kicad/qa/drc_proto/drc_test_provider_clearance...

470 lines
18 KiB
C++

#include <common.h>
#include <class_board.h>
#include <class_drawsegment.h>
#include <class_pad.h>
#include <convert_basic_shapes_to_polygon.h>
#include <geometry/polygon_test_point_inside.h>
#include <geometry/seg.h>
#include <geometry/shape_poly_set.h>
#include <geometry/shape_rect.h>
#include <drc_proto/drc_engine.h>
#include <drc_proto/drc_test_provider_clearance_base.h>
#include <drc_proto/drc_item.h>
#include <drc_proto/drc_rule.h>
const int UI_EPSILON = Mils2iu( 5 );
wxPoint test::DRC_TEST_PROVIDER_CLEARANCE_BASE::getLocation( TRACK* aTrack, ZONE_CONTAINER* aConflictZone )
{
SHAPE_POLY_SET* conflictOutline;
if( aConflictZone->IsFilled() )
conflictOutline = const_cast<SHAPE_POLY_SET*>( &aConflictZone->GetFilledPolysList() );
else
conflictOutline = aConflictZone->Outline();
wxPoint pt1 = aTrack->GetPosition();
wxPoint pt2 = aTrack->GetEnd();
// If the mid-point is in the zone, then that's a fine place for the marker
if( conflictOutline->SquaredDistance( ( pt1 + pt2 ) / 2 ) == 0 )
return ( pt1 + pt2 ) / 2;
// Otherwise do a binary search for a "good enough" marker location
else
{
while( GetLineLength( pt1, pt2 ) > UI_EPSILON )
{
if( conflictOutline->SquaredDistance( pt1 ) < conflictOutline->SquaredDistance( pt2 ) )
pt2 = ( pt1 + pt2 ) / 2;
else
pt1 = ( pt1 + pt2 ) / 2;
}
// Once we're within UI_EPSILON pt1 and pt2 are "equivalent"
return pt1;
}
}
wxPoint test::DRC_TEST_PROVIDER_CLEARANCE_BASE::getLocation( TRACK* aTrack, const SEG& aConflictSeg )
{
wxPoint pt1 = aTrack->GetPosition();
wxPoint pt2 = aTrack->GetEnd();
// Do a binary search along the track for a "good enough" marker location
while( GetLineLength( pt1, pt2 ) > UI_EPSILON )
{
if( aConflictSeg.SquaredDistance( pt1 ) < aConflictSeg.SquaredDistance( pt2 ) )
pt2 = ( pt1 + pt2 ) / 2;
else
pt1 = ( pt1 + pt2 ) / 2;
}
// Once we're within UI_EPSILON pt1 and pt2 are "equivalent"
return pt1;
}
/*
* Test if distance between a segment and a pad is > minClearance. Return the actual
* distance if it is less.
*/
bool test::DRC_TEST_PROVIDER_CLEARANCE_BASE::checkClearanceSegmToPad( const SEG& refSeg, int refSegWidth, const D_PAD* pad,
int minClearance, int* aActualDist )
{
if( ( pad->GetShape() == PAD_SHAPE_CIRCLE || pad->GetShape() == PAD_SHAPE_OVAL ) )
{
/* Treat an oval pad as a line segment along the hole's major axis,
* shortened by half its minor axis.
* A circular pad is just a degenerate case of an oval hole.
