1488 lines
54 KiB
C++
1488 lines
54 KiB
C++
/**
|
|
* @file drc_clearance_test_functions.cpp
|
|
*/
|
|
|
|
/*
|
|
* This program source code file is part of KiCad, a free EDA CAD application.
|
|
*
|
|
* Copyright (C) 2004-2018 Jean-Pierre Charras, jp.charras at wanadoo.fr
|
|
* Copyright (C) 2007 Dick Hollenbeck, dick@softplc.com
|
|
* Copyright (C) 2018 KiCad Developers, see AUTHORS.txt for contributors.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, you may find one here:
|
|
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
|
|
* or you may search the http://www.gnu.org website for the version 2 license,
|
|
* or you may write to the Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
|
|
*/
|
|
|
|
/**
|
|
* DRC control: these functions make a DRC between pads, tracks and pads versus tracks
|
|
*/
|
|
|
|
#include <fctsys.h>
|
|
#include <pcb_edit_frame.h>
|
|
#include <trigo.h>
|
|
|
|
#include <pcbnew.h>
|
|
#include <drc.h>
|
|
|
|
#include <class_board.h>
|
|
#include <class_module.h>
|
|
#include <class_track.h>
|
|
#include <class_zone.h>
|
|
#include <class_marker_pcb.h>
|
|
#include <math_for_graphics.h>
|
|
#include <polygon_test_point_inside.h>
|
|
#include <convert_basic_shapes_to_polygon.h>
|
|
#include <board_commit.h>
|
|
|
|
|
|
/* compare 2 convex polygons and return true if distance > aDist
|
|
* i.e if for each edge of the first polygon distance from each edge of the other polygon
|
|
* is >= aDist
|
|
*/
|
|
bool poly2polyDRC( wxPoint* aTref, int aTrefCount,
|
|
wxPoint* aTcompare, int aTcompareCount, int aDist )
|
|
{
|
|
/* Test if one polygon is contained in the other and thus the polygon overlap.
|
|
* This case is not covered by the following check if one polygone is
|
|
* completely contained in the other (because edges don't intersect)!
|
|
*/
|
|
if( TestPointInsidePolygon( aTref, aTrefCount, aTcompare[0] ) )
|
|
return false;
|
|
|
|
if( TestPointInsidePolygon( aTcompare, aTcompareCount, aTref[0] ) )
|
|
return false;
|
|
|
|
for( int ii = 0, jj = aTrefCount - 1; ii < aTrefCount; jj = ii, ii++ )
|
|
{ // for all edges in aTref
|
|
for( int kk = 0, ll = aTcompareCount - 1; kk < aTcompareCount; ll = kk, kk++ )
|
|
{ // for all edges in aTcompare
|
|
double d;
|
|
int intersect = TestForIntersectionOfStraightLineSegments(
|
|
aTref[ii].x, aTref[ii].y, aTref[jj].x, aTref[jj].y,
|
|
aTcompare[kk].x, aTcompare[kk].y, aTcompare[ll].x, aTcompare[ll].y,
|
|
NULL, NULL, &d );
|
|
|
|
if( intersect || ( d < aDist ) )
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* compare a trapezoids (can be rectangle) and a segment and return true if distance > aDist
|
|
*/
|
|
bool poly2segmentDRC( wxPoint* aTref, int aTrefCount, wxPoint aSegStart, wxPoint aSegEnd, int aDist )
|
|
{
|
|
/* Test if the segment is contained in the polygon.
|
|
* This case is not covered by the following check if the segment is
|
|
* completely contained in the polygon (because edges don't intersect)!
|
|
*/
|
|
if( TestPointInsidePolygon( aTref, aTrefCount, aSegStart ) )
|
|
return false;
|
|
|
|
for( int ii = 0, jj = aTrefCount-1; ii < aTrefCount; jj = ii, ii++ )
|
|
{ // for all edges in polygon
|
|
double d;
|
|
int intersect = TestForIntersectionOfStraightLineSegments(
|
|
aTref[ii].x, aTref[ii].y, aTref[jj].x, aTref[jj].y,
|
|
aSegStart.x, aSegStart.y, aSegEnd.x, aSegEnd.y,
|
|
NULL, NULL, &d );
|
|
|
|
if( intersect || ( d < aDist) )
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* compare a polygon to a point and return true if distance > aDist
|
|
* do not use this function for horizontal or vertical rectangles
|
|
* because there is a faster an easier way to compare the distance
|
|
*/
|
|
bool convex2pointDRC( wxPoint* aTref, int aTrefCount, wxPoint aPcompare, int aDist )
|
|
{
|
|
/* Test if aPcompare point is contained in the polygon.
|
|
* This case is not covered by the following check if this point is inside the polygon
|
|
*/
|
|
if( TestPointInsidePolygon( aTref, aTrefCount, aPcompare ) )
|
|
{
|
|
return false;
|
|
}
|
|
|
|
// Test distance between aPcompare and each segment of the polygon:
|
|
for( int ii = 0, jj = aTrefCount - 1; ii < aTrefCount; jj = ii, ii++ ) // for all edge in polygon
|
|
{
|
|
if( TestSegmentHit( aPcompare, aTref[ii], aTref[jj], aDist ) )
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
bool DRC::doTrackDrc( TRACK* aRefSeg, TRACK* aStart, bool testPads )
|
|
{
|
|
TRACK* track;
|
|
wxPoint delta; // length on X and Y axis of segments
|
|
LSET layerMask;
|
|
int net_code_ref;
|
|
wxPoint shape_pos;
|
|
|
|
std::vector<MARKER_PCB*> markers;
|
|
|
|
auto commitMarkers = [&]()
|
|
{
|
|
BOARD_COMMIT commit( m_pcbEditorFrame );
|
|
|
|
for( auto marker : markers )
|
|
commit.Add( marker );
|
|
|
|
commit.Push( wxEmptyString, false, false );
|
|
};
|
|
|
|
// Returns false if we should return false from call site, or true to continue
|
|
auto handleNewMarker = [&]() -> bool
|
|
{
|
|
if( !m_reportAllTrackErrors )
|
|
{
|
|
if( markers.size() > 0 )
|
|
commitMarkers();
|
|
|
|
return false;
|
|
}
|
|
else
|
|
return true;
|
|
};
|
|
|
|
NETCLASSPTR netclass = aRefSeg->GetNetClass();
|
|
BOARD_DESIGN_SETTINGS& dsnSettings = m_pcb->GetDesignSettings();
|
|
|
|
/* In order to make some calculations more easier or faster,
|
|
* pads and tracks coordinates will be made relative to the reference segment origin
|
|
*/
|
|
wxPoint origin = aRefSeg->GetStart(); // origin will be the origin of other coordinates
|
|
|
|
m_segmEnd = delta = aRefSeg->GetEnd() - origin;
|
|
m_segmAngle = 0;
|
|
|
|
layerMask = aRefSeg->GetLayerSet();
|
|
net_code_ref = aRefSeg->GetNetCode();
|
|
|
|
// Phase 0 : Test vias
|
|
if( aRefSeg->Type() == PCB_VIA_T )
|
|
{
|
|
const VIA *refvia = static_cast<const VIA*>( aRefSeg );
|
|
// test if the via size is smaller than minimum
|
|
if( refvia->GetViaType() == VIA_MICROVIA )
|
|
{
|
|
if( refvia->GetWidth() < dsnSettings.m_MicroViasMinSize )
|
|
{
|
|
markers.push_back( fillMarker( refvia, nullptr,
|
|
DRCE_TOO_SMALL_MICROVIA, nullptr ) );
|
|
if( !handleNewMarker() )
|
|
return false;
|
|
}
|
|
|
|
if( refvia->GetDrillValue() < dsnSettings.m_MicroViasMinDrill )
|
|
{
|
|
markers.push_back( fillMarker( refvia, nullptr,
|
|
DRCE_TOO_SMALL_MICROVIA_DRILL, nullptr ) );
|
|
if( !handleNewMarker() )
|
|
return false;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if( refvia->GetWidth() < dsnSettings.m_ViasMinSize )
|
|
{
|
|
markers.push_back( fillMarker( refvia, nullptr,
|
|
DRCE_TOO_SMALL_VIA, nullptr ) );
|
|
if( !handleNewMarker() )
|
|
return false;
|
|
}
|
|
|
|
if( refvia->GetDrillValue() < dsnSettings.m_ViasMinDrill )
|
|
{
|
|
