790 lines
23 KiB
C++
790 lines
23 KiB
C++
/*
|
|
* delauney.h
|
|
*
|
|
* Created on: Jun 19, 2020
|
|
* Author: seth
|
|
*/
|
|
|
|
#ifndef PCBNEW_RATSNEST_DELAUNEY_H_
|
|
#define PCBNEW_RATSNEST_DELAUNEY_H_
|
|
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
#include <iostream>
|
|
#include <limits>
|
|
#include <numeric>
|
|
#include <stdexcept>
|
|
#include <tuple>
|
|
#include <vector>
|
|
|
|
constexpr std::size_t INVALID_INDEX =
|
|
(std::numeric_limits<std::size_t>::max)();
|
|
|
|
class Point
|
|
{
|
|
public:
|
|
Point(double x, double y) : m_x(x), m_y(y)
|
|
{}
|
|
Point() : m_x(0), m_y(0)
|
|
{}
|
|
|
|
double x() const
|
|
{ return m_x; }
|
|
|
|
double y() const
|
|
{ return m_y; }
|
|
|
|
double magnitude2() const
|
|
{ return m_x * m_x + m_y * m_y; }
|
|
|
|
static double determinant(const Point& p1, const Point& p2)
|
|
{
|
|
return p1.m_x * p2.m_y - p1.m_y * p2.m_x;
|
|
}
|
|
|
|
static Point vector(const Point& p1, const Point& p2)
|
|
{
|
|
return Point(p2.m_x - p1.m_x, p2.m_y - p1.m_y);
|
|
}
|
|
|
|
static double dist2(const Point& p1, const Point& p2)
|
|
{
|
|
Point vec = vector(p1, p2);
|
|
return vec.m_x * vec.m_x + vec.m_y * vec.m_y;
|
|
}
|
|
|
|
static bool equal(const Point& p1, const Point& p2, double span)
|
|
{
|
|
double dist = dist2(p1, p2) / span;
|
|
|
|
// ABELL - This number should be examined to figure how how
|
|
// it correlates with the breakdown of calculating determinants.
|
|
return dist < 1e-20;
|
|
}
|
|
|
|
private:
|
|
double m_x;
|
|
double m_y;
|
|
};
|
|
|
|
inline std::ostream& operator<<(std::ostream& out, const Point& p)
|
|
{
|
|
out << p.x() << "/" << p.y();
|
|
return out;
|
|
}
|
|
|
|
|
|
class Points
|
|
{
|
|
public:
|
|
using const_iterator = Point const *;
|
|
|
|
Points(const std::vector<double>& coords) : m_coords(coords)
|
|
{}
|
|
|
|
const Point& operator[](size_t offset)
|
|
{
|
|
return reinterpret_cast<const Point&>(
|
|
*(m_coords.data() + (offset * 2)));
|
|
};
|
|
|
|
Points::const_iterator begin() const
|
|
{ return reinterpret_cast<const Point *>(m_coords.data()); }
|
|
Points::const_iterator end() const
|
|
{ return reinterpret_cast<const Point *>(
|
|
m_coords.data() + m_coords.size()); }
|
|
size_t size() const
|
|
{ return m_coords.size() / 2; }
|
|
|
|
private:
|
|
const std::vector<double>& m_coords;
|
|
};
|
|
|
|
class Delaunator
|
|
{
|
|
|
|
public:
|
|
std::vector<double> const &coords;
|
|
Points m_points;
|
|
|
|
// 'triangles' stores the indices to the 'X's of the input
|
|
// 'coords'.
|
|
std::vector<std::size_t> triangles;
|
|
|
|
// 'halfedges' store indices into 'triangles'. If halfedges[X] = Y,
|
|
// It says that there's an edge from X to Y where a) X and Y are
|
|
// both indices into triangles and b) X and Y are indices into different
|
|
// triangles in the array. This allows you to get from a triangle to
|
|
// its adjacent triangle. If the a triangle edge has no adjacent triangle,
|
|
// its half edge will be INVALID_INDEX.
|
|
std::vector<std::size_t> halfedges;
|
|
|
|
std::vector<std::size_t> hull_prev;
|
|
std::vector<std::size_t> hull_next;
|
|
|
|
// This contains indexes into the triangles array.
