kicad/common/plotters/HPGL_plotter.cpp

938 lines
29 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2017 Jean-Pierre Charras, jp.charras at wanadoo.fr
* Copyright (C) 2020-2023 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
/**
* @file HPGL_plotter.cpp
* @brief KiCad plotter for HPGL file format.
* Since this plot engine is mostly intended for import in external programs,
* sadly HPGL/2 isn't supported a lot... some of the primitives use overlapped
* strokes to fill the shape.
*/
/* Some HPGL commands:
* Note: the HPGL unit is 25 micrometers
* All commands MUST be terminated by a semi-colon or a linefeed.
* Spaces can NOT be substituted for required commas in the syntax of a command.
*
*
* AA (Arc Absolute): Angle is a floating point # (requires non integer value)
* Draws an arc with the center at (X,Y).
* A positive angle creates a counter-clockwise arc.
* If the chord angle is specified,
* this will be the number of degrees used for stepping around the arc.
* If no value is given then a default value of five degrees is used.
* AA x, y, a {,b};
*
* AR (Arc Relative):
* AR Dx, Dy, a {, b};
*
* CA (Alternate Character Set):
* CA {n};
*
* CI (Circle):
* CI r {,b};
*
* CP (Character Plot):
* CP {h, v};
* h [-127.9999 .. 127.9999] Number of characters horizontally
* v [-127.9999 .. 127.9999] Number of characters vertically
*
* CS (Standard Character Set):
* CS {n};
*
* DR (Relative Direction for Label Text):
* DR s, a;
*
* DI (Absolute Direction for Label Text):
* DI {s, a};
*
* DT (Define Terminator - this character becomes unavailable except to terminate a label string.
* Default is ^C control-C):
* DT t;
*
* EA (rEctangle Absolute - Unfilled, from current position to diagonal x,y):
* EA x, y;
*
* ER (rEctangle Relative - Unfilled, from current position to diagonal x,y):
* ER x,y;
*
* FT (Fill Type):
* FT {s {,l {a}}};
*
* IM (Input Mask):
* IM {f};
*
* IN (Initialize): This command instructs the controller to begin processing the HPGL plot file.
* Without this, the commands in the file are received but never executed.
* If multiple IN s are found during execution of the file,
* the controller performs a Pause/Cancel operation.
* All motion from the previous job, yet to be executed, is lost,
* and the new information is executed.
* IN;
*
* IP Input P1 and P2:
* IP {P1x, P1y {, P2x, P2y}};
*
* IW (Input Window):
* IW {XUL, YUL, XOR, YOR};
*
* LB (Label):
* LB c1 .. cn t;
*
* PA (Plot Absolute): Moves to an absolute HPGL position and sets absolute mode for
* future PU and PD commands. If no arguments follow the command,
* only absolute mode is set.
* PA {x1, y1 {{PU|PD|,} ..., ..., xn, yn}};
* P1x, P1y, P2x, P2y [Integer in ASCII]
*
* PD (Pen Down): Executes <current pen> pen then moves to the requested position
* if one is specified. This position is dependent on whether absolute
* or relative mode is set. This command performs no motion in 3-D mode,
* but the outputs and feedrates are affected.
* PD {x, y};
*
* PM Polygon mode
* associated commands:
* PM2 End polygon mode
* FP Fill polygon
* EP Draw polygon outline
*
* PR (Plot Relative): Moves to the relative position specified and sets relative mode
* for future PU and PD commands.
* If no arguments follow the command, only relative mode is set.
* PR {Dx1, Dy1 {{PU|PD|,} ..., ..., Dxn, Dyn}};
*
* PS (Paper Size):
* PS {n};
*
* PT (Pen Thickness): in mm
* PT {l};
*
* PU (Pen Up): Executes <current pen> pen then moves to the requested position
* if one is specified. This position is dependent on whether absolute
* or relative mode is set.
* This command performs no motion in 3-D mode, but the outputs
* and feedrates are affected.