markers.push_back( fillMarker( refvia, nullptr,
|
|
DRCE_TOO_SMALL_VIA_DRILL, nullptr ) );
|
|
if( !handleNewMarker() )
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// test if via's hole is bigger than its diameter
|
|
// This test is necessary since the via hole size and width can be modified
|
|
// and a default via hole can be bigger than some vias sizes
|
|
if( refvia->GetDrillValue() > refvia->GetWidth() )
|
|
{
|
|
markers.push_back( fillMarker( refvia, nullptr,
|
|
DRCE_VIA_HOLE_BIGGER, nullptr ) );
|
|
if( !handleNewMarker() )
|
|
return false;
|
|
}
|
|
|
|
// test if the type of via is allowed due to design rules
|
|
if( ( refvia->GetViaType() == VIA_MICROVIA ) &&
|
|
( m_pcb->GetDesignSettings().m_MicroViasAllowed == false ) )
|
|
{
|
|
markers.push_back( fillMarker( refvia, nullptr,
|
|
DRCE_MICRO_VIA_NOT_ALLOWED, nullptr ) );
|
|
if( !handleNewMarker() )
|
|
return false;
|
|
}
|
|
|
|
// test if the type of via is allowed due to design rules
|
|
if( ( refvia->GetViaType() == VIA_BLIND_BURIED ) &&
|
|
( m_pcb->GetDesignSettings().m_BlindBuriedViaAllowed == false ) )
|
|
{
|
|
markers.push_back( fillMarker( refvia, nullptr,
|
|
DRCE_BURIED_VIA_NOT_ALLOWED, nullptr ) );
|
|
if( !handleNewMarker() )
|
|
return false;
|
|
}
|
|
|
|
// For microvias: test if they are blind vias and only between 2 layers
|
|
// because they are used for very small drill size and are drill by laser
|
|
// and **only one layer** can be drilled
|
|
if( refvia->GetViaType() == VIA_MICROVIA )
|
|
{
|
|
PCB_LAYER_ID layer1, layer2;
|
|
bool err = true;
|
|
|
|
refvia->LayerPair( &layer1, &layer2 );
|
|
|
|
if( layer1 > layer2 )
|
|
std::swap( layer1, layer2 );
|
|
|
|
if( layer2 == B_Cu && layer1 == m_pcb->GetDesignSettings().GetCopperLayerCount() - 2 )
|
|
err = false;
|
|
else if( layer1 == F_Cu && layer2 == In1_Cu )
|
|
err = false;
|
|
|
|
if( err )
|
|
{
|
|
markers.push_back( fillMarker( refvia, nullptr,
|
|
DRCE_MICRO_VIA_INCORRECT_LAYER_PAIR, nullptr ) );
|
|
if( !handleNewMarker() )
|
|
return false;
|
|
}
|
|
}
|
|
|
|
}
|
|
else // This is a track segment
|
|
{
|
|
if( aRefSeg->GetWidth() < dsnSettings.m_TrackMinWidth )
|
|
{
|
|
markers.push_back( fillMarker( aRefSeg, nullptr,
|
|
DRCE_TOO_SMALL_TRACK_WIDTH, nullptr ) );
|
|
if( !handleNewMarker() )
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// for a non horizontal or vertical segment Compute the segment angle
|
|
// in tenths of degrees and its length
|
|
if( delta.x || delta.y )
|
|
{
|
|
// Compute the segment angle in 0,1 degrees
|
|
m_segmAngle = ArcTangente( delta.y, delta.x );
|
|
|
|
// Compute the segment length: we build an equivalent rotated segment,
|
|
// this segment is horizontal, therefore dx = length
|
|
RotatePoint( &delta, m_segmAngle ); // delta.x = length, delta.y = 0
|
|
}
|
|
|
|
m_segmLength = delta.x;
|
|
|
|
/******************************************/
|
|
/* Phase 1 : test DRC track to pads : */
|
|
/******************************************/
|
|
|
|
/* Use a dummy pad to test DRC tracks versus holes, for pads not on all copper layers
|
|
* but having a hole
|
|
* This dummy pad has the size and shape of the hole
|
|
* to test tracks to pad hole DRC, using checkClearanceSegmToPad test function.
|
|
* Therefore, this dummy pad is a circle or an oval.
|
|
* A pad must have a parent because some functions expect a non null parent
|
|
* to find the parent board, and some other data
|
|
*/
|
|
MODULE dummymodule( m_pcb ); // Creates a dummy parent
|
|
D_PAD dummypad( &dummymodule );
|
|
|
|
dummypad.SetLayerSet( LSET::AllCuMask() ); // Ensure the hole is on all layers
|
|
|
|
// Compute the min distance to pads
|
|
if( testPads )
|
|
{
|
|
unsigned pad_count = m_pcb->GetPadCount();
|
|
|
|
auto pads = m_pcb->GetPads();
|
|
|
|
for( unsigned ii = 0; ii < pad_count; ++ii )
|
|
{
|
|
D_PAD* pad = pads[ii];
|
|
|
|
/* No problem if pads are on another layer,
|
|
* But if a drill hole exists (a pad on a single layer can have a hole!)
|
|
* we must test the hole
|
|
*/
|
|
if( !( pad->GetLayerSet() & layerMask ).any() )
|
|
{
|
|
/* We must test the pad hole. In order to use the function
|
|
* checkClearanceSegmToPad(),a pseudo pad is used, with a shape and a
|
|
* size like the hole
|
|
*/
|
|
if( pad->GetDrillSize().x == 0 )
|
|
continue;
|
|
|
|
dummypad.SetSize( pad->GetDrillSize() );
|
|
dummypad.SetPosition( pad->GetPosition() );
|
|
dummypad.SetShape( pad->GetDrillShape() == PAD_DRILL_SHAPE_OBLONG ?
|
|
PAD_SHAPE_OVAL : PAD_SHAPE_CIRCLE );
|
|
dummypad.SetOrientation( pad->GetOrientation() );
|
|
|
|
m_padToTestPos = dummypad.GetPosition() - origin;
|
|
|
|
if( !checkClearanceSegmToPad( &dummypad, aRefSeg->GetWidth(),
|
|
netclass->GetClearance() ) )
|
|
{
|
|
markers.push_back( fillMarker( aRefSeg, pad,
|
|
DRCE_TRACK_NEAR_THROUGH_HOLE, nullptr ) );
|
|
if( !handleNewMarker() )
|
|
return false;
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
// The pad must be in a net (i.e pt_pad->GetNet() != 0 )
|
|
// but no problem if the pad netcode is the current netcode (same net)
|
|
if( pad->GetNetCode() // the pad must be connected
|
|
&& net_code_ref == pad->GetNetCode() ) // the pad net is the same as current net -> Ok
|
|
continue;
|
|
|
|
// DRC for the pad
|
|
shape_pos = pad->ShapePos();
|
|
m_padToTestPos = shape_pos - origin;
|
|
|
|
if( !checkClearanceSegmToPad( pad, aRefSeg->GetWidth(),
|
|
aRefSeg->GetClearance( pad ) ) )
|
|
{
|
|
markers.push_back( fillMarker( aRefSeg, pad,
|
|
DRCE_TRACK_NEAR_PAD, nullptr ) );
|
|
if( !handleNewMarker() )
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
/***********************************************/
|
|
/* Phase 2: test DRC with other track segments */
|
|
/***********************************************/
|
|
|
|
// At this point the reference segment is the X axis
|
|
|
|
// Test the reference segment with other track segments
|
|
wxPoint segStartPoint;
|
|
wxPoint segEndPoint;
|
|
|
|
for( track = aStart; track; track = track->Next() )
|
|
{
|
|
// No problem if segments have the same net code:
|
|
if( net_code_ref == track->GetNetCode() )
|
|
continue;
|
|
|
|
// No problem if segment are on different layers :
|
|
if( !( layerMask & track->GetLayerSet() ).any() )
|
|
continue;
|
|
|
|
// the minimum distance = clearance plus half the reference track
|
|
// width plus half the other track's width
|
|
int w_dist = aRefSeg->GetClearance( track );
|
|
w_dist += ( aRefSeg->GetWidth() + track->GetWidth() ) / 2;
|
|
|
|
// Due to many double to int conversions during calculations, which
|
|
// create rounding issues,
|
|
// the exact clearance margin cannot be really known.