|
|
std::vector<std::size_t> hull_tri;
|
|
std::size_t hull_start;
|
|
|
|
inline Delaunator( std::vector<double> const &in_coords );
|
|
inline double get_hull_area();
|
|
inline double get_triangle_area();
|
|
|
|
private:
|
|
std::vector<std::size_t> m_hash;
|
|
Point m_center;
|
|
std::size_t m_hash_size;
|
|
std::vector<std::size_t> m_edge_stack;
|
|
|
|
inline std::size_t legalize( std::size_t a );
|
|
inline std::size_t hash_key( double x, double y ) const;
|
|
inline std::size_t add_triangle( std::size_t i0, std::size_t i1, std::size_t i2, std::size_t a,
|
|
std::size_t b, std::size_t c );
|
|
inline void link( std::size_t a, std::size_t b );
|
|
};
|
|
|
|
//@see https://stackoverflow.com/questions/33333363/built-in-mod-vs-custom-mod-function-improve-the-performance-of-modulus-op/33333636#33333636
|
|
inline size_t fast_mod( const size_t i, const size_t c )
|
|
{
|
|
return i >= c ? i % c : i;
|
|
}
|
|
|
|
// Kahan and Babuska summation, Neumaier variant; accumulates less FP error
|
|
inline double sum( const std::vector<double> &x )
|
|
{
|
|
double sum = x[0];
|
|
double err = 0.0;
|
|
|
|
for( size_t i = 1; i < x.size(); i++ )
|
|
{
|
|
const double k = x[i];
|
|
const double m = sum + k;
|
|
err += std::fabs( sum ) >= std::fabs( k ) ? sum - m + k : k - m + sum;
|
|
sum = m;
|
|
}
|
|
return sum + err;
|
|
}
|
|
|
|
inline double dist( const double ax, const double ay, const double bx, const double by )
|
|
{
|
|
const double dx = ax - bx;
|
|
const double dy = ay - by;
|
|
return dx * dx + dy * dy;
|
|
}
|
|
|
|
inline double circumradius( const Point &p1, const Point &p2, const Point &p3 )
|
|
{
|
|
Point d = Point::vector( p1, p2 );
|
|
Point e = Point::vector( p1, p3 );
|
|
|
|
const double bl = d.magnitude2();
|
|
const double cl = e.magnitude2();
|
|
const double det = Point::determinant( d, e );
|
|
|
|
Point radius( ( e.y() * bl - d.y() * cl ) * 0.5 / det,
|
|
( d.x() * cl - e.x() * bl ) * 0.5 / det );
|
|
|
|
if( ( bl > 0.0 || bl < 0.0 ) && ( cl > 0.0 || cl < 0.0 ) && ( det > 0.0 || det < 0.0 ) )
|
|
return radius.magnitude2();
|
|
return ( std::numeric_limits<double>::max )();
|
|
}
|
|
|
|
inline double circumradius( const double ax, const double ay, const double bx, const double by,
|
|
const double cx, const double cy )
|
|
{
|
|
const double dx = bx - ax;
|
|
const double dy = by - ay;
|
|
const double ex = cx - ax;
|
|
const double ey = cy - ay;
|
|
|
|
const double bl = dx * dx + dy * dy;
|
|
const double cl = ex * ex + ey * ey;
|
|
const double d = dx * ey - dy * ex;
|
|
|
|
const double x = ( ey * bl - dy * cl ) * 0.5 / d;
|
|
const double y = ( dx * cl - ex * bl ) * 0.5 / d;
|
|
|
|
if( ( bl > 0.0 || bl < 0.0 ) && ( cl > 0.0 || cl < 0.0 ) && ( d > 0.0 || d < 0.0 ) )
|
|
{
|
|
return x * x + y * y;
|
|
}
|
|
else
|
|
{
|
|
return ( std::numeric_limits<double>::max )();
|
|
}
|
|
}
|
|
|
|
inline bool clockwise( const Point &p0, const Point &p1, const Point &p2 )
|
|
{
|
|
Point v0 = Point::vector( p0, p1 );
|
|
Point v1 = Point::vector( p0, p2 );
|
|
double det = Point::determinant( v0, v1 );
|
|
double dist = v0.magnitude2() + v1.magnitude2();
|
|
double dist2 = Point::dist2( v0, v1 );
|
|
if( det == 0 )
|
|
{
|
|
return false;
|
|
}
|
|
double reldet = std::abs( dist / det );
|
|
if( reldet > 1e14 )
|
|
return false;
|
|
return det < 0;
|
|
}
|
|
|
|
inline bool clockwise( double px, double py, double qx, double qy, double rx, double ry )