*/
wxPoint padStart, padEnd;
int padWidth;
pad->GetOblongGeometry( pad->GetSize(), &padStart, &padEnd, &padWidth );
padStart += pad->ShapePos();
padEnd += pad->ShapePos();
SEG padSeg( padStart, padEnd );
int widths = ( padWidth + refSegWidth ) / 2;
int center2centerAllowed = minClearance + widths;
// Avoid square-roots if possible (for performance)
SEG::ecoord center2center_squared = refSeg.SquaredDistance( padSeg );
if( center2center_squared < SEG::Square( center2centerAllowed ) )
{
*aActualDist = std::max( 0.0, sqrt( center2center_squared ) - widths );
return false;
}
}
else if( ( pad->GetShape() == PAD_SHAPE_RECT || pad->GetShape() == PAD_SHAPE_ROUNDRECT )
&& ( (int) pad->GetOrientation() % 900 == 0 ) )
{
EDA_RECT padBBox = pad->GetBoundingBox();
int widths = refSegWidth / 2;
// Note a ROUNDRECT pad with a corner radius = r can be treated as a smaller
// RECT (size - 2*r) with a clearance increased by r
if( pad->GetShape() == PAD_SHAPE_ROUNDRECT )
{
padBBox.Inflate( - pad->GetRoundRectCornerRadius() );
widths += pad->GetRoundRectCornerRadius();
}
SHAPE_RECT padShape( padBBox.GetPosition(), padBBox.GetWidth(), padBBox.GetHeight() );
int actual;
if( padShape.DoCollide( refSeg, minClearance + widths, &actual ) )
{
*aActualDist = std::max( 0, actual - widths );
return false;
}
}
else // Convert the rest to polygons
{
SHAPE_POLY_SET polyset;
BOARD* board = pad->GetBoard();
int maxError = board ? board->GetDesignSettings().m_MaxError : ARC_HIGH_DEF;
pad->TransformShapeWithClearanceToPolygon( polyset, 0, maxError );
const SHAPE_LINE_CHAIN& refpoly = polyset.COutline( 0 );
int widths = refSegWidth / 2;
int actual;
if( !poly2segmentDRC( (wxPoint*) &refpoly.CPoint( 0 ), refpoly.PointCount(),
(wxPoint) refSeg.A, (wxPoint) refSeg.B,
minClearance + widths, &actual ) )
{
*aActualDist = std::max( 0, actual - widths );
return false;
}
}
return true;
}
bool test::DRC_TEST_PROVIDER_CLEARANCE_BASE::checkClearancePadToPad( D_PAD* aRefPad, D_PAD* aPad, int aMinClearance, int* aActual )
{
// relativePadPos is the aPad shape position relative to the aRefPad shape position
wxPoint relativePadPos = aPad->ShapePos() - aRefPad->ShapePos();
int center2center = KiROUND( EuclideanNorm( relativePadPos ) );
// Quick test: Clearance is OK if the bounding circles are further away than aMinClearance
if( center2center - aRefPad->GetBoundingRadius() - aPad->GetBoundingRadius() >= aMinClearance )
return true;
/* Here, pads are near and DRC depends on the pad shapes. We must compare distance using
* a fine shape analysis.
* Because a circle or oval shape is the easier shape to test, swap pads to have aRefPad be
* a PAD_SHAPE_CIRCLE or PAD_SHAPE_OVAL. If aRefPad = TRAPEZOID and aPad = RECT, also swap.
*/
bool swap_pads;
swap_pads = false;
// swap pads to make comparisons easier
// Note also a ROUNDRECT pad with a corner radius = r can be considered as
// a smaller RECT (size - 2*r) with a clearance increased by r
// priority is aRefPad = ROUND then OVAL then RECT/ROUNDRECT then other
if( aRefPad->GetShape() != aPad->GetShape() && aRefPad->GetShape() != PAD_SHAPE_CIRCLE )
{
// pad ref shape is here oval, rect, roundrect, chamfered rect, trapezoid or custom
switch( aPad->GetShape() )
{
case PAD_SHAPE_CIRCLE:
swap_pads = true;
break;
case PAD_SHAPE_OVAL:
swap_pads = true;
break;
case PAD_SHAPE_RECT:
case PAD_SHAPE_ROUNDRECT:
if( aRefPad->GetShape() != PAD_SHAPE_OVAL )
swap_pads = true;
break;
case PAD_SHAPE_TRAPEZOID:
case PAD_SHAPE_CHAMFERED_RECT:
case PAD_SHAPE_CUSTOM:
break;
}
}
if( swap_pads )
{
std::swap( aRefPad, aPad );
relativePadPos = -relativePadPos;
}
bool diag = true;
if( ( aRefPad->GetShape() == PAD_SHAPE_CIRCLE || aRefPad->GetShape() == PAD_SHAPE_OVAL ) )
{
/* Treat an oval pad as a line segment along the hole's major axis,
* shortened by half its minor axis.
* A circular pad is just a degenerate case of an oval hole.