* PU {x, y};
*
* RA (Rectangle Absolute - Filled, from current position to diagonal x,y):
* RA x, y;
*
* RO (Rotate Coordinate System):
* RO;
*
* RR (Rectangle Relative - Filled, from current position to diagonal x,y):
* RR x, y;
*
* SA (Select Alternate Set):
* SA;
*
* SC (Scale):
* SC {Xmin, Xmax, Ymin, Ymax};
*
* SI (Absolute Character Size):
* SI b, h;
* b [-127.9999 .. 127.9999, keine 0]
* h [-127.9999 .. 127.9999, keine 0]
*
* SL (Character Slant):
* SL {a};
* a [-3.5 .. -0.5, 0.5 .. 3.5]
*
* SP (Select Pen): Selects a new pen or tool for use.
* If no pen number or a value of zero is given,
* the controller performs an EOF (end of file command).
* Once an EOF is performed, no motion is executed,
* until a new IN command is received.
* SP n;
*
* SR (Relative Character Size):
* SR {b, h};
* b [-127.9999 .. 127.9999, keine 0]
* h [-127.9999 .. 127.9999, keine 0]
*
* SS (Select Standard Set):
* SS;
*
* TL (Tick Length):
* TL {tp {, tm}};
*
* UC (User Defined Character):
* UC {i,} x1, y1, {i,} x2, y2, ... {i,} xn, yn;
*
* VS (Velocity Select):
* VS {v {, n}};
* v [1 .. 40] in cm/s
* n [1 .. 8]
*
* XT (X Tick):
* XT;
*
* YT (Y Tick):
* YT;
*/
#include <cstdio>
#include <string_utils.h>
#include <convert_basic_shapes_to_polygon.h>
#include <math/util.h> // for KiROUND
#include <trigo.h>
#include <plotters/plotter_hpgl.h>
/// Compute the distance between two VECTOR2D points.
static double dpoint_dist( const VECTOR2D& a, const VECTOR2D& b );
// The hpgl command to close a polygon def, fill it and plot outline:
// PM 2; ends the polygon definition and closes it if not closed
// FP; fills the polygon
// EP; draws the polygon outline. It usually gives a better look to the filled polygon
static const char hpgl_end_polygon_cmd[] = "PM 2; FP; EP;\n";
// HPGL scale factor (1 Plotter Logical Unit = 1/40mm = 25 micrometers)
// PLUsPERDECIMIL = (25.4 / 10000) / 0.025
static const double PLUsPERDECIMIL = 0.1016;
HPGL_PLOTTER::HPGL_PLOTTER() :
m_arcTargetChordLength( 0 ),
m_arcMinChordDegrees( 5.0, DEGREES_T ),
m_lineStyle( PLOT_DASH_TYPE::SOLID ),
m_useUserCoords( false ),
m_fitUserCoords( false ),
m_current_item( nullptr )
{
SetPenSpeed( 40 ); // Default pen speed = 40 cm/s; Pen speed is *always* in cm
SetPenNumber( 1 ); // Default pen num = 1
SetPenDiameter( 0.0 );
}
void HPGL_PLOTTER::SetViewport( const VECTOR2I& aOffset, double aIusPerDecimil,
double aScale, bool aMirror )
{
m_plotOffset = aOffset;
m_plotScale = aScale;
m_IUsPerDecimil = aIusPerDecimil;
m_iuPerDeviceUnit = PLUsPERDECIMIL / aIusPerDecimil;
// Compute the paper size in IUs.