|
|
{
|
|
Point p0( px, py );
|
|
Point p1( qx, qy );
|
|
Point p2( rx, ry );
|
|
return clockwise( p0, p1, p2 );
|
|
}
|
|
|
|
inline bool counterclockwise( const Point &p0, const Point &p1, const Point &p2 )
|
|
{
|
|
Point v0 = Point::vector( p0, p1 );
|
|
Point v1 = Point::vector( p0, p2 );
|
|
double det = Point::determinant( v0, v1 );
|
|
double dist = v0.magnitude2() + v1.magnitude2();
|
|
double dist2 = Point::dist2( v0, v1 );
|
|
if( det == 0 )
|
|
return false;
|
|
double reldet = std::abs( dist / det );
|
|
if( reldet > 1e14 )
|
|
return false;
|
|
return det > 0;
|
|
}
|
|
|
|
inline bool counterclockwise( double px, double py, double qx, double qy, double rx, double ry )
|
|
{
|
|
Point p0( px, py );
|
|
Point p1( qx, qy );
|
|
Point p2( rx, ry );
|
|
return counterclockwise( p0, p1, p2 );
|
|
}
|
|
|
|
inline Point circumcenter( const double ax, const double ay, const double bx, const double by,
|
|
const double cx, const double cy )
|
|
{
|
|
const double dx = bx - ax;
|
|
const double dy = by - ay;
|
|
const double ex = cx - ax;
|
|
const double ey = cy - ay;
|
|
|
|
const double bl = dx * dx + dy * dy;
|
|
const double cl = ex * ex + ey * ey;
|
|
//ABELL - This is suspect for div-by-0.
|
|
const double d = dx * ey - dy * ex;
|
|
|
|
const double x = ax + ( ey * bl - dy * cl ) * 0.5 / d;
|
|
const double y = ay + ( dx * cl - ex * bl ) * 0.5 / d;
|
|
|
|
return Point( x, y );
|
|
}
|
|
|
|
inline bool in_circle( const double ax, const double ay, const double bx, const double by,
|
|
const double cx, const double cy, const double px, const double py )
|
|
{
|
|
const double dx = ax - px;
|
|
const double dy = ay - py;
|
|
const double ex = bx - px;
|
|
const double ey = by - py;
|
|
const double fx = cx - px;
|
|
const double fy = cy - py;
|
|
|
|
const double ap = dx * dx + dy * dy;
|
|
const double bp = ex * ex + ey * ey;
|
|
const double cp = fx * fx + fy * fy;
|
|
|
|
return ( dx * ( ey * cp - bp * fy ) - dy * ( ex * cp - bp * fx ) + ap * ( ex * fy - ey * fx ) )
|
|
< 0.0;
|
|
}
|
|
|
|
constexpr double EPSILON = std::numeric_limits<double>::epsilon();
|
|
|
|
inline bool check_pts_equal( double x1, double y1, double x2, double y2 )
|
|
{
|
|
return std::fabs( x1 - x2 ) <= EPSILON && std::fabs( y1 - y2 ) <= EPSILON;
|
|
}
|
|
|
|
// monotonically increases with real angle, but doesn't need expensive trigonometry
|
|
inline double pseudo_angle( const double dx, const double dy )
|
|
{
|
|
const double p = dx / ( std::abs( dx ) + std::abs( dy ) );
|
|
return ( dy > 0.0 ? 3.0 - p : 1.0 + p ) / 4.0; // [0..1)
|
|
}
|
|
|
|
Delaunator::Delaunator( std::vector<double> const &in_coords ) :
|
|
coords( in_coords ), m_points( in_coords )
|
|
{
|
|
std::size_t n = coords.size() >> 1;
|
|
|
|
std::vector<std::size_t> ids( n );
|
|
std::iota( ids.begin(), ids.end(), 0 );
|
|
|
|
double max_x = std::numeric_limits<double>::lowest();
|
|
double max_y = std::numeric_limits<double>::lowest();
|
|
double min_x = ( std::numeric_limits<double>::max )();
|
|
double min_y = ( std::numeric_limits<double>::max )();
|
|
for( const Point &p : m_points )
|
|
{
|
|
min_x = std::min( p.x(), min_x );
|
|
min_y = std::min( p.y(), min_y );
|
|
max_x = std::max( p.x(), max_x );
|
|
max_y = std::max( p.y(), max_y );
|
|
}
|
|
double width = max_x - min_x;
|
|
double height = max_y - min_y;
|
|
double span = width * width + height * height; // Everything is square dist.
