kicad/pcbnew/ratsnest_data.cpp

1313 lines
35 KiB
C++

/*
* This program source code file is part of KICAD, a free EDA CAD application.
*
* Copyright (C) 2013-2015 CERN
* @author Maciej Suminski <maciej.suminski@cern.ch>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
/**
* @file ratsnest_data.cpp
* @brief Class that computes missing connections on a PCB.
*/
#ifdef USE_OPENMP
#include <omp.h>
#endif /* USE_OPENMP */
#include <ratsnest_data.h>
#include <class_board.h>
#include <class_module.h>
#include <class_pad.h>
#include <class_track.h>
#include <class_zone.h>
#include <functional>
using namespace std::placeholders;
#include <geometry/shape_poly_set.h>
#include <cassert>
#include <algorithm>
#include <limits>
#ifdef PROFILE
#include <profile.h>
#endif
static uint64_t getDistance( const RN_NODE_PTR& aNode1, const RN_NODE_PTR& aNode2 )
{
// Drop the least significant bits to avoid overflow
int64_t x = ( aNode1->GetX() - aNode2->GetX() ) >> 16;
int64_t y = ( aNode1->GetY() - aNode2->GetY() ) >> 16;
// We do not need sqrt() here, as the distance is computed only for comparison
return ( x * x + y * y );
}
static bool sortDistance( const RN_NODE_PTR& aOrigin, const RN_NODE_PTR& aNode1,
const RN_NODE_PTR& aNode2 )
{
return getDistance( aOrigin, aNode1 ) < getDistance( aOrigin, aNode2 );
}
static bool sortWeight( const RN_EDGE_PTR& aEdge1, const RN_EDGE_PTR& aEdge2 )
{
return aEdge1->GetWeight() < aEdge2->GetWeight();
}
bool sortArea( const RN_POLY& aP1, const RN_POLY& aP2 )
{
return aP1.m_bbox.GetArea() < aP2.m_bbox.GetArea();
}
bool operator==( const RN_NODE_PTR& aFirst, const RN_NODE_PTR& aSecond )
{
return aFirst->GetX() == aSecond->GetX() && aFirst->GetY() == aSecond->GetY();
}
bool operator!=( const RN_NODE_PTR& aFirst, const RN_NODE_PTR& aSecond )
{
return aFirst->GetX() != aSecond->GetX() || aFirst->GetY() != aSecond->GetY();
}
RN_NODE_AND_FILTER operator&&( const RN_NODE_FILTER& aFilter1, const RN_NODE_FILTER& aFilter2 )
{
return RN_NODE_AND_FILTER( aFilter1, aFilter2 );
}
RN_NODE_OR_FILTER operator||( const RN_NODE_FILTER& aFilter1, const RN_NODE_FILTER& aFilter2 )
{
return RN_NODE_OR_FILTER( aFilter1, aFilter2 );
}
static bool isEdgeConnectingNode( const RN_EDGE_PTR& aEdge, const RN_NODE_PTR& aNode )
{
return aEdge->GetSourceNode() == aNode || aEdge->GetTargetNode() == aNode;
}
static std::vector<RN_EDGE_MST_PTR>* kruskalMST( RN_LINKS::RN_EDGE_LIST& aEdges,
std::vector<RN_NODE_PTR>& aNodes )
{
unsigned int nodeNumber = aNodes.size();
unsigned int mstExpectedSize = nodeNumber - 1;
unsigned int mstSize = 0;
bool ratsnestLines = false;
// The output
std::vector<RN_EDGE_MST_PTR>* mst = new std::vector<RN_EDGE_MST_PTR>;
mst->reserve( mstExpectedSize );
// Set tags for marking cycles
std::unordered_map<RN_NODE_PTR, int> tags;
unsigned int tag = 0;
for( RN_NODE_PTR& node : aNodes )
{
node->SetTag( tag );
tags[node] = tag++;
}
// Lists of nodes connected together (subtrees) to detect cycles in the graph
std::vector<std::list<int> > cycles( nodeNumber );
for( unsigned int i = 0; i < nodeNumber; ++i )
cycles[i].push_back( i );
// Kruskal algorithm requires edges to be sorted by their weight
aEdges.sort( sortWeight );
while( mstSize < mstExpectedSize && !aEdges.empty() )
{
RN_EDGE_PTR& dt = aEdges.front();
int srcTag = tags[dt->GetSourceNode()];
int trgTag = tags[dt->GetTargetNode()];
// Check if by adding this edge we are going to join two different forests
if( srcTag != trgTag )
{
// Because edges are sorted by their weight, first we always process connected
// items (weight == 0). Once we stumble upon an edge with non-zero weight,
// it means that the rest of the lines are ratsnest.
