentre, aAngle );
RotatePoint( &m_End, aRotCentre, aAngle );
break;
case S_RECT:
if( KiROUND( aAngle ) % 900 == 0 )
{
RotatePoint( &m_Start, aRotCentre, aAngle );
RotatePoint( &m_End, aRotCentre, aAngle );
break;
}
// Convert non-cartesian-rotated rect to a diamond
m_Shape = S_POLYGON;
m_Poly.clear();
m_Poly.emplace_back( m_Start );
m_Poly.emplace_back( m_End.x, m_Start.y );
m_Poly.emplace_back( m_End );
m_Poly.emplace_back( m_Start.x, m_End.y );
KI_FALLTHROUGH;
case S_POLYGON:
for( auto& pt : m_Poly )
RotatePoint( &pt, aRotCentre, aAngle );
break;
case S_CURVE:
RotatePoint( &m_Start, aRotCentre, aAngle );
RotatePoint( &m_End, aRotCentre, aAngle );
RotatePoint( &m_Ctrl1, aRotCentre, aAngle );
RotatePoint( &m_Ctrl2, aRotCentre, aAngle );
break;
default:
// un-handled edge transform
wxASSERT_MSG( false, wxT( "PAD_CS_PRIMITIVE::Rotate not implemented for "
+ BOARD_ITEM::ShowShape( m_Shape ) ) );
break;
}
}
/*
* Has meaning only for free shape pads.
* add a free shape to the shape list.
* the shape is a polygon (can be with thick outline), segment, circle or arc
*/
void D_PAD::AddPrimitivePoly( const SHAPE_POLY_SET& aPoly, int aThickness, bool aMergePrimitives )
{
std::vector<wxPoint> points;
// If aPoly has holes, convert it to a polygon with no holes.
SHAPE_POLY_SET poly_no_hole;
poly_no_hole.Append( aPoly );
poly_no_hole.Fracture( SHAPE_POLY_SET::PM_STRICTLY_SIMPLE );
for( auto iter = poly_no_hole.CIterate(); iter; iter++ )
points.emplace_back( iter->x, iter->y );
AddPrimitivePoly( points, aThickness, aMergePrimitives );
}
void D_PAD::AddPrimitivePoly( const std::vector<wxPoint>& aPoly, int aThickness,
bool aMergePrimitives )
{
PAD_CS_PRIMITIVE shape( S_POLYGON );
shape.m_Poly = aPoly;
shape.m_Thickness = aThickness;
m_basicShapes.push_back( shape );
if( aMergePrimitives )
MergePrimitivesAsPolygon();
}
void D_PAD::AddPrimitiveSegment( const wxPoint& aStart, const wxPoint& aEnd, int aThickness,
bool aMergePrimitives )
{
PAD_CS_PRIMITIVE shape( S_SEGMENT );
shape.m_Start = aStart;
shape.m_End = aEnd;
shape.m_Thickness = aThickness;
m_basicShapes.push_back( shape );
if( aMergePrimitives )
MergePrimitivesAsPolygon();
}
void D_PAD::AddPrimitiveArc( const wxPoint& aCenter, const wxPoint& aStart, int aArcAngle,
int aThickness, bool aMergePrimitives )
{
PAD_CS_PRIMITIVE shape( S_ARC );
shape.m_Start = aCenter;
shape.m_End = aStart;
shape.m_ArcAngle = aArcAngle;
shape.m_Thickness = aThickness;
m_basicShapes.push_back( shape );
if( aMergePrimitives )
MergePrimitivesAsPolygon();
}
void D_PAD::AddPrimitiveCurve( const wxPoint& aStart, const wxPoint& aEnd, const wxPoint& aCtrl1,
const wxPoint& aCtrl2, int aThickness, bool aMergePrimitives )
{
PAD_CS_PRIMITIVE shape( S_CURVE );
shape.m_Start = aStart;
shape.m_End = aEnd;
shape.m_Ctrl1 = aCtrl1;
shape.m_Ctrl2 = aCtrl2;
shape.m_Thickness = aThickness;
m_basicShapes.push_back( shape );
if( aMergePrimitives )