|
|
|
|
Point center( ( min_x + max_x ) / 2, ( min_y + max_y ) / 2 );
|
|
|
|
std::size_t i0 = INVALID_INDEX;
|
|
std::size_t i1 = INVALID_INDEX;
|
|
std::size_t i2 = INVALID_INDEX;
|
|
|
|
// pick a seed point close to the centroid
|
|
double min_dist = ( std::numeric_limits<double>::max )();
|
|
for( size_t i = 0; i < m_points.size(); ++i )
|
|
{
|
|
const Point &p = m_points[i];
|
|
const double d = Point::dist2( center, p );
|
|
if( d < min_dist )
|
|
{
|
|
i0 = i;
|
|
min_dist = d;
|
|
}
|
|
}
|
|
|
|
const Point &p0 = m_points[i0];
|
|
|
|
min_dist = ( std::numeric_limits<double>::max )();
|
|
|
|
// find the point closest to the seed
|
|
for( std::size_t i = 0; i < n; i++ )
|
|
{
|
|
if( i == i0 )
|
|
continue;
|
|
const double d = Point::dist2( p0, m_points[i] );
|
|
if( d < min_dist && d > 0.0 )
|
|
{
|
|
i1 = i;
|
|
min_dist = d;
|
|
}
|
|
}
|
|
|
|
const Point &p1 = m_points[i1];
|
|
|
|
double min_radius = ( std::numeric_limits<double>::max )();
|
|
|
|
// find the third point which forms the smallest circumcircle
|
|
// with the first two
|
|
for( std::size_t i = 0; i < n; i++ )
|
|
{
|
|
if( i == i0 || i == i1 )
|
|
continue;
|
|
|
|
const double r = circumradius( p0, p1, m_points[i] );
|
|
if( r < min_radius )
|
|
{
|
|
i2 = i;
|
|
min_radius = r;
|
|
}
|
|
}
|
|
|
|
if( !( min_radius < ( std::numeric_limits<double>::max )() ) )
|
|
{
|
|
throw std::runtime_error( "not triangulation" );
|
|
}
|
|
|
|
const Point &p2 = m_points[i2];
|
|
|
|
if( counterclockwise( p0, p1, p2 ) )
|
|
std::swap( i1, i2 );
|
|
|
|
double i0x = p0.x();
|
|
double i0y = p0.y();
|
|
double i1x = m_points[i1].x();
|
|
double i1y = m_points[i1].y();
|
|
double i2x = m_points[i2].x();
|
|
double i2y = m_points[i2].y();
|
|
|
|
m_center = circumcenter( i0x, i0y, i1x, i1y, i2x, i2y );
|
|
|
|
// Calculate the distances from the center once to avoid having to
|
|
// calculate for each compare. This used to be done in the comparator,
|
|
// but GCC 7.5+ would copy the comparator to iterators used in the
|
|
// sort, and this was excruciatingly slow when there were many points
|
|
// because you had to copy the vector of distances.
|
|
std::vector<double> dists;
|
|
dists.reserve( m_points.size() );
|
|
for( const Point &p : m_points )
|
|
dists.push_back( dist( p.x(), p.y(), m_center.x(), m_center.y() ) );
|
|
|
|
// sort the points by distance from the seed triangle circumcenter
|
|
std::sort( ids.begin(), ids.end(), [ &dists ]( std::size_t i, std::size_t j )
|
|
{ return dists[i] < dists[j];} );
|
|
|
|
// initialize a hash table for storing edges of the advancing convex hull
|
|
m_hash_size = static_cast<std::size_t>( std::ceil( std::sqrt( n ) ) );
|
|
m_hash.resize( m_hash_size );
|
|
std::fill( m_hash.begin(), m_hash.end(), INVALID_INDEX );
|
|
|
|
// initialize arrays for tracking the edges of the advancing convex hull
|
|
hull_prev.resize( n );
|
|
hull_next.resize( n );
|
|
hull_tri.resize( n );
|
|
|
|
hull_start = i0;
|
|
|
|
size_t hull_size = 3;
|
|
|
|
hull_next[i0] = hull_prev[i2] = i1;
|
|
hull_next[i1] = hull_prev[i0] = i2;
|
|
hull_next[i2] = hull_prev[i1] = i0;
|
|
|
|
hull_tri[i0] = 0;
|
|
hull_tri[i1] = 1;
|
|
hull_tri[i2] = 2;
|
|
|
|
m_hash[hash_key( i0x, i0y )] = i0;
|
|
m_hash[hash_key( i1x, i1y )] = i1;
|
|
m_hash[hash_key( i2x, i2y )] = i2;
|
|
|
|
// ABELL - Why are we doing this is n < 3? There is no triangulation if
|
|
// there is no triangle.