if( !ratsnestLines && dt->GetWeight() != 0 )
ratsnestLines = true;
// Update tags
if( ratsnestLines )
{
for( auto it = cycles[trgTag].begin(); it != cycles[trgTag].end(); ++it )
{
tags[aNodes[*it]] = srcTag;
}
// Do a copy of edge, but make it RN_EDGE_MST. In contrary to RN_EDGE,
// RN_EDGE_MST saves both source and target node and does not require any other
// edges to exist for getting source/target nodes
RN_EDGE_MST_PTR newEdge = std::make_shared<RN_EDGE_MST>( dt->GetSourceNode(),
dt->GetTargetNode(),
dt->GetWeight() );
assert( newEdge->GetSourceNode()->GetTag() != newEdge->GetTargetNode()->GetTag() );
assert( newEdge->GetWeight() > 0 );
mst->push_back( newEdge );
++mstSize;
}
else
{
//for( it = cycles[trgTag].begin(), itEnd = cycles[trgTag].end(); it != itEnd; ++it )
//for( auto it : cycles[trgTag] )
for( auto it = cycles[trgTag].begin(); it != cycles[trgTag].end(); ++it )
{
tags[aNodes[*it]] = srcTag;
aNodes[*it]->SetTag( srcTag );
}
// Processing a connection, decrease the expected size of the ratsnest MST
--mstExpectedSize;
}
// Move nodes that were marked with old tag to the list marked with the new tag
cycles[srcTag].splice( cycles[srcTag].end(), cycles[trgTag] );
}
// Remove the edge that was just processed
aEdges.erase( aEdges.begin() );
}
// Probably we have discarded some of edges, so reduce the size
mst->resize( mstSize );
return mst;
}
void RN_NET::validateEdge( RN_EDGE_MST_PTR& aEdge )
{
RN_NODE_PTR source = aEdge->GetSourceNode();
RN_NODE_PTR target = aEdge->GetTargetNode();
bool update = false, changed = false;
// If any of nodes belonging to the edge has the flag set,
// change it to the closest node that has flag cleared
// note: finding the right nodes can be done iteratively to get the best results,
// but it is not likely to be worth the time cost
do
{
if( changed || source->GetNoLine() )
{
changed = false;
std::list<RN_NODE_PTR> closest = GetClosestNodes( target,
LINE_TARGET_SAME_TAG( source->GetTag() ) );
if( !closest.empty() )
{
RN_NODE_PTR& node = closest.front();
if( node != source )
{
changed = true;
update = true;
source = node;
}
}
}
if( changed || target->GetNoLine() )
{
changed = false;
std::list<RN_NODE_PTR> closest = GetClosestNodes( source,
LINE_TARGET_SAME_TAG( target->GetTag() ) );
if( !closest.empty() )
{
RN_NODE_PTR& node = closest.front();
if( node != target )
{
changed = true;
update = true;
target = node;
}
}
}
}
while( changed );
assert( source->GetTag() >= 0 && target->GetTag() >= 0 );
assert( source->GetTag() != target->GetTag() );
assert( source != target );
// Replace an invalid edge with new, valid one
if( update )
aEdge.reset( new RN_EDGE_MST( source, target ) );
}
void RN_NET::removeNode( RN_NODE_PTR& aNode, const BOARD_CONNECTED_ITEM* aParent )
{
aNode->RemoveParent( aParent );
if( m_links.RemoveNode( aNode ) )
{
clearNode( aNode );
m_dirty = true;
}
}
void RN_NET::removeEdge( RN_EDGE_MST_PTR& aEdge, const BOARD_CONNECTED_ITEM* aParent )
{
// Save nodes, so they can be cleared later
RN_NODE_PTR start = aEdge->GetSourceNode();
RN_NODE_PTR end = aEdge->GetTargetNode();
start->RemoveParent( aParent );
end->RemoveParent( aParent );
// Connection has to be removed before running RemoveNode(),
// as RN_NODE influences the reference counter
m_links.RemoveConnection( aEdge );
// Remove nodes associated with the edge. It is done in a safe way, there is a check
// if nodes are not used by other edges.
if( m_links.RemoveNode( start ) )
clearNode( start );
if( m_links.RemoveNode( end ) )
clearNode( end );
m_dirty = true;
}
const RN_NODE_PTR& RN_LINKS::AddNode( int aX, int aY )
{
RN_NODE_SET::iterator node;
bool wasNewElement;
std::tie( node, wasNewElement ) = m_nodes.emplace( std::make_shared<RN_NODE>( aX, aY ) );
return *node;
}
bool RN_LINKS::RemoveNode( const RN_NODE_PTR& aNode )
{
if( aNode->GetRefCount() == 0 )
{
m_nodes.erase( aNode );
return true;
}
return false;
}
RN_EDGE_MST_PTR RN_LINKS::AddConnection( const RN_NODE_PTR& aNode1, const RN_NODE_PTR& aNode2,
unsigned int aDistance )
{
assert( aNode1 != aNode2 );