|
|
// To avoid false bad DRC detection due to these rounding issues,
|
|
// slightly decrease the w_dist (remove one nanometer is enough !)
|
|
w_dist -= 1;
|
|
|
|
// If the reference segment is a via, we test it here
|
|
if( aRefSeg->Type() == PCB_VIA_T )
|
|
{
|
|
delta = track->GetEnd() - track->GetStart();
|
|
segStartPoint = aRefSeg->GetStart() - track->GetStart();
|
|
|
|
if( track->Type() == PCB_VIA_T )
|
|
{
|
|
// Test distance between two vias, i.e. two circles, trivial case
|
|
if( EuclideanNorm( segStartPoint ) < w_dist )
|
|
{
|
|
markers.push_back( fillMarker( aRefSeg, track,
|
|
DRCE_VIA_NEAR_VIA, nullptr ) );
|
|
if( !handleNewMarker() )
|
|
return false;
|
|
}
|
|
}
|
|
else // test via to segment
|
|
{
|
|
// Compute l'angle du segment a tester;
|
|
double angle = ArcTangente( delta.y, delta.x );
|
|
|
|
// Compute new coordinates ( the segment become horizontal)
|
|
RotatePoint( &delta, angle );
|
|
RotatePoint( &segStartPoint, angle );
|
|
|
|
if( !checkMarginToCircle( segStartPoint, w_dist, delta.x ) )
|
|
{
|
|
markers.push_back( fillMarker( track, aRefSeg,
|
|
DRCE_VIA_NEAR_TRACK, nullptr ) );
|
|
if( !handleNewMarker() )
|
|
return false;
|
|
}
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
/* We compute segStartPoint, segEndPoint = starting and ending point coordinates for
|
|
* the segment to test in the new axis : the new X axis is the
|
|
* reference segment. We must translate and rotate the segment to test
|
|
*/
|
|
segStartPoint = track->GetStart() - origin;
|
|
segEndPoint = track->GetEnd() - origin;
|
|
RotatePoint( &segStartPoint, m_segmAngle );
|
|
RotatePoint( &segEndPoint, m_segmAngle );
|
|
|
|
if( track->Type() == PCB_VIA_T )
|
|
{
|
|
if( checkMarginToCircle( segStartPoint, w_dist, m_segmLength ) )
|
|
continue;
|
|
|
|
markers.push_back( fillMarker( aRefSeg, track,
|
|
DRCE_TRACK_NEAR_VIA, nullptr ) );
|
|
if( !handleNewMarker() )
|
|
return false;
|
|
}
|
|
|
|
/* We have changed axis:
|
|
* the reference segment is Horizontal.
|
|
* 3 cases : the segment to test can be parallel, perpendicular or have another direction
|
|
*/
|
|
if( segStartPoint.y == segEndPoint.y ) // parallel segments
|
|
{
|
|
if( abs( segStartPoint.y ) >= w_dist )
|
|
continue;
|
|
|
|
// Ensure segStartPoint.x <= segEndPoint.x
|
|
if( segStartPoint.x > segEndPoint.x )
|
|
std::swap( segStartPoint.x, segEndPoint.x );
|
|
|
|
if( segStartPoint.x > ( -w_dist ) && segStartPoint.x < ( m_segmLength + w_dist ) )
|
|
{
|
|
// the start point is inside the reference range
|
|
// X........
|
|
// O--REF--+
|
|
|
|
// Fine test : we consider the rounded shape of each end of the track segment:
|
|
if( segStartPoint.x >= 0 && segStartPoint.x <= m_segmLength )
|
|
{
|
|
markers.push_back( fillMarker( aRefSeg, track,
|
|
DRCE_TRACK_ENDS1, nullptr ) );
|
|
if( !handleNewMarker() )
|
|
return false;
|
|
}
|
|
|
|
if( !checkMarginToCircle( segStartPoint, w_dist, m_segmLength ) )
|
|
{
|
|
markers.push_back( fillMarker( aRefSeg, track,
|
|
DRCE_TRACK_ENDS2, nullptr ) );
|
|
if( !handleNewMarker() )
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if( segEndPoint.x > ( -w_dist ) && segEndPoint.x < ( m_segmLength + w_dist ) )
|
|
{
|
|
// the end point is inside the reference range
|
|
// .....X
|
|
// O--REF--+
|
|
// Fine test : we consider the rounded shape of the ends
|
|
if( segEndPoint.x >= 0 && segEndPoint.x <= m_segmLength )
|
|
{
|
|
markers.push_back( fillMarker( aRefSeg, track,
|
|
DRCE_TRACK_ENDS3, nullptr ) );
|
|
if( !handleNewMarker() )
|
|
return false;
|
|
}
|
|
|
|
if( !checkMarginToCircle( segEndPoint, w_dist, m_segmLength ) )
|
|
{
|
|
markers.push_back( fillMarker( aRefSeg, track,
|
|
DRCE_TRACK_ENDS4, nullptr ) );
|
|
if( !handleNewMarker() )
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if( segStartPoint.x <= 0 && segEndPoint.x >= 0 )
|
|
{
|
|
// the segment straddles the reference range (this actually only
|
|
// checks if it straddles the origin, because the other cases where already
|
|
// handled)
|
|
// X.............X
|
|
// O--REF--+
|
|
markers.push_back( fillMarker( aRefSeg, track,
|
|
DRCE_TRACK_SEGMENTS_TOO_CLOSE, nullptr ) );
|
|
if( !handleNewMarker() )
|
|
return false;
|
|
}
|
|
}
|
|
else if( segStartPoint.x == segEndPoint.x ) // perpendicular segments
|
|
{
|
|
if( ( segStartPoint.x <= ( -w_dist ) ) || ( segStartPoint.x >= ( m_segmLength + w_dist ) ) )
|
|
continue;
|
|
|
|
// Test if segments are crossing
|
|
if( segStartPoint.y > segEndPoint.y )
|
|
std::swap( segStartPoint.y, segEndPoint.y );
|
|
|
|
if( ( segStartPoint.y < 0 ) && ( segEndPoint.y > 0 ) )
|
|
{
|
|
markers.push_back( fillMarker( aRefSeg, track,
|
|
DRCE_TRACKS_CROSSING, nullptr ) );
|
|
if( !handleNewMarker() )
|
|
return false;
|
|
}
|
|
|
|
// At this point the drc error is due to an end near a reference segm end
|
|
if( !checkMarginToCircle( segStartPoint, w_dist, m_segmLength ) )
|
|
{
|
|
markers.push_back( fillMarker( aRefSeg, track,
|
|
DRCE_ENDS_PROBLEM1, nullptr ) );
|
|
if( !handleNewMarker() )
|
|
return false;
|
|
}
|
|
if( !checkMarginToCircle( segEndPoint, w_dist, m_segmLength ) )
|
|
{
|
|
markers.push_back( fillMarker( aRefSeg, track,
|
|
DRCE_ENDS_PROBLEM2, nullptr ) );
|
|
if( !handleNewMarker() )
|
|
return false;
|
|
}
|
|
}
|
|
else // segments quelconques entre eux
|
|
{
|
|
// calcul de la "surface de securite du segment de reference
|
|
// First rought 'and fast) test : the track segment is like a rectangle
|
|
|
|
m_xcliplo = m_ycliplo = -w_dist;
|
|
m_xcliphi = m_segmLength + w_dist;
|
|
m_ycliphi = w_dist;
|
|
|
|
// A fine test is needed because a serment is not exactly a
|
|
// rectangle, it has rounded ends
|
|
if( !checkLine( segStartPoint, segEndPoint ) )
|
|
{
|
|
/* 2eme passe : the track has rounded ends.