|
|
|
|
std::size_t max_triangles = n < 3 ? 1 : 2 * n - 5;
|
|
triangles.reserve( max_triangles * 3 );
|
|
halfedges.reserve( max_triangles * 3 );
|
|
add_triangle( i0, i1, i2, INVALID_INDEX, INVALID_INDEX, INVALID_INDEX );
|
|
double xp = std::numeric_limits<double>::quiet_NaN();
|
|
double yp = std::numeric_limits<double>::quiet_NaN();
|
|
|
|
// Go through points based on distance from the center.
|
|
for( std::size_t k = 0; k < n; k++ )
|
|
{
|
|
const std::size_t i = ids[k];
|
|
const double x = coords[2 * i];
|
|
const double y = coords[2 * i + 1];
|
|
|
|
// skip near-duplicate points
|
|
if( k > 0 && check_pts_equal( x, y, xp, yp ) )
|
|
continue;
|
|
xp = x;
|
|
yp = y;
|
|
|
|
//ABELL - This is dumb. We have the indices. Use them.
|
|
// skip seed triangle points
|
|
if( check_pts_equal( x, y, i0x, i0y ) || check_pts_equal( x, y, i1x, i1y )
|
|
|| check_pts_equal( x, y, i2x, i2y ) )
|
|
continue;
|
|
|
|
// find a visible edge on the convex hull using edge hash
|
|
std::size_t start = 0;
|
|
|
|
size_t key = hash_key( x, y );
|
|
for( size_t j = 0; j < m_hash_size; j++ )
|
|
{
|
|
start = m_hash[fast_mod( key + j, m_hash_size )];
|
|
|
|
// ABELL - Not sure how hull_next[start] could ever equal start
|
|
// I *think* hull_next is just a representation of the hull in one
|
|
// direction.
|
|
if( start != INVALID_INDEX && start != hull_next[start] )
|
|
break;
|
|
}
|
|
|
|
//ABELL
|
|
// Make sure what we found is on the hull.
|
|
assert( hull_prev[start] != start );
|
|
assert( hull_prev[start] != INVALID_INDEX );
|
|
|
|
start = hull_prev[start];
|
|
size_t e = start;
|
|
size_t q;
|
|
|
|
// Advance until we find a place in the hull where our current point
|
|
// can be added.
|
|
while( true )
|
|
{
|
|
q = hull_next[e];
|
|
if( Point::equal( m_points[i], m_points[e], span )
|
|
|| Point::equal( m_points[i], m_points[q], span ) )
|
|
{
|
|
e = INVALID_INDEX;
|
|
break;
|
|
}
|
|
if( counterclockwise( x, y, coords[2 * e], coords[2 * e + 1], coords[2 * q],
|
|
coords[2 * q + 1] ) )
|
|
break;
|
|
e = q;
|
|
if( e == start )
|
|
{
|
|
e = INVALID_INDEX;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// ABELL
|
|
// This seems wrong. Perhaps we should check what's going on?
|
|
if( e == INVALID_INDEX ) // likely a near-duplicate point; skip it
|
|
continue;
|
|
|
|
// add the first triangle from the point
|
|
std::size_t t = add_triangle( e, i, hull_next[e], INVALID_INDEX, INVALID_INDEX,
|
|
hull_tri[e] );
|
|
|
|
hull_tri[i] = legalize( t + 2 ); // Legalize the triangle we just added.