m_paperSize = m_pageInfo.GetSizeMils();
m_paperSize.x *= 10.0 * aIusPerDecimil;
m_paperSize.y *= 10.0 * aIusPerDecimil;
m_plotMirror = aMirror;
}
void HPGL_PLOTTER::SetTargetChordLength( double chord_len )
{
m_arcTargetChordLength = userToDeviceSize( chord_len );
}
bool HPGL_PLOTTER::StartPlot( const wxString& aPageNumber )
{
wxASSERT( m_outputFile );
fprintf( m_outputFile, "IN;VS%d;PU;PA;SP%d;\n", m_penSpeed, m_penNumber );
// Set HPGL Pen Thickness (in mm) (useful in polygon fill command)
double penThicknessMM = userToDeviceSize( m_penDiameter ) / 40;
fprintf( m_outputFile, "PT %.1f;\n", penThicknessMM );
return true;
}
bool HPGL_PLOTTER::EndPlot()
{
wxASSERT( m_outputFile );
fputs( "PU;\n", m_outputFile );
flushItem();
sortItems( m_items );
if( m_items.size() > 0 )
{
if( m_useUserCoords )
{
if( m_fitUserCoords )
{
BOX2D bbox = m_items.front().bbox;
for( HPGL_ITEM const& item : m_items )
bbox.Merge( item.bbox );
fprintf( m_outputFile, "SC%.0f,%.0f,%.0f,%.0f;\n",
bbox.GetX(),
bbox.GetX() + bbox.GetWidth(),
bbox.GetY(),
bbox.GetY() + bbox.GetHeight() );
}
else
{
VECTOR2D pagesize_device( m_paperSize * m_iuPerDeviceUnit );
fprintf( m_outputFile, "SC%.0f,%.0f,%.0f,%.0f;\n",
0.0,
pagesize_device.x,
0.0,
pagesize_device.y );
}
}
VECTOR2I loc = m_items.begin()->loc_start;
bool pen_up = true;
PLOT_DASH_TYPE current_dash = PLOT_DASH_TYPE::SOLID;
int current_pen = m_penNumber;
for( HPGL_ITEM const& item : m_items )
{
if( item.loc_start != loc || pen_up )
{
if( !pen_up )
{
fputs( "PU;", m_outputFile );
pen_up = true;
}
fprintf( m_outputFile, "PA %.0f,%.0f;", item.loc_start.x, item.loc_start.y );
}
if( item.dashType != current_dash )
{
current_dash = item.dashType;
fputs( lineStyleCommand( item.dashType ), m_outputFile );
}
if( item.pen != current_pen )
{
if( !pen_up )
{
fputs( "PU;", m_outputFile );
pen_up = true;
}
fprintf( m_outputFile, "SP%d;", item.pen );
current_pen = item.pen;
}
if( pen_up && !item.lift_before )
{
fputs( "PD;", m_outputFile );
pen_up = false;
}
else if( !pen_up && item.lift_before )
{
fputs( "PU;", m_outputFile );
pen_up = true;
}
fputs( static_cast<const char*>( item.content.utf8_str() ), m_outputFile );
if( !item.pen_returns )
{
// Assume commands drop the pen
pen_up = false;
}
if( item.lift_after )
{
fputs( "PU;", m_outputFile );
pen_up = true;
}
else
{
loc = item.loc_end;
}
fputs( "\n", m_outputFile );
}
}
fputs( "PU;PA;SP0;\n", m_outputFile );
fclose( m_outputFile );
m_outputFile = nullptr;
return true;
}
void HPGL_PLOTTER::SetPenDiameter( double diameter )
{
m_penDiameter = diameter;
}
void HPGL_PLOTTER::Rect( const VECTOR2I& p1, const VECTOR2I& p2, FILL_T aFill, int aWidth )
{
wxASSERT( m_outputFile );
VECTOR2D p1_device = userToDeviceCoordinates( p1 );
VECTOR2D p2_device = userToDeviceCoordinates( p2 );
MoveTo( p1 );
if( aFill == FILL_T::FILLED_SHAPE )
{
startOrAppendItem( p1_device, wxString::Format( "RA %.0f,%.0f;",
p2_device.x,
p2_device.y ) );
}
startOrAppendItem( p1_device, wxString::Format( "EA %.0f,%.0f;",
p2_device.x,
p2_device.y ) );
m_current_item->loc_end = m_current_item->loc_start;
m_current_item->bbox.Merge( p2_device );
PenFinish();
}