*/
wxPoint refPadStart, refPadEnd;
int refPadWidth;
aRefPad->GetOblongGeometry( aRefPad->GetSize(), &refPadStart, &refPadEnd, &refPadWidth );
refPadStart += aRefPad->ShapePos();
refPadEnd += aRefPad->ShapePos();
SEG refPadSeg( refPadStart, refPadEnd );
diag = checkClearanceSegmToPad( refPadSeg, refPadWidth, aPad, aMinClearance, aActual );
}
else
{
int dist_extra = 0;
// corners of aRefPad (used only for rect/roundrect/trap pad)
wxPoint polyref[4];
// corners of aRefPad (used only for custom pad)
SHAPE_POLY_SET polysetref;
if( aRefPad->GetShape() == PAD_SHAPE_ROUNDRECT )
{
int padRadius = aRefPad->GetRoundRectCornerRadius();
dist_extra = padRadius;
GetRoundRectCornerCenters( polyref, padRadius, wxPoint( 0, 0 ), aRefPad->GetSize(),
aRefPad->GetOrientation() );
}
else if( aRefPad->GetShape() == PAD_SHAPE_CHAMFERED_RECT )
{
BOARD* board = aRefPad->GetBoard();
int maxError = board ? board->GetDesignSettings().m_MaxError : ARC_HIGH_DEF;
// The reference pad can be rotated. Calculate the rotated coordinates.
// (note, the ref pad position is the origin of coordinates for this drc test)
int padRadius = aRefPad->GetRoundRectCornerRadius();
TransformRoundChamferedRectToPolygon( polysetref, wxPoint( 0, 0 ), aRefPad->GetSize(),
aRefPad->GetOrientation(),
padRadius, aRefPad->GetChamferRectRatio(),
aRefPad->GetChamferPositions(), maxError );
}
else if( aRefPad->GetShape() == PAD_SHAPE_CUSTOM )
{
polysetref.Append( aRefPad->GetCustomShapeAsPolygon() );
// The reference pad can be rotated. Calculate the rotated coordinates.
// (note, the ref pad position is the origin of coordinates for this drc test)
aRefPad->CustomShapeAsPolygonToBoardPosition( &polysetref, wxPoint( 0, 0 ),
aRefPad->GetOrientation() );
}
else
{
// BuildPadPolygon has meaning for rect a trapeziod shapes and returns the 4 corners.
aRefPad->BuildPadPolygon( polyref, wxSize( 0, 0 ), aRefPad->GetOrientation() );
}
// corners of aPad (used only for rect/roundrect/trap pad)
wxPoint polycompare[4];
// corners of aPad (used only custom pad)
SHAPE_POLY_SET polysetcompare;
switch( aPad->GetShape() )
{
case PAD_SHAPE_ROUNDRECT:
case PAD_SHAPE_RECT:
case PAD_SHAPE_CHAMFERED_RECT:
case PAD_SHAPE_TRAPEZOID:
case PAD_SHAPE_CUSTOM:
if( aPad->GetShape() == PAD_SHAPE_ROUNDRECT )
{
int padRadius = aPad->GetRoundRectCornerRadius();
dist_extra = padRadius;
GetRoundRectCornerCenters( polycompare, padRadius, relativePadPos, aPad->GetSize(),
aPad->GetOrientation() );
}
else if( aPad->GetShape() == PAD_SHAPE_CHAMFERED_RECT )
{
BOARD* board = aRefPad->GetBoard();
int maxError = board ? board->GetDesignSettings().m_MaxError : ARC_HIGH_DEF;
// The pad to compare can be rotated. Calculate the rotated coordinates.
// ( note, the pad to compare position is the relativePadPos for this drc test)
int padRadius = aPad->GetRoundRectCornerRadius();
TransformRoundChamferedRectToPolygon( polysetcompare, relativePadPos,
aPad->GetSize(), aPad->GetOrientation(),
padRadius, aPad->GetChamferRectRatio(),
aPad->GetChamferPositions(), maxError );
}
else if( aPad->GetShape() == PAD_SHAPE_CUSTOM )
{
polysetcompare.Append( aPad->GetCustomShapeAsPolygon() );
// The pad to compare can be rotated. Calculate the rotated coordinates.