|
|
* we must a fine test for each rounded end and the
|
|
* rectangular zone
|
|
*/
|
|
|
|
m_xcliplo = 0;
|
|
m_xcliphi = m_segmLength;
|
|
|
|
if( !checkLine( segStartPoint, segEndPoint ) )
|
|
{
|
|
markers.push_back( fillMarker( aRefSeg, track,
|
|
DRCE_ENDS_PROBLEM3, nullptr ) );
|
|
if( !handleNewMarker() )
|
|
return false;
|
|
}
|
|
else // The drc error is due to the starting or the ending point of the reference segment
|
|
{
|
|
// Test the starting and the ending point
|
|
segStartPoint = track->GetStart();
|
|
segEndPoint = track->GetEnd();
|
|
delta = segEndPoint - segStartPoint;
|
|
|
|
// Compute the segment orientation (angle) en 0,1 degre
|
|
double angle = ArcTangente( delta.y, delta.x );
|
|
|
|
// Compute the segment length: delta.x = length after rotation
|
|
RotatePoint( &delta, angle );
|
|
|
|
/* Comute the reference segment coordinates relatives to a
|
|
* X axis = current tested segment
|
|
*/
|
|
wxPoint relStartPos = aRefSeg->GetStart() - segStartPoint;
|
|
wxPoint relEndPos = aRefSeg->GetEnd() - segStartPoint;
|
|
|
|
RotatePoint( &relStartPos, angle );
|
|
RotatePoint( &relEndPos, angle );
|
|
|
|
if( !checkMarginToCircle( relStartPos, w_dist, delta.x ) )
|
|
{
|
|
markers.push_back( fillMarker( aRefSeg, track,
|
|
DRCE_ENDS_PROBLEM4, nullptr ) );
|
|
if( !handleNewMarker() )
|
|
return false;
|
|
}
|
|
|
|
if( !checkMarginToCircle( relEndPos, w_dist, delta.x ) )
|
|
{
|
|
markers.push_back( fillMarker( aRefSeg, track,
|
|
DRCE_ENDS_PROBLEM5, nullptr ) );
|
|
if( !handleNewMarker() )
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if( markers.size() > 0 )
|
|
{
|
|
commitMarkers();
|
|
return false;
|
|
}
|
|
else
|
|
return true;
|
|
}
|
|
|
|
|
|
bool DRC::doEdgeZoneDrc( ZONE_CONTAINER* aArea, int aCornerIndex )
|
|
{
|
|
if( !aArea->IsOnCopperLayer() ) // Cannot have a Drc error if not on copper layer
|
|
return true;
|
|
// Get polygon, contour and vertex index.
|
|
SHAPE_POLY_SET::VERTEX_INDEX index;
|
|
|
|
// If the vertex does not exist, there is no conflict
|
|
if( !aArea->Outline()->GetRelativeIndices( aCornerIndex, &index ) )
|
|
return true;
|
|
|
|
// Retrieve the selected contour
|
|
SHAPE_LINE_CHAIN contour;
|
|
contour = aArea->Outline()->Polygon( index.m_polygon )[index.m_contour];
|
|
|
|
// Retrieve the segment that starts at aCornerIndex-th corner.
|
|
SEG selectedSegment = contour.Segment( index.m_vertex );
|
|
|
|
VECTOR2I start = selectedSegment.A;
|
|
VECTOR2I end = selectedSegment.B;
|
|
|
|
// iterate through all areas
|
|
for( int ia2 = 0; ia2 < m_pcb->GetAreaCount(); ia2++ )
|
|
{
|
|
ZONE_CONTAINER* area_to_test = m_pcb->GetArea( ia2 );
|
|
int zone_clearance = std::max( area_to_test->GetZoneClearance(),
|
|
aArea->GetZoneClearance() );
|
|
|
|
// test for same layer
|
|
if( area_to_test->GetLayer() != aArea->GetLayer() )
|
|
continue;
|
|
|
|
// Test for same net
|
|
if( ( aArea->GetNetCode() == area_to_test->GetNetCode() ) && (aArea->GetNetCode() >= 0) )
|
|
continue;
|
|
|
|
// test for same priority
|
|
if( area_to_test->GetPriority() != aArea->GetPriority() )
|
|
continue;
|
|
|
|
// test for same type
|
|
if( area_to_test->GetIsKeepout() != aArea->GetIsKeepout() )
|
|
continue;
|
|
|
|
// For keepout, there is no clearance, so use a minimal value for it
|
|
// use 1, not 0 as value to avoid some issues in tests
|
|
if( area_to_test->GetIsKeepout() )
|
|
zone_clearance = 1;
|
|
|
|
// test for ending line inside area_to_test
|
|
if( area_to_test->Outline()->Contains( end ) )
|
|
{
|
|
// COPPERAREA_COPPERAREA error: corner inside copper area
|
|
m_currentMarker = fillMarker( aArea, static_cast<wxPoint>( end ),
|
|
COPPERAREA_INSIDE_COPPERAREA,
|
|
m_currentMarker );
|
|
return false;
|
|
}
|
|
|
|
// now test spacing between areas
|
|
int ax1 = start.x;
|
|
int ay1 = start.y;
|
|
int ax2 = end.x;
|
|
int ay2 = end.y;
|
|
|
|
// Iterate through all edges in the polygon.
|
|
SHAPE_POLY_SET::SEGMENT_ITERATOR iterator;
|
|
for( iterator = area_to_test->Outline()->IterateSegmentsWithHoles(); iterator; iterator++ )
|
|
{
|
|
SEG segment = *iterator;
|
|
|
|
int bx1 = segment.A.x;
|
|
int by1 = segment.A.y;
|
|
int bx2 = segment.B.x;
|
|
int by2 = segment.B.y;
|
|
|
|
int x, y; // variables containing the intersecting point coordinates
|
|
int d = GetClearanceBetweenSegments( bx1, by1, bx2, by2,
|
|
0,
|
|
ax1, ay1, ax2, ay2,
|
|
0,
|
|
zone_clearance,
|
|
&x, &y );
|
|
|
|
if( d < zone_clearance )
|
|
{
|
|
// COPPERAREA_COPPERAREA error : edge intersect or too close
|
|
m_currentMarker = fillMarker( aArea, wxPoint( x, y ),
|
|
COPPERAREA_CLOSE_TO_COPPERAREA,
|
|
m_currentMarker );
|
|
return false;
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
bool DRC::checkClearancePadToPad( D_PAD* aRefPad, D_PAD* aPad )
|
|
{
|
|
int dist;
|
|
double pad_angle;
|
|
|
|
// Get the clearance between the 2 pads. this is the min distance between aRefPad and aPad
|
|
int dist_min = aRefPad->GetClearance( aPad );
|
|
|
|
// relativePadPos is the aPad shape position relative to the aRefPad shape position
|
|
wxPoint relativePadPos = aPad->ShapePos() - aRefPad->ShapePos();
|
|
|
|
dist = KiROUND( EuclideanNorm( relativePadPos ) );
|
|
|
|
// Quick test: Clearance is OK if the bounding circles are further away than "dist_min"
|
|
int delta = dist - aRefPad->GetBoundingRadius() - aPad->GetBoundingRadius();
|
|
|
|
if( delta >= dist_min )
|
|
return true;
|
|
|
|
/* Here, pads are near and DRC depend on the pad shapes
|
|
* We must compare distance using a fine shape analysis
|
|
* Because a circle or oval shape is the easier shape to test, try to have
|
|
* aRefPad shape type = PAD_SHAPE_CIRCLE or PAD_SHAPE_OVAL.