|
|
hull_tri[e] = t;
|
|
hull_size++;
|
|
|
|
// walk forward through the hull, adding more triangles and
|
|
// flipping recursively
|
|
std::size_t next = hull_next[e];
|
|
while( true )
|
|
{
|
|
q = hull_next[next];
|
|
if( !counterclockwise( x, y, coords[2 * next], coords[2 * next + 1], coords[2 * q],
|
|
coords[2 * q + 1] ) )
|
|
break;
|
|
t = add_triangle( next, i, q, hull_tri[i], INVALID_INDEX, hull_tri[next] );
|
|
hull_tri[i] = legalize( t + 2 );
|
|
hull_next[next] = next; // mark as removed
|
|
hull_size--;
|
|
next = q;
|
|
}
|
|
|
|
// walk backward from the other side, adding more triangles and flipping
|
|
if( e == start )
|
|
{
|
|
while( true )
|
|
{
|
|
q = hull_prev[e];
|
|
if( !counterclockwise( x, y, coords[2 * q], coords[2 * q + 1], coords[2 * e],
|
|
coords[2 * e + 1] ) )
|
|
break;
|
|
t = add_triangle( q, i, e, INVALID_INDEX, hull_tri[e], hull_tri[q] );
|
|
legalize( t + 2 );
|
|
hull_tri[q] = t;
|
|
hull_next[e] = e; // mark as removed
|
|
hull_size--;
|
|
e = q;
|
|
}
|
|
}
|
|
|
|
// update the hull indices
|
|
hull_prev[i] = e;
|
|
hull_start = e;
|
|
hull_prev[next] = i;
|
|
hull_next[e] = i;
|
|
hull_next[i] = next;
|
|
|
|
m_hash[hash_key( x, y )] = i;
|
|
m_hash[hash_key( coords[2 * e], coords[2 * e + 1] )] = e;
|
|
}
|
|
}
|
|
|
|
double Delaunator::get_hull_area()
|
|
{
|
|
std::vector<double> hull_area;
|
|
size_t e = hull_start;
|
|
size_t cnt = 1;
|
|
do
|
|
{
|
|
hull_area.push_back(
|
|
( coords[2 * e] - coords[2 * hull_prev[e]] )
|
|
* ( coords[2 * e + 1] + coords[2 * hull_prev[e] + 1] ) );
|
|
cnt++;
|
|
e = hull_next[e];
|
|
} while( e != hull_start );
|
|
return sum( hull_area );
|
|
}
|
|
|
|
double Delaunator::get_triangle_area()
|
|
{
|
|
std::vector<double> vals;
|
|
for( size_t i = 0; i < triangles.size(); i += 3 )
|
|
{
|
|
const double ax = coords[2 * triangles[i]];
|
|
const double ay = coords[2 * triangles[i] + 1];
|
|
const double bx = coords[2 * triangles[i + 1]];
|
|
const double by = coords[2 * triangles[i + 1] + 1];
|
|
const double cx = coords[2 * triangles[i + 2]];
|
|
const double cy = coords[2 * triangles[i + 2] + 1];
|
|
double val = std::fabs( ( by - ay ) * ( cx - bx ) - ( bx - ax ) * ( cy - by ) );
|
|
vals.push_back( val );
|
|
}
|
|
return sum( vals );
|
|
}
|
|
|
|
std::size_t Delaunator::legalize( std::size_t a )
|
|
{
|
|
std::size_t i = 0;
|
|
std::size_t ar = 0;
|
|
m_edge_stack.clear();
|
|
|
|
// recursion eliminated with a fixed-size stack
|
|
while( true )
|
|
{
|
|
const size_t b = halfedges[a];
|
|
|
|
/* if the pair of triangles doesn't satisfy the Delaunay condition
|
|
* (p1 is inside the circumcircle of [p0, pl, pr]), flip them,
|
|
* then do the same check/flip recursively for the new pair of triangles
|
|
*
|
|
* pl pl
|
|
* /||\ / \
|
|
* al/ || \bl al/ \a
|
|
* / || \ / \
|
|
* / a||b \ flip /___ar___\
|
|
* p0\ || /p1 => p0\---bl---/p1
|
|
* \ || / \ /
|
|
* ar\ || /br b\ /br
|
|
* \||/ \ /
|
|
* pr pr
|
|