void HPGL_PLOTTER::Circle( const VECTOR2I& aCenter, int aDiameter, FILL_T aFill, int aWidth )
{
wxASSERT( m_outputFile );
double radius = userToDeviceSize( aDiameter / 2 );
VECTOR2D center_dev = userToDeviceCoordinates( aCenter );
SetCurrentLineWidth( aWidth );
double const circumf = 2.0 * M_PI * radius;
double const target_chord_length = m_arcTargetChordLength;
EDA_ANGLE chord_angle = ANGLE_360 * target_chord_length / circumf;
chord_angle = std::clamp( m_arcMinChordDegrees, chord_angle, ANGLE_45 );
if( aFill == FILL_T::FILLED_SHAPE )
{
// Draw the filled area
MoveTo( aCenter );
startOrAppendItem( center_dev, wxString::Format( "PM 0;CI %g,%g;%s",
radius,
chord_angle.AsDegrees(),
hpgl_end_polygon_cmd ) );
m_current_item->lift_before = true;
m_current_item->pen_returns = true;
m_current_item->bbox.Merge( BOX2D( center_dev - radius,
VECTOR2D( 2 * radius, 2 * radius ) ) );
PenFinish();
}
if( radius > 0 )
{
MoveTo( aCenter );
startOrAppendItem( center_dev, wxString::Format( "CI %g,%g;",
radius,
chord_angle.AsDegrees() ) );
m_current_item->lift_before = true;
m_current_item->pen_returns = true;
m_current_item->bbox.Merge( BOX2D( center_dev - radius,
VECTOR2D( 2 * radius, 2 * radius ) ) );
PenFinish();
}
}
void HPGL_PLOTTER::PlotPoly( const std::vector<VECTOR2I>& aCornerList, FILL_T aFill, int aWidth,
void* aData )
{
if( aCornerList.size() <= 1 )
return;
// Width less than zero is occasionally used to create background-only
// polygons. Don't set that as the plotter line width, that'll cause
// trouble. Also, later, skip plotting the outline if this is the case.
if( aWidth > 0 )
{
SetCurrentLineWidth( aWidth );
}
MoveTo( aCornerList[0] );
startItem( userToDeviceCoordinates( aCornerList[0] ) );
if( aFill == FILL_T::FILLED_SHAPE )
{
// Draw the filled area
SetCurrentLineWidth( USE_DEFAULT_LINE_WIDTH );
m_current_item->content << wxString( "PM 0;\n" ); // Start polygon
for( unsigned ii = 1; ii < aCornerList.size(); ++ii )
LineTo( aCornerList[ii] );
int ii = aCornerList.size() - 1;
if( aCornerList[ii] != aCornerList[0] )
LineTo( aCornerList[0] );
m_current_item->content << hpgl_end_polygon_cmd; // Close, fill polygon and draw outlines
m_current_item->pen_returns = true;
}
else if( aWidth != 0 )
{
// Plot only the polygon outline.
for( unsigned ii = 1; ii < aCornerList.size(); ii++ )
LineTo( aCornerList[ii] );
// Always close polygon if filled.
if( aFill != FILL_T::NO_FILL )
{
int ii = aCornerList.size() - 1;
if( aCornerList[ii] != aCornerList[0] )
LineTo( aCornerList[0] );
}
}
PenFinish();
}
void HPGL_PLOTTER::PenTo( const VECTOR2I& pos, char plume )
{
wxASSERT( m_outputFile );
if( plume == 'Z' )
{
m_penState = 'Z';
flushItem();
return;
}
VECTOR2D pos_dev = userToDeviceCoordinates( pos );
VECTOR2D lastpos_dev = userToDeviceCoordinates( m_penLastpos );
if( plume == 'U' )
{
m_penState = 'U';
flushItem();
}
else if( plume == 'D' )
{
m_penState = 'D';
startOrAppendItem( lastpos_dev, wxString::Format( "PA %.0f,%.0f;", pos_dev.x, pos_dev.y ) );
m_current_item->loc_end = pos_dev;
m_current_item->bbox.Merge( pos_dev );
}
m_penLastpos = pos;
}
void HPGL_PLOTTER::SetDash( int aLineWidth, PLOT_DASH_TYPE aLineStyle )