|
|
* if aRefPad = TRAP. and aPad = RECT, also swap pads
|
|
* Swap aRefPad and aPad if needed
|
|
*/
|
|
bool swap_pads;
|
|
swap_pads = false;
|
|
|
|
// swap pads to make comparisons easier
|
|
// Note also a ROUNDRECT pad with a corner radius = r can be considered as
|
|
// a smaller RECT (size - 2*r) with a clearance increased by r
|
|
// priority is aRefPad = ROUND then OVAL then RECT/ROUNDRECT then other
|
|
if( aRefPad->GetShape() != aPad->GetShape() && aRefPad->GetShape() != PAD_SHAPE_CIRCLE )
|
|
{
|
|
// pad ref shape is here oval, rect, roundrect, trapezoid or custom
|
|
switch( aPad->GetShape() )
|
|
{
|
|
case PAD_SHAPE_CIRCLE:
|
|
swap_pads = true;
|
|
break;
|
|
|
|
case PAD_SHAPE_OVAL:
|
|
swap_pads = true;
|
|
break;
|
|
|
|
case PAD_SHAPE_RECT:
|
|
case PAD_SHAPE_ROUNDRECT:
|
|
if( aRefPad->GetShape() != PAD_SHAPE_OVAL )
|
|
swap_pads = true;
|
|
break;
|
|
|
|
case PAD_SHAPE_TRAPEZOID:
|
|
case PAD_SHAPE_CUSTOM:
|
|
break;
|
|
}
|
|
}
|
|
|
|
if( swap_pads )
|
|
{
|
|
std::swap( aRefPad, aPad );
|
|
relativePadPos = -relativePadPos;
|
|
}
|
|
|
|
// corners of aRefPad (used only for rect/roundrect/trap pad)
|
|
wxPoint polyref[4];
|
|
// corners of aRefPad (used only for custom pad)
|
|
SHAPE_POLY_SET polysetref;
|
|
|
|
// corners of aPad (used only for rect/roundrect/trap pad)
|
|
wxPoint polycompare[4];
|
|
// corners of aPad (used only custom pad)
|
|
SHAPE_POLY_SET polysetcompare;
|
|
|
|
/* Because pad exchange, aRefPad shape is PAD_SHAPE_CIRCLE or PAD_SHAPE_OVAL,
|
|
* if one of the 2 pads was a PAD_SHAPE_CIRCLE or PAD_SHAPE_OVAL.
|
|
* Therefore, if aRefPad is a PAD_SHAPE_RECT, PAD_SHAPE_ROUNDRECT or a PAD_SHAPE_TRAPEZOID,
|
|
* aPad is also a PAD_SHAPE_RECT, PAD_SHAPE_ROUNDRECT or a PAD_SHAPE_TRAPEZOID
|
|
*/
|
|
bool diag = true;
|
|
|
|
switch( aRefPad->GetShape() )
|
|
{
|
|
case PAD_SHAPE_CIRCLE:
|
|
|
|
/* One can use checkClearanceSegmToPad to test clearance
|
|
* aRefPad is like a track segment with a null length and a witdth = GetSize().x
|
|
*/
|
|
m_segmLength = 0;
|
|
m_segmAngle = 0;
|
|
|
|
m_segmEnd.x = m_segmEnd.y = 0;
|
|
|
|
m_padToTestPos = relativePadPos;
|
|
diag = checkClearanceSegmToPad( aPad, aRefPad->GetSize().x, dist_min );
|
|
break;
|
|
|
|
case PAD_SHAPE_TRAPEZOID:
|
|
case PAD_SHAPE_ROUNDRECT:
|
|
case PAD_SHAPE_RECT:
|
|
case PAD_SHAPE_CUSTOM:
|
|
// pad_angle = pad orient relative to the aRefPad orient
|
|
pad_angle = aRefPad->GetOrientation() + aPad->GetOrientation();
|
|
NORMALIZE_ANGLE_POS( pad_angle );
|
|
|
|
if( aRefPad->GetShape() == PAD_SHAPE_ROUNDRECT )
|
|
{
|
|
int padRadius = aRefPad->GetRoundRectCornerRadius();
|
|
dist_min += padRadius;
|
|
GetRoundRectCornerCenters( polyref, padRadius, wxPoint( 0, 0 ),
|
|
aRefPad->GetSize(), aRefPad->GetOrientation() );
|
|
}
|
|
else if( aRefPad->GetShape() == PAD_SHAPE_CUSTOM )
|
|
{
|
|
polysetref.Append( aRefPad->GetCustomShapeAsPolygon() );
|
|
|
|
// The reference pad can be rotated. calculate the rotated
|
|
// coordiantes ( note, the ref pad position is the origin of
|
|
// coordinates for this drc test)
|
|
aRefPad->CustomShapeAsPolygonToBoardPosition( &polysetref,
|
|
wxPoint( 0, 0 ), aRefPad->GetOrientation() );
|
|
}
|
|
else
|
|
{
|
|
// BuildPadPolygon has meaning for rect a trapeziod shapes
|
|
// and returns the 4 corners
|
|
aRefPad->BuildPadPolygon( polyref, wxSize( 0, 0 ), aRefPad->GetOrientation() );
|
|
}
|
|
|
|
switch( aPad->GetShape() )
|
|
{
|
|
case PAD_SHAPE_ROUNDRECT:
|
|
case PAD_SHAPE_RECT:
|
|
case PAD_SHAPE_TRAPEZOID:
|
|
case PAD_SHAPE_CUSTOM:
|
|
if( aPad->GetShape() == PAD_SHAPE_ROUNDRECT )
|
|
{
|
|
int padRadius = aPad->GetRoundRectCornerRadius();
|
|
dist_min += padRadius;
|
|
GetRoundRectCornerCenters( polycompare, padRadius, relativePadPos,
|
|
aPad->GetSize(), aPad->GetOrientation() );
|
|
}
|
|
else if( aPad->GetShape() == PAD_SHAPE_CUSTOM )
|
|
{
|
|
polysetcompare.Append( aPad->GetCustomShapeAsPolygon() );
|
|
|
|
// The pad to compare can be rotated. calculate the rotated
|
|
// coordinattes ( note, the pad to compare position
|
|
// is the relativePadPos for this drc test
|
|
aPad->CustomShapeAsPolygonToBoardPosition( &polysetcompare,
|
|
relativePadPos, aPad->GetOrientation() );
|
|
}
|
|
else
|
|
{
|
|
aPad->BuildPadPolygon( polycompare, wxSize( 0, 0 ), aPad->GetOrientation() );
|
|
|
|
// Move aPad shape to relativePadPos
|
|
for( int ii = 0; ii < 4; ii++ )
|
|
polycompare[ii] += relativePadPos;
|
|
}
|
|
// And now test polygons: We have 3 cases:
|
|
// one poly is complex and the other is basic (has only 4 corners)
|
|
// both polys are complex
|
|
// both polys are basic (have only 4 corners) the most usual case
|
|
if( polysetref.OutlineCount() && polysetcompare.OutlineCount() == 0)
|
|
{
|
|
const SHAPE_LINE_CHAIN& refpoly = polysetref.COutline( 0 );
|
|
// And now test polygons:
|
|
if( !poly2polyDRC( (wxPoint*) &refpoly.CPoint( 0 ), refpoly.PointCount(),
|
|
polycompare, 4, dist_min ) )
|
|
diag = false;
|
|
}
|
|
else if( polysetref.OutlineCount() == 0 && polysetcompare.OutlineCount())
|
|
{
|
|
const SHAPE_LINE_CHAIN& cmppoly = polysetcompare.COutline( 0 );
|
|
// And now test polygons:
|
|
if( !poly2polyDRC( (wxPoint*) &cmppoly.CPoint( 0 ), cmppoly.PointCount(),
|
|
polyref, 4, dist_min ) )
|
|
diag = false;
|
|
}
|
|
else if( polysetref.OutlineCount() && polysetcompare.OutlineCount() )
|
|
{
|
|
const SHAPE_LINE_CHAIN& refpoly = polysetref.COutline( 0 );
|
|
const SHAPE_LINE_CHAIN& cmppoly = polysetcompare.COutline( 0 );
|
|
|
|
// And now test polygons:
|
|
if( !poly2polyDRC( (wxPoint*) &refpoly.CPoint( 0 ), refpoly.PointCount(),
|
|
(wxPoint*) &cmppoly.CPoint( 0 ), cmppoly.PointCount(), dist_min ) )
|
|
diag = false;
|
|
}
|
|
else if( !poly2polyDRC( polyref, 4, polycompare, 4, dist_min ) )
|
|
diag = false;
|
|
break;
|
|
|
|
default:
|
|
wxLogDebug( wxT( "DRC::checkClearancePadToPad: unexpected pad shape %d" ), aPad->GetShape() );
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case PAD_SHAPE_OVAL: /* an oval pad is like a track segment */
|
|
{
|
|
/* Create a track segment with same dimensions as the oval aRefPad
|
|
* and use checkClearanceSegmToPad function to test aPad to aRefPad clearance
|
|
*/
|
|
int segm_width;
|
|
m_segmAngle = aRefPad->GetOrientation(); // Segment orient.