*/
|
|
const size_t a0 = 3 * ( a / 3 );
|
|
ar = a0 + ( a + 2 ) % 3;
|
|
|
|
if( b == INVALID_INDEX )
|
|
{
|
|
if( i > 0 )
|
|
{
|
|
i--;
|
|
a = m_edge_stack[i];
|
|
continue;
|
|
}
|
|
else
|
|
{
|
|
//i = INVALID_INDEX;
|
|
break;
|
|
}
|
|
}
|
|
|
|
const size_t b0 = 3 * ( b / 3 );
|
|
const size_t al = a0 + ( a + 1 ) % 3;
|
|
const size_t bl = b0 + ( b + 2 ) % 3;
|
|
|
|
const std::size_t p0 = triangles[ar];
|
|
const std::size_t pr = triangles[a];
|
|
const std::size_t pl = triangles[al];
|
|
const std::size_t p1 = triangles[bl];
|
|
|
|
const bool illegal = in_circle( coords[2 * p0], coords[2 * p0 + 1], coords[2 * pr],
|
|
coords[2 * pr + 1], coords[2 * pl], coords[2 * pl + 1], coords[2 * p1],
|
|
coords[2 * p1 + 1] );
|
|
|
|
if( illegal )
|
|
{
|
|
triangles[a] = p1;
|
|
triangles[b] = p0;
|
|
|
|
auto hbl = halfedges[bl];
|
|
|
|
// Edge swapped on the other side of the hull (rare).
|
|
// Fix the halfedge reference
|
|
if( hbl == INVALID_INDEX )
|
|
{
|
|
std::size_t e = hull_start;
|
|
do
|
|
{
|
|
if( hull_tri[e] == bl )
|
|
{
|
|
hull_tri[e] = a;
|
|
break;
|
|
}
|
|
e = hull_prev[e];
|
|
} while( e != hull_start );
|
|
}
|
|
link( a, hbl );
|
|
link( b, halfedges[ar] );
|
|
link( ar, bl );
|
|
std::size_t br = b0 + ( b + 1 ) % 3;
|
|
|
|
if( i < m_edge_stack.size() )
|
|
{
|
|
m_edge_stack[i] = br;
|
|
}
|
|
else
|
|
{
|
|
m_edge_stack.push_back( br );
|
|
}
|
|
i++;
|
|
|
|
}
|
|
else
|
|
{
|
|
if( i > 0 )
|
|
{
|
|
i--;
|
|
a = m_edge_stack[i];
|
|
continue;
|
|
}
|
|
else
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return ar;
|
|
}
|
|
|
|
std::size_t Delaunator::hash_key( const double x, const double y ) const
|
|
{
|
|
const double dx = x - m_center.x();
|
|
const double dy = y - m_center.y();
|
|
return fast_mod(
|
|
static_cast<std::size_t>( std::llround(
|
|
std::floor( pseudo_angle( dx, dy ) * static_cast<double>( m_hash_size ) ) ) ),
|
|
m_hash_size );
|
|
}
|
|
|
|
std::size_t Delaunator::add_triangle( std::size_t i0, std::size_t i1, std::size_t i2,
|
|
std::size_t a, std::size_t b, std::size_t c )
|
|
{
|
|
std::size_t t = triangles.size();
|
|
triangles.push_back( i0 );
|
|
triangles.push_back( i1 );
|
|
triangles.push_back( i2 );
|
|
link( t, a );
|
|
link( t + 1, b );
|
|
link( t + 2, c );
|
|
return t;
|
|
}
|
|
|
|
void Delaunator::link( const std::size_t a, const std::size_t b )
|
|
{
|
|
std::size_t s = halfedges.size();
|
|
if( a == s )
|
|
{
|
|
halfedges.push_back( b );
|
|
}
|
|
else if( a < s )
|
|
{
|
|
halfedges[a] = b;
|
|
}
|
|
else
|
|
{
|
|
throw std::runtime_error( "Cannot link edge" );
|
|
}
|
|
if( b != INVALID_INDEX )
|
|
{
|
|
std::size_t s2 = halfedges.size();
|
|
if( b == s2 )
|
|
{
|
|
halfedges.push_back( a );
|
|
}
|
|
else if( b < s2 )
|
|
{
|
|
halfedges[b] = a;
|
|
}
|
|
else
|
|
{
|
|
throw std::runtime_error( "Cannot link edge" );
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
#endif /* PCBNEW_RATSNEST_DELAUNEY_H_ */
|