{
m_lineStyle = aLineStyle;
flushItem();
}
void HPGL_PLOTTER::ThickSegment( const VECTOR2I& start, const VECTOR2I& end,
int width, OUTLINE_MODE tracemode, void* aData )
{
wxASSERT( m_outputFile );
// Suppress overlap if pen is too big
if( m_penDiameter >= width )
{
MoveTo( start );
FinishTo( end );
}
else
{
segmentAsOval( start, end, width, tracemode );
}
}
void HPGL_PLOTTER::Arc( const VECTOR2D& aCenter, const EDA_ANGLE& aStartAngle,
const EDA_ANGLE& aAngle, double aRadius, FILL_T aFill, int aWidth )
{
if( aRadius <= 0 )
return;
double const radius_device = userToDeviceSize( aRadius );
double const circumf_device = 2.0 * M_PI * radius_device;
double const target_chord_length = m_arcTargetChordLength;
EDA_ANGLE chord_angle = ANGLE_360 * target_chord_length / circumf_device;
chord_angle = std::max( m_arcMinChordDegrees, std::min( chord_angle, ANGLE_45 ) );
VECTOR2D centre_device = userToDeviceCoordinates( aCenter );
EDA_ANGLE angle = aAngle;
if( !m_plotMirror )
angle = -angle;
EDA_ANGLE startAngle = -aStartAngle;
// Calculate arc start point:
VECTOR2I cmap( aCenter.x + KiROUND( aRadius * startAngle.Cos() ),
aCenter.y - KiROUND( aRadius * startAngle.Sin() ) );
VECTOR2D cmap_dev = userToDeviceCoordinates( cmap );
startOrAppendItem( cmap_dev, wxString::Format( "AA %.0f,%.0f,%.0f,%g",
centre_device.x,
centre_device.y,
angle.AsDegrees(),
chord_angle.AsDegrees() ) );
// TODO We could compute the final position and full bounding box instead...
m_current_item->bbox.Merge( BOX2D( centre_device - radius_device,
VECTOR2D( radius_device * 2, radius_device * 2 ) ) );
m_current_item->lift_after = true;
flushItem();
}
void HPGL_PLOTTER::FlashPadOval( const VECTOR2I& aPos, const VECTOR2I& aSize,
const EDA_ANGLE& aOrient, OUTLINE_MODE aTraceMode, void* aData )
{
wxASSERT( m_outputFile );
VECTOR2I size( aSize );
EDA_ANGLE orient( aOrient );
// The pad will be drawn as an oblong shape with size.y > size.x (Oval vertical orientation 0).
if( size.x > size.y )
{
std::swap( size.x, size.y );
orient += ANGLE_90;
}
if( aTraceMode == FILLED )
{
int deltaxy = size.y - size.x; // distance between centers of the oval
FlashPadRect( aPos, VECTOR2I( size.x, deltaxy + KiROUND( m_penDiameter ) ), orient,
aTraceMode, aData );
VECTOR2I pt( 0, deltaxy / 2 );
RotatePoint( pt, orient );
FlashPadCircle( pt + aPos, size.x, aTraceMode, aData );
pt = VECTOR2I( 0, -deltaxy / 2 );
RotatePoint( pt, orient );
FlashPadCircle( pt + aPos, size.x, aTraceMode, aData );
}
else // Plot in outline mode.
{
sketchOval( aPos, size, orient, KiROUND( m_penDiameter ) );
}
}
void HPGL_PLOTTER::FlashPadCircle( const VECTOR2I& pos, int diametre,
OUTLINE_MODE trace_mode, void* aData )
{
wxASSERT( m_outputFile );
VECTOR2D pos_dev = userToDeviceCoordinates( pos );
int radius = diametre / 2;
if( trace_mode == FILLED )
{
// if filled mode, the pen diameter is removed from diameter
// to keep the pad size
radius -= KiROUND( m_penDiameter ) / 2;
if( radius < 0 )
radius = 0;
}
double rsize = userToDeviceSize( radius );
if( trace_mode == FILLED ) // Plot in filled mode.
{
// A filled polygon uses always the current point to start the polygon.