|
|
|
|
if( aRefPad->GetSize().y < aRefPad->GetSize().x ) // Build an horizontal equiv segment
|
|
{
|
|
segm_width = aRefPad->GetSize().y;
|
|
m_segmLength = aRefPad->GetSize().x - aRefPad->GetSize().y;
|
|
}
|
|
else // Vertical oval: build an horizontal equiv segment and rotate 90.0 deg
|
|
{
|
|
segm_width = aRefPad->GetSize().x;
|
|
m_segmLength = aRefPad->GetSize().y - aRefPad->GetSize().x;
|
|
m_segmAngle += 900;
|
|
}
|
|
|
|
/* the start point must be 0,0 and currently relativePadPos
|
|
* is relative the center of pad coordinate */
|
|
wxPoint segstart;
|
|
segstart.x = -m_segmLength / 2; // Start point coordinate of the horizontal equivalent segment
|
|
|
|
RotatePoint( &segstart, m_segmAngle ); // actual start point coordinate of the equivalent segment
|
|
// Calculate segment end position relative to the segment origin
|
|
m_segmEnd.x = -2 * segstart.x;
|
|
m_segmEnd.y = -2 * segstart.y;
|
|
|
|
// Recalculate the equivalent segment angle in 0,1 degrees
|
|
// to prepare a call to checkClearanceSegmToPad()
|
|
m_segmAngle = ArcTangente( m_segmEnd.y, m_segmEnd.x );
|
|
|
|
// move pad position relative to the segment origin
|
|
m_padToTestPos = relativePadPos - segstart;
|
|
|
|
// Use segment to pad check to test the second pad:
|
|
diag = checkClearanceSegmToPad( aPad, segm_width, dist_min );
|
|
break;
|
|
}
|
|
|
|
default:
|
|
wxMessageBox( wxT( "DRC::checkClearancePadToPad: unknown pad shape" ) );
|
|
break;
|
|
}
|
|
|
|
return diag;
|
|
}
|
|
|
|
|
|
/* test if distance between a segment is > aMinDist
|
|
* segment start point is assumed in (0,0) and segment start point in m_segmEnd
|
|
* and its orientation is m_segmAngle (m_segmAngle must be already initialized)
|
|
* and have aSegmentWidth.
|
|
*/
|
|
bool DRC::checkClearanceSegmToPad( const D_PAD* aPad, int aSegmentWidth, int aMinDist )
|
|
{
|
|
// Note:
|
|
// we are using a horizontal segment for test, because we know here
|
|
// only the length and orientation+ of the segment
|
|
// Therefore the coordinates of the shape of pad to compare
|
|
// must be calculated in a axis system rotated by m_segmAngle
|
|
// and centered to the segment origin, before they can be tested
|
|
// against the segment
|
|
// We are using:
|
|
// m_padToTestPos the position of the pad shape in this axis system
|
|
// m_segmAngle the axis system rotation
|
|
|
|
int segmHalfWidth = aSegmentWidth / 2;
|
|
int distToLine = segmHalfWidth + aMinDist;
|
|
|
|
wxSize padHalfsize; // half dimension of the pad
|
|
|
|
if( aPad->GetShape() == PAD_SHAPE_CUSTOM )
|
|
{
|
|
// For a custom pad, the pad size has no meaning, we only can
|
|
// use the bounding radius
|
|
padHalfsize.x = padHalfsize.y = aPad->GetBoundingRadius();
|
|
}
|
|
else
|
|
{
|
|
padHalfsize = aPad->GetSize() / 2;
|
|
}
|
|
|
|
if( aPad->GetShape() == PAD_SHAPE_TRAPEZOID ) // The size is bigger, due to GetDelta() extra size
|
|
{
|
|
padHalfsize.x += std::abs(aPad->GetDelta().y) / 2; // Remember: GetDelta().y is the GetSize().x change
|
|
padHalfsize.y += std::abs(aPad->GetDelta().x) / 2; // Remember: GetDelta().x is the GetSize().y change
|
|
}
|
|
|
|
if( aPad->GetShape() == PAD_SHAPE_CIRCLE )
|
|
{
|
|
/* Easy case: just test the distance between segment and pad centre
|
|
* calculate pad coordinates in the X,Y axis with X axis = segment to test
|
|
*/
|
|
RotatePoint( &m_padToTestPos, m_segmAngle );
|
|
return checkMarginToCircle( m_padToTestPos, distToLine + padHalfsize.x, m_segmLength );
|
|
}
|
|
|
|
/* calculate the bounding box of the pad, including the clearance and the segment width
|
|
* if the line from 0 to m_segmEnd does not intersect this bounding box,
|
|
* the clearance is always OK
|
|
* But if intersect, a better analysis of the pad shape must be done.
|
|
*/
|
|
m_xcliplo = m_padToTestPos.x - distToLine - padHalfsize.x;
|
|
m_ycliplo = m_padToTestPos.y - distToLine - padHalfsize.y;
|
|
m_xcliphi = m_padToTestPos.x + distToLine + padHalfsize.x;
|
|
m_ycliphi = m_padToTestPos.y + distToLine + padHalfsize.y;
|
|
|
|
wxPoint startPoint( 0, 0 );
|
|
wxPoint endPoint = m_segmEnd;
|
|
|
|
double orient = aPad->GetOrientation();
|
|
|
|
RotatePoint( &startPoint, m_padToTestPos, -orient );
|
|
RotatePoint( &endPoint, m_padToTestPos, -orient );
|
|
|
|
if( checkLine( startPoint, endPoint ) )
|
|
return true;
|
|
|
|
/* segment intersects the bounding box. But there is not always a DRC error.
|
|
* A fine analysis of the pad shape must be done.
|
|
*/
|
|
switch( aPad->GetShape() )
|
|
{
|
|
case PAD_SHAPE_CIRCLE:
|
|
// This case was already tested, so it cannot be found here.
|
|
// it is here just to avoid compil warning, and to remember
|
|
// it is already tested.
|
|
return false;
|
|
|
|
case PAD_SHAPE_OVAL:
|
|
{
|
|
/* an oval is a complex shape, but is a rectangle and 2 circles
|
|
* these 3 basic shapes are more easy to test.