// ( note, the pad to compare position is the relativePadPos for this drc test)
aPad->CustomShapeAsPolygonToBoardPosition( &polysetcompare, relativePadPos,
aPad->GetOrientation() );
}
else
{
aPad->BuildPadPolygon( polycompare, wxSize( 0, 0 ), aPad->GetOrientation() );
// Move aPad shape to relativePadPos
for( int ii = 0; ii < 4; ii++ )
polycompare[ii] += relativePadPos;
}
// And now test polygons: We have 3 cases:
// one poly is complex and the other is basic (has only 4 corners)
// both polys are complex
// both polys are basic (have only 4 corners) the most usual case
if( polysetref.OutlineCount() && polysetcompare.OutlineCount() == 0)
{
const SHAPE_LINE_CHAIN& refpoly = polysetref.COutline( 0 );
// And now test polygons:
if( !poly2polyDRC( (wxPoint*) &refpoly.CPoint( 0 ), refpoly.PointCount(),
polycompare, 4, aMinClearance + dist_extra, aActual ) )
{
*aActual = std::max( 0, *aActual - dist_extra );
diag = false;
}
}
else if( polysetref.OutlineCount() == 0 && polysetcompare.OutlineCount())
{
const SHAPE_LINE_CHAIN& cmppoly = polysetcompare.COutline( 0 );
// And now test polygons:
if( !poly2polyDRC((wxPoint*) &cmppoly.CPoint( 0 ), cmppoly.PointCount(),
polyref, 4, aMinClearance + dist_extra, aActual ) )
{
*aActual = std::max( 0, *aActual - dist_extra );
diag = false;
}
}
else if( polysetref.OutlineCount() && polysetcompare.OutlineCount() )
{
const SHAPE_LINE_CHAIN& refpoly = polysetref.COutline( 0 );
const SHAPE_LINE_CHAIN& cmppoly = polysetcompare.COutline( 0 );
// And now test polygons:
if( !poly2polyDRC((wxPoint*) &refpoly.CPoint( 0 ), refpoly.PointCount(),
(wxPoint*) &cmppoly.CPoint( 0 ), cmppoly.PointCount(),
aMinClearance + dist_extra, aActual ) )
{
*aActual = std::max( 0, *aActual - dist_extra );
diag = false;
}
}
else
{
if( !poly2polyDRC( polyref, 4, polycompare, 4, aMinClearance + dist_extra, aActual ) )
{
*aActual = std::max( 0, *aActual - dist_extra );
diag = false;
}
}
break;
default:
wxLogDebug( wxT( "DRC::checkClearancePadToPad: unexpected pad shape %d" ), aPad->GetShape() );
break;
}
}
return diag;
}
bool test::DRC_TEST_PROVIDER_CLEARANCE_BASE::poly2segmentDRC( wxPoint* aTref, int aTrefCount, wxPoint aSegStart, wxPoint aSegEnd,
int aDist, int* aActual )
{
/* Test if the segment is contained in the polygon.
* This case is not covered by the following check if the segment is
* completely contained in the polygon (because edges don't intersect)!
*/
if( TestPointInsidePolygon( aTref, aTrefCount, aSegStart ) )
{
*aActual = 0;
return false;
}
for( int ii = 0, jj = aTrefCount-1; ii < aTrefCount; jj = ii, ii++ )
{ // for all edges in polygon
double d;
if( TestForIntersectionOfStraightLineSegments( aTref[ii].x, aTref[ii].y, aTref[jj].x,
aTref[jj].y, aSegStart.x, aSegStart.y,
aSegEnd.x, aSegEnd.y, NULL, NULL, &d ) )
{
*aActual = 0;
return false;
}
if( d < aDist )
{
*aActual = KiROUND( d );
return false;
}
}
return true;
}
/**
* compare 2 convex polygons and return true if distance > aDist (if no error DRC)
* i.e if for each edge of the first polygon distance from each edge of the other polygon
* is >= aDist
*/
bool test::DRC_TEST_PROVIDER_CLEARANCE_BASE::poly2polyDRC( wxPoint* aTref, int aTrefCount, wxPoint* aTtest, int aTtestCount,
int aAllowedDist, int* actualDist )
{
/* Test if one polygon is contained in the other and thus the polygon overlap.
* This case is not covered by the following check if one polygone is
* completely contained in the other (because edges don't intersect)!
*/
if( TestPointInsidePolygon( aTref, aTrefCount, aTtest[0] ) )
{
*actualDist = 0;
return false;
}
if( TestPointInsidePolygon( aTtest, aTtestCount, aTref[0] ) )
{
*actualDist = 0;
return false;
}
for( int ii = 0, jj = aTrefCount - 1; ii < aTrefCount; jj = ii, ii++ )
{
// for all edges in aTref
for( int kk = 0, ll = aTtestCount - 1; kk < aTtestCount; ll = kk, kk++ )
{
// for all edges in aTtest
double d;
int intersect = TestForIntersectionOfStraightLineSegments(
aTref[ii].x, aTref[ii].y, aTref[jj].x, aTref[jj].y,
aTtest[kk].x, aTtest[kk].y, aTtest[ll].x, aTtest[ll].y,
nullptr, nullptr, &d );
if( intersect )
{
*actualDist = 0;
return false;
}
if( d < aAllowedDist )
{
*actualDist = KiROUND( d );
return false;
}
}
}
return true;
}