MergePrimitivesAsPolygon();
}
void D_PAD::AddPrimitiveCircle( const wxPoint& aCenter, int aRadius, int aThickness,
bool aMergePrimitives )
{
PAD_CS_PRIMITIVE shape( S_CIRCLE );
shape.m_Start = aCenter;
shape.m_Radius = aRadius;
shape.m_Thickness = aThickness;
m_basicShapes.push_back( shape );
if( aMergePrimitives )
MergePrimitivesAsPolygon();
}
void D_PAD::AddPrimitiveRect( const wxPoint& aStart, const wxPoint& aEnd, int aThickness,
bool aMergePrimitives )
{
PAD_CS_PRIMITIVE shape( S_RECT );
shape.m_Start = aStart;
shape.m_End = aEnd;
shape.m_Thickness = aThickness;
m_basicShapes.push_back( shape );
if( aMergePrimitives )
MergePrimitivesAsPolygon();
}
bool D_PAD::SetPrimitives( const std::vector<PAD_CS_PRIMITIVE>& aPrimitivesList )
{
// clear old list
m_basicShapes.clear();
// Import to the basic shape list
if( aPrimitivesList.size() )
m_basicShapes = aPrimitivesList;
// Only one polygon is expected (pad area = only one copper area)
return MergePrimitivesAsPolygon();
}
bool D_PAD::AddPrimitives( const std::vector<PAD_CS_PRIMITIVE>& aPrimitivesList )
{
for( const auto& prim : aPrimitivesList )
m_basicShapes.push_back( prim );
return MergePrimitivesAsPolygon();
}
// clear the basic shapes list and associated data
void D_PAD::DeletePrimitivesList()
{
m_basicShapes.clear();
m_customShapeAsPolygon.RemoveAllContours();
}
bool D_PAD::buildCustomPadPolygon( SHAPE_POLY_SET* aMergedPolygon, int aError )
{
SHAPE_POLY_SET aux_polyset;
for( PAD_CS_PRIMITIVE& bshape : m_basicShapes )
{
switch( bshape.m_Shape )
{
case S_CURVE:
{
std::vector<wxPoint> ctrlPoints = { bshape.m_Start, bshape.m_Ctrl1, bshape.m_Ctrl2, bshape.m_End };
BEZIER_POLY converter( ctrlPoints );
std::vector< wxPoint> poly;
converter.GetPoly( poly, bshape.m_Thickness );
for( unsigned ii = 1; ii < poly.size(); ii++ )
{
TransformSegmentToPolygon(
aux_polyset, poly[ ii - 1 ], poly[ ii ], aError, bshape.m_Thickness );
}
break;
}
case S_SEGMENT: // usual segment : line with rounded ends
{
TransformSegmentToPolygon( aux_polyset, bshape.m_Start, bshape.m_End, aError,
bshape.m_Thickness );
break;
}
case S_ARC: // Arc with rounded ends
{
TransformArcToPolygon( aux_polyset, bshape.m_Start, bshape.m_End, bshape.m_ArcAngle,
aError, bshape.m_Thickness );
break;
}
case S_CIRCLE: // ring or circle
{
if( bshape.m_Thickness ) // ring
TransformRingToPolygon( aux_polyset, bshape.m_Start, bshape.m_Radius, aError,
bshape.m_Thickness );
else // Filled circle
TransformCircleToPolygon( aux_polyset, bshape.m_Start, bshape.m_Radius, aError );
break;
}
case S_RECT:
bshape.m_Poly.clear();
bshape.m_Poly.emplace_back( bshape.m_Start );
bshape.m_Poly.emplace_back( bshape.m_End.x, bshape.m_Start.y );
bshape.m_Poly.emplace_back( bshape.m_End );
bshape.m_Poly.emplace_back( bshape.m_Start.x, bshape.m_End.y );
KI_FALLTHROUGH;
case S_POLYGON: // polygon
{
if( bshape.m_Poly.size() < 2 )
break; // Malformed polygon.