|
|
*
|
|
* In calculations we are using a vertical or horizontal oval shape
|
|
* (i.e. a vertical or horizontal rounded segment)
|
|
*/
|
|
wxPoint cstart = m_padToTestPos;
|
|
wxPoint cend = m_padToTestPos; // center of each circle
|
|
int delta = std::abs( padHalfsize.y - padHalfsize.x );
|
|
int radius = std::min( padHalfsize.y, padHalfsize.x );
|
|
|
|
if( padHalfsize.x > padHalfsize.y ) // horizontal equivalent segment
|
|
{
|
|
cstart.x -= delta;
|
|
cend.x += delta;
|
|
// Build the rectangular clearance area between the two circles
|
|
// the rect starts at cstart.x and ends at cend.x and its height
|
|
// is (radius + distToLine)*2
|
|
m_xcliplo = cstart.x;
|
|
m_ycliplo = cstart.y - radius - distToLine;
|
|
m_xcliphi = cend.x;
|
|
m_ycliphi = cend.y + radius + distToLine;
|
|
}
|
|
else // vertical equivalent segment
|
|
{
|
|
cstart.y -= delta;
|
|
cend.y += delta;
|
|
// Build the rectangular clearance area between the two circles
|
|
// the rect starts at cstart.y and ends at cend.y and its width
|
|
// is (radius + distToLine)*2
|
|
m_xcliplo = cstart.x - distToLine - radius;
|
|
m_ycliplo = cstart.y;
|
|
m_xcliphi = cend.x + distToLine + radius;
|
|
m_ycliphi = cend.y;
|
|
}
|
|
|
|
// Test the rectangular clearance area between the two circles (the rounded ends)
|
|
// If the segment legth is zero, only check the endpoints, skip the rectangle
|
|
if( m_segmLength && !checkLine( startPoint, endPoint ) )
|
|
{
|
|
return false;
|
|
}
|
|
|
|
// test the first end
|
|
// Calculate the actual position of the circle, given the pad orientation:
|
|
RotatePoint( &cstart, m_padToTestPos, orient );
|
|
|
|
// Calculate the actual position of the circle in the new X,Y axis, relative
|
|
// to the segment:
|
|
RotatePoint( &cstart, m_segmAngle );
|
|
|
|
if( !checkMarginToCircle( cstart, radius + distToLine, m_segmLength ) )
|
|
{
|
|
return false;
|
|
}
|
|
|
|
// test the second end
|
|
RotatePoint( &cend, m_padToTestPos, orient );
|
|
RotatePoint( &cend, m_segmAngle );
|
|
|
|
if( !checkMarginToCircle( cend, radius + distToLine, m_segmLength ) )
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case PAD_SHAPE_ROUNDRECT:
|
|
{
|
|
// a round rect is a smaller rect, with a clearance augmented by the corners radius
|
|
int r = aPad->GetRoundRectCornerRadius();
|
|
padHalfsize.x -= r;
|
|
padHalfsize.y -= r;
|
|
distToLine += r;
|
|
}
|
|
// Fall through
|
|
case PAD_SHAPE_RECT:
|
|
// the area to test is a rounded rectangle.
|
|
// this can be done by testing 2 rectangles and 4 circles (the corners)
|
|
|
|
// Testing the first rectangle dimx + distToLine, dimy:
|
|
m_xcliplo = m_padToTestPos.x - padHalfsize.x - distToLine;
|
|
m_ycliplo = m_padToTestPos.y - padHalfsize.y;
|
|
m_xcliphi = m_padToTestPos.x + padHalfsize.x + distToLine;
|
|
m_ycliphi = m_padToTestPos.y + padHalfsize.y;
|
|
|
|
if( !checkLine( startPoint, endPoint ) )
|
|
return false;
|
|
|
|
// Testing the second rectangle dimx , dimy + distToLine
|
|
m_xcliplo = m_padToTestPos.x - padHalfsize.x;
|
|
m_ycliplo = m_padToTestPos.y - padHalfsize.y - distToLine;
|
|
m_xcliphi = m_padToTestPos.x + padHalfsize.x;
|
|
m_ycliphi = m_padToTestPos.y + padHalfsize.y + distToLine;
|
|
|
|
if( !checkLine( startPoint, endPoint ) )
|
|
return false;
|
|
|
|
// testing the 4 circles which are the clearance area of each corner:
|
|
|
|
// testing the left top corner of the rectangle
|
|
startPoint.x = m_padToTestPos.x - padHalfsize.x;
|
|
startPoint.y = m_padToTestPos.y - padHalfsize.y;
|
|
RotatePoint( &startPoint, m_padToTestPos, orient );
|
|
RotatePoint( &startPoint, m_segmAngle );
|
|
|
|
if( !checkMarginToCircle( startPoint, distToLine, m_segmLength ) )
|
|
return false;
|
|
|
|
// testing the right top corner of the rectangle
|
|
startPoint.x = m_padToTestPos.x + padHalfsize.x;
|
|
startPoint.y = m_padToTestPos.y - padHalfsize.y;
|
|
RotatePoint( &startPoint, m_padToTestPos, orient );
|
|
RotatePoint( &startPoint, m_segmAngle );
|
|
|
|
if( !checkMarginToCircle( startPoint, distToLine, m_segmLength ) )
|
|
return false;
|
|
|
|
// testing the left bottom corner of the rectangle
|
|
startPoint.x = m_padToTestPos.x - padHalfsize.x;
|
|
startPoint.y = m_padToTestPos.y + padHalfsize.y;
|
|
RotatePoint( &startPoint, m_padToTestPos, orient );
|
|
RotatePoint( &startPoint, m_segmAngle );
|
|
|
|
if( !checkMarginToCircle( startPoint, distToLine, m_segmLength ) )
|
|
return false;
|
|
|
|
// testing the right bottom corner of the rectangle
|
|
startPoint.x = m_padToTestPos.x + padHalfsize.x;
|
|
startPoint.y = m_padToTestPos.y + padHalfsize.y;
|
|
RotatePoint( &startPoint, m_padToTestPos, orient );
|
|
RotatePoint( &startPoint, m_segmAngle );
|
|
|
|
if( !checkMarginToCircle( startPoint, distToLine, m_segmLength ) )
|
|
return false;
|
|
|
|
break;
|
|
|
|
case PAD_SHAPE_TRAPEZOID:
|
|
{
|
|
wxPoint poly[4];
|
|
aPad->BuildPadPolygon( poly, wxSize( 0, 0 ), orient );
|
|
|
|
// Move shape to m_padToTestPos
|
|
for( int ii = 0; ii < 4; ii++ )
|
|
{
|
|
poly[ii] += m_padToTestPos;
|
|
RotatePoint( &poly[ii], m_segmAngle );
|
|
}
|
|
|
|
if( !poly2segmentDRC( poly, 4, wxPoint( 0, 0 ),
|
|
wxPoint(m_segmLength,0), distToLine ) )
|
|
return false;
|
|
}
|
|
break;
|
|
|
|
case PAD_SHAPE_CUSTOM:
|
|
{
|
|
SHAPE_POLY_SET polyset;
|
|
polyset.Append( aPad->GetCustomShapeAsPolygon() );
|
|
// The pad can be rotated. calculate the coordinates
|
|
// relatives to the segment being tested
|
|
// Note, the pad position relative to the segment origin
|
|
// is m_padToTestPos
|
|
aPad->CustomShapeAsPolygonToBoardPosition( &polyset,
|
|
m_padToTestPos, orient );
|
|
|