// Gives a correct current starting point for the circle
MoveTo( VECTOR2I( pos.x + radius, pos.y ) );
// Plot filled area and its outline
startOrAppendItem( userToDeviceCoordinates( VECTOR2I( pos.x + radius, pos.y ) ),
wxString::Format( "PM 0; PA %.0f,%.0f;CI %.0f;%s",
pos_dev.x, pos_dev.y, rsize, hpgl_end_polygon_cmd ) );
m_current_item->lift_before = true;
m_current_item->pen_returns = true;
}
else
{
// Draw outline only:
startOrAppendItem( pos_dev, wxString::Format( "CI %.0f;", rsize ) );
m_current_item->lift_before = true;
m_current_item->pen_returns = true;
}
PenFinish();
}
void HPGL_PLOTTER::FlashPadRect( const VECTOR2I& aPos, const VECTOR2I& aPadSize,
const EDA_ANGLE& aOrient, OUTLINE_MODE aTraceMode, void* aData )
{
// Build rect polygon:
std::vector<VECTOR2I> corners;
int dx = aPadSize.x / 2;
int dy = aPadSize.y / 2;
if( aTraceMode == FILLED )
{
// in filled mode, the pen diameter is removed from size
// to compensate the extra size due to this pen size
dx -= KiROUND( m_penDiameter ) / 2;
dx = std::max( dx, 0);
dy -= KiROUND( m_penDiameter ) / 2;
dy = std::max( dy, 0);
}
corners.emplace_back( - dx, - dy );
corners.emplace_back( - dx, + dy );
corners.emplace_back( + dx, + dy );
corners.emplace_back( + dx, - dy );
// Close polygon
corners.emplace_back( - dx, - dy );
for( unsigned ii = 0; ii < corners.size(); ii++ )
{
RotatePoint( corners[ii], aOrient );
corners[ii] += aPos;
}
PlotPoly( corners, aTraceMode == FILLED ? FILL_T::FILLED_SHAPE : FILL_T::NO_FILL );
}
void HPGL_PLOTTER::FlashPadRoundRect( const VECTOR2I& aPadPos, const VECTOR2I& aSize,
int aCornerRadius, const EDA_ANGLE& aOrient,
OUTLINE_MODE aTraceMode, void* aData )
{
SHAPE_POLY_SET outline;
VECTOR2I size = aSize;
if( aTraceMode == FILLED )
{
// In filled mode, the pen diameter is removed from size to keep the pad size.
size.x -= KiROUND( m_penDiameter ) / 2;
size.x = std::max( size.x, 0);
size.y -= KiROUND( m_penDiameter ) / 2;
size.y = std::max( size.y, 0);
// keep aCornerRadius to a value < min size x,y < 2:
aCornerRadius = std::min( aCornerRadius, std::min( size.x, size.y ) /2 );
}
TransformRoundChamferedRectToPolygon( outline, aPadPos, size, aOrient, aCornerRadius, 0.0, 0,
0, GetPlotterArcHighDef(), ERROR_INSIDE );
// TransformRoundRectToPolygon creates only one convex polygon
std::vector<VECTOR2I> cornerList;
SHAPE_LINE_CHAIN& poly = outline.Outline( 0 );
cornerList.reserve( poly.PointCount() );
for( int ii = 0; ii < poly.PointCount(); ++ii )
cornerList.emplace_back( poly.CPoint( ii ).x, poly.CPoint( ii ).y );
if( cornerList.back() != cornerList.front() )
cornerList.push_back( cornerList.front() );
PlotPoly( cornerList, aTraceMode == FILLED ? FILL_T::FILLED_SHAPE : FILL_T::NO_FILL );
}
void HPGL_PLOTTER::FlashPadCustom( const VECTOR2I& aPadPos, const VECTOR2I& aSize,
const EDA_ANGLE& aOrient, SHAPE_POLY_SET* aPolygons,
OUTLINE_MODE aTraceMode, void* aData )
{
std::vector<VECTOR2I> cornerList;
for( int cnt = 0; cnt < aPolygons->OutlineCount(); ++cnt )
{
SHAPE_LINE_CHAIN& poly = aPolygons->Outline( cnt );
cornerList.clear();
cornerList.reserve( poly.PointCount() );
for( int ii = 0; ii < poly.PointCount(); ++ii )
cornerList.emplace_back( poly.CPoint( ii ).x, poly.CPoint( ii ).y );
if( cornerList.back() != cornerList.front() )
cornerList.push_back( cornerList.front() );
PlotPoly( cornerList, aTraceMode == FILLED ? FILL_T::FILLED_SHAPE : FILL_T::NO_FILL );
}
}
void HPGL_PLOTTER::FlashPadTrapez( const VECTOR2I& aPadPos, const VECTOR2I* aCorners,
const EDA_ANGLE& aPadOrient, OUTLINE_MODE aTraceMode,