// Insert the polygon:
const std::vector< wxPoint>& poly = bshape.m_Poly;
aux_polyset.NewOutline();
if( bshape.m_Thickness )
{
SHAPE_POLY_SET polyset;
polyset.NewOutline();
for( const wxPoint& pt : poly )
polyset.Append( pt.x, pt.y );
int numSegs = std::max( GetArcToSegmentCount( bshape.m_Thickness / 2, aError, 360.0 ), 6 );
polyset.Inflate( bshape.m_Thickness / 2, numSegs );
aux_polyset.Append( polyset );
}
else
{
for( const wxPoint& pt : poly )
aux_polyset.Append( pt.x, pt.y );
}
if( bshape.m_Shape == S_RECT )
bshape.m_Poly.clear();
}
break;
default:
// un-handled primitive
wxASSERT_MSG( false, wxT( "D_PAD::buildCustomPadPolygon not implemented for "
+ BOARD_ITEM::ShowShape( bshape.m_Shape ) ) );
break;
}
}
aux_polyset.Simplify( SHAPE_POLY_SET::PM_FAST );
// Merge all polygons with the initial pad anchor shape
if( aux_polyset.OutlineCount() )
{
aMergedPolygon->BooleanAdd( aux_polyset, SHAPE_POLY_SET::PM_STRICTLY_SIMPLE );
aMergedPolygon->Fracture( SHAPE_POLY_SET::PM_STRICTLY_SIMPLE );
}
return aMergedPolygon->OutlineCount() <= 1;
}
/* Merge all basic shapes, converted to a polygon in one polygon,
* return true if OK, false in there is more than one polygon
* in aMergedPolygon
*/
bool D_PAD::MergePrimitivesAsPolygon( SHAPE_POLY_SET* aMergedPolygon )
{
auto board = GetBoard();
int maxError = ARC_HIGH_DEF;
if( board )
maxError = board->GetDesignSettings().m_MaxError;
// if aMergedPolygon == NULL, use m_customShapeAsPolygon as target
if( !aMergedPolygon )
aMergedPolygon = &m_customShapeAsPolygon;
aMergedPolygon->RemoveAllContours();
// Add the anchor pad shape in aMergedPolygon, others in aux_polyset:
// The anchor pad is always at 0,0
switch( GetAnchorPadShape() )
{
default:
case PAD_SHAPE_CIRCLE:
TransformCircleToPolygon( *aMergedPolygon, wxPoint( 0, 0 ), GetSize().x / 2, maxError );
break;
case PAD_SHAPE_RECT:
{
SHAPE_RECT rect( -GetSize().x / 2, -GetSize().y / 2, GetSize().x, GetSize().y );
aMergedPolygon->AddOutline( rect.Outline() );
break;
}
}
if( !buildCustomPadPolygon( aMergedPolygon, maxError ) )
return false;
m_boundingRadius = -1; // The current bounding radius is no longer valid.
return aMergedPolygon->OutlineCount() <= 1;
}
void D_PAD::CustomShapeAsPolygonToBoardPosition( SHAPE_POLY_SET * aMergedPolygon,
wxPoint aPosition, double aRotation ) const
{
if( aMergedPolygon->OutlineCount() == 0 )
return;
// Move, rotate, ... coordinates in aMergedPolygon according to the
// pad position and orientation
aMergedPolygon->Rotate( -DECIDEG2RAD( aRotation ) );
aMergedPolygon->Move( VECTOR2I( aPosition ) );
}
bool D_PAD::GetBestAnchorPosition( VECTOR2I& aPos )
{
SHAPE_POLY_SET poly;
if( !buildCustomPadPolygon( &poly, ARC_LOW_DEF ) )
return false;
const int minSteps = 10;
const int maxSteps = 50;
int stepsX, stepsY;
auto bbox = poly.BBox();
if( bbox.GetWidth() < bbox.GetHeight() )
{
stepsX = minSteps;
stepsY = minSteps * (double) bbox.GetHeight() / (double )(bbox.GetWidth() + 1);
}
else
{
stepsY = minSteps;
stepsX = minSteps * (double) bbox.GetWidth() / (double )(bbox.GetHeight() + 1);
}
stepsX = std::max(minSteps, std::min( maxSteps, stepsX ) );
stepsY = std::max(minSteps, std::min( maxSteps, stepsY ) );
VECTOR2I center = bbox.Centre();
int64_t minDist = std::numeric_limits<int64_t>::max();
int64_t minDistEdge;
if( GetAnchorPadShape() == PAD_SHAPE_CIRCLE )
{
minDistEdge = GetSize().x;
}
else
{
minDistEdge = std::max( GetSize().x, GetSize().y );
}
OPT<VECTOR2I> bestAnchor( []()->OPT<VECTOR2I> { return NULLOPT; }() );
for( int y = 0; y < stepsY ; y++ )
{
for( int x = 0; x < stepsX; x++ )
{
VECTOR2I p = bbox.GetPosition();
p.x += rescale( x, bbox.GetWidth(), (stepsX - 1) );
p.y += rescale( y, bbox.GetHeight(), (stepsY - 1) );
if( poly.Contains(p) )
{
int dist = (center - p).EuclideanNorm();
int distEdge = poly.COutline(0).Distance( p, true );
if( distEdge >= minDistEdge )
{
if( dist < minDist )
{
bestAnchor = p;
minDist = dist;
}
}
}
}
}
if( bestAnchor )
{
aPos = *bestAnchor;
return true;
}
return false;
}