|
// Rotate all coordinates by m_segmAngle, because the segment orient
|
|
// is m_segmAngle
|
|
// we are using a horizontal segment for test, because we know here
|
|
// only the lenght and orientation+ of the segment
|
|
// therefore all coordinates of the pad to test must be rotated by
|
|
// m_segmAngle (they are already relative to the segment origin)
|
|
aPad->CustomShapeAsPolygonToBoardPosition( &polyset,
|
|
wxPoint( 0, 0 ), m_segmAngle );
|
|
|
|
const SHAPE_LINE_CHAIN& refpoly = polyset.COutline( 0 );
|
|
|
|
if( !poly2segmentDRC( (wxPoint*) &refpoly.CPoint( 0 ),
|
|
refpoly.PointCount(),
|
|
wxPoint( 0, 0 ), wxPoint(m_segmLength,0),
|
|
distToLine ) )
|
|
return false;
|
|
}
|
|
break;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/**
|
|
* Helper function checkMarginToCircle
|
|
* Check the distance between a circle (round pad, via or round end of track)
|
|
* and a segment. the segment is expected starting at 0,0, and on the X axis
|
|
* return true if distance >= aRadius
|
|
*/
|
|
bool DRC::checkMarginToCircle( wxPoint aCentre, int aRadius, int aLength )
|
|
{
|
|
if( abs( aCentre.y ) >= aRadius ) // trivial case
|
|
return true;
|
|
|
|
// Here, distance between aCentre and X axis is < aRadius
|
|
if( (aCentre.x > -aRadius ) && ( aCentre.x < (aLength + aRadius) ) )
|
|
{
|
|
if( (aCentre.x >= 0) && (aCentre.x <= aLength) )
|
|
return false; // aCentre is between the starting point and the ending point of the segm
|
|
|
|
if( aCentre.x > aLength ) // aCentre is after the ending point
|
|
aCentre.x -= aLength; // move aCentre to the starting point of the segment
|
|
|
|
if( EuclideanNorm( aCentre ) < aRadius )
|
|
// distance between aCentre and the starting point or the ending point is < aRadius
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
// Helper function used in checkLine::
|
|
static inline int USCALE( unsigned arg, unsigned num, unsigned den )
|
|
{
|
|
int ii;
|
|
double result;
|
|
|
|
// Trivial check first
|
|
if( !arg || !num)
|
|
return 0;
|
|
|
|
// If arg and num are both non-zero but den is zero, we return effective infinite
|
|
if( !den )
|
|
return INT_MAX;
|
|
|
|
result = ( (double) arg * num ) / den;
|
|
|
|
// Ensure that our result doesn't overflow into the sign bit
|
|
if( result > INT_MAX )
|
|
return INT_MAX;
|
|
|
|
ii = KiROUND( ( (double) arg * num ) / den );
|
|
return ii;
|
|
}
|
|
|
|
|
|
/** Helper function checkLine
|
|
* Test if a line intersects a bounding box (a rectangle)
|
|
* The rectangle is defined by m_xcliplo, m_ycliplo and m_xcliphi, m_ycliphi
|
|
* return true if the line from aSegStart to aSegEnd is outside the bounding box
|
|
*/
|
|
bool DRC::checkLine( wxPoint aSegStart, wxPoint aSegEnd )
|
|
{
|
|
#define WHEN_OUTSIDE return true
|
|
#define WHEN_INSIDE
|
|
int temp;
|
|
|
|
if( aSegStart.x > aSegEnd.x )
|
|
std::swap( aSegStart, aSegEnd );
|
|
|
|
if( (aSegEnd.x <= m_xcliplo) || (aSegStart.x >= m_xcliphi) )
|
|
{
|
|
WHEN_OUTSIDE;
|
|
}
|
|
|
|
if( aSegStart.y < aSegEnd.y )
|
|
{
|
|
if( (aSegEnd.y <= m_ycliplo) || (aSegStart.y >= m_ycliphi) )
|
|
{
|
|
WHEN_OUTSIDE;
|
|
}
|
|
|
|
if( aSegStart.y < m_ycliplo )
|
|
{
|
|
temp = USCALE( (aSegEnd.x - aSegStart.x), (m_ycliplo - aSegStart.y),
|
|
(aSegEnd.y - aSegStart.y) );
|
|
|
|
if( (aSegStart.x += temp) >= m_xcliphi )
|
|
{
|
|
WHEN_OUTSIDE;
|
|
}
|
|
|
|
aSegStart.y = m_ycliplo;
|
|
WHEN_INSIDE;
|
|
}
|
|
|
|
if( aSegEnd.y > m_ycliphi )
|
|
{
|
|
temp = USCALE( (aSegEnd.x - aSegStart.x), (aSegEnd.y - m_ycliphi),
|
|
(aSegEnd.y - aSegStart.y) );
|
|
|
|
if( (aSegEnd.x -= temp) <= m_xcliplo )
|
|
{
|
|
WHEN_OUTSIDE;
|
|
}
|
|
|
|
aSegEnd.y = m_ycliphi;
|
|
WHEN_INSIDE;
|
|
}
|
|
|
|
if( aSegStart.x < m_xcliplo )
|
|
{
|
|
temp = USCALE( (aSegEnd.y - aSegStart.y), (m_xcliplo - aSegStart.x),
|
|
(aSegEnd.x - aSegStart.x) );
|
|
aSegStart.y += temp;
|
|
aSegStart.x = m_xcliplo;
|
|
WHEN_INSIDE;
|
|
}
|
|
|
|
if( aSegEnd.x > m_xcliphi )
|
|
{
|
|
temp = USCALE( (aSegEnd.y - aSegStart.y), (aSegEnd.x - m_xcliphi),
|
|
(aSegEnd.x - aSegStart.x) );
|
|
aSegEnd.y -= temp;
|
|
aSegEnd.x = m_xcliphi;
|
|
WHEN_INSIDE;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if( (aSegStart.y <= m_ycliplo) || (aSegEnd.y >= m_ycliphi) )
|
|
{
|
|
WHEN_OUTSIDE;
|
|
}
|
|
|
|
if( aSegStart.y > m_ycliphi )
|
|
{
|
|
temp = USCALE( (aSegEnd.x - aSegStart.x), (aSegStart.y - m_ycliphi),
|
|
(aSegStart.y - aSegEnd.y) );
|
|
|
|
if( (aSegStart.x += temp) >= m_xcliphi )
|
|
{
|
|
WHEN_OUTSIDE;
|
|
}
|
|
|
|
aSegStart.y = m_ycliphi;
|
|
WHEN_INSIDE;
|
|
}
|
|
|
|
if( aSegEnd.y < m_ycliplo )
|
|
{
|
|
temp = USCALE( (aSegEnd.x - aSegStart.x), (m_ycliplo - aSegEnd.y),
|
|
(aSegStart.y - aSegEnd.y) );
|
|
|
|
if( (aSegEnd.x -= temp) <= m_xcliplo )
|
|
{
|
|
WHEN_OUTSIDE;
|
|
}
|
|
|
|
aSegEnd.y = m_ycliplo;
|
|
WHEN_INSIDE;
|
|
}
|
|
|
|
if( aSegStart.x < m_xcliplo )
|
|
{
|
|
temp = USCALE( (aSegStart.y - aSegEnd.y), (m_xcliplo - aSegStart.x),
|
|
(aSegEnd.x - aSegStart.x) );
|
|
aSegStart.y -= temp;
|
|
aSegStart.x = m_xcliplo;
|
|
WHEN_INSIDE;
|
|
}
|
|
|
|
if( aSegEnd.x > m_xcliphi )
|
|
{
|
|
temp = USCALE( (aSegStart.y - aSegEnd.y), (aSegEnd.x - m_xcliphi),
|
|
(aSegEnd.x - aSegStart.x) );
|
|
aSegEnd.y += temp;
|
|
aSegEnd.x = m_xcliphi;
|
|
WHEN_INSIDE;
|
|
}
|
|
}
|
|
|
|
// Do not divide here to avoid rounding errors
|
|
if( ( (aSegEnd.x + aSegStart.x) < m_xcliphi * 2 )
|
|
&& ( (aSegEnd.x + aSegStart.x) > m_xcliplo * 2) \
|
|
&& ( (aSegEnd.y + aSegStart.y) < m_ycliphi * 2 )
|
|
&& ( (aSegEnd.y + aSegStart.y) > m_ycliplo * 2 ) )
|
|
{
|
|
return false;
|
|
}
|
|
else
|
|
{
|
|
return true;
|
|
}
|
|
}
|