void* aData )
{
std::vector<VECTOR2I> cornerList;
cornerList.reserve( 5 );
for( int ii = 0; ii < 4; ii++ )
{
VECTOR2I coord( aCorners[ii] );
RotatePoint( coord, aPadOrient );
coord += aPadPos;
cornerList.push_back( coord );
}
// Close polygon
cornerList.push_back( cornerList.front() );
PlotPoly( cornerList, aTraceMode == FILLED ? FILL_T::FILLED_SHAPE : FILL_T::NO_FILL );
}
void HPGL_PLOTTER::FlashRegularPolygon( const VECTOR2I& aShapePos, int aRadius, int aCornerCount,
const EDA_ANGLE& aOrient, OUTLINE_MODE aTraceMode,
void* aData )
{
// Do nothing
wxASSERT( 0 );
}
bool HPGL_PLOTTER::startItem( const VECTOR2D& location )
{
return startOrAppendItem( location, wxEmptyString );
}
void HPGL_PLOTTER::flushItem()
{
m_current_item = nullptr;
}
bool HPGL_PLOTTER::startOrAppendItem( const VECTOR2D& location, wxString const& content )
{
if( m_current_item == nullptr )
{
HPGL_ITEM item;
item.loc_start = location;
item.loc_end = location;
item.bbox = BOX2D( location );
item.pen = m_penNumber;
item.dashType = m_lineStyle;
item.content = content;
m_items.push_back( item );
m_current_item = &m_items.back();
return true;
}
else
{
m_current_item->content << content;
return false;
}
}
void HPGL_PLOTTER::sortItems( std::list<HPGL_ITEM>& items )
{
if( items.size() < 2 )
return;
std::list<HPGL_ITEM> target;
// Plot items are sorted to improve print time on mechanical plotters. This
// means
// 1) Avoid excess pen-switching - once a pen is selected, keep printing
// with it until no more items using that pen remain.
// 2) Within the items for one pen, avoid bouncing back and forth around
// the page; items should be sequenced with nearby items.
//
// This is essentially a variant of the Traveling Salesman Problem where
// the cities are themselves edges that must be traversed. This is of course
// a famously NP-Hard problem and this particular variant has a monstrous
// number of "cities". For now, we're using a naive nearest-neighbor search,
// which is less than optimal but (usually!) better than nothing, very
// simple to implement, and fast enough.
//
// Items are moved one at a time from `items` into `target`, searching
// each time for the first one matching the above criteria. Then, all of
// `target` is moved back into `items`.
// Get the first one started
HPGL_ITEM last_item = items.front();
items.pop_front();
target.emplace_back( last_item );
while( !items.empty() )
{
auto best_it = items.begin();
double best_dist = dpoint_dist( last_item.loc_end, best_it->loc_start );
for( auto search_it = best_it; search_it != items.end(); search_it++ )
{
// Immediately forget an item as "best" if another one is a better pen match
if( best_it->pen != last_item.pen && search_it->pen == last_item.pen )
{
best_it = search_it;
continue;
}
double const dist = dpoint_dist( last_item.loc_end, search_it->loc_start );
if( dist < best_dist )
{
best_it = search_it;
best_dist = dist;
continue;
}
}
target.emplace_back( *best_it );
last_item = *best_it;
items.erase( best_it );
}
items.splice( items.begin(), target );
}
const char* HPGL_PLOTTER::lineStyleCommand( PLOT_DASH_TYPE aLineStyle )
{
switch( aLineStyle )
{
case PLOT_DASH_TYPE::DASH: return "LT 2 4 1;";
case PLOT_DASH_TYPE::DOT: return "LT 1 1 1;";
case PLOT_DASH_TYPE::DASHDOT: return "LT 4 6 1;";
case PLOT_DASH_TYPE::DASHDOTDOT: return "LT 7 8 1;";
default: return "LT;";
}
}
static double dpoint_dist( const VECTOR2D& a, const VECTOR2D& b )
{
VECTOR2D diff = a - b;
return sqrt( diff.x * diff.x + diff.y * diff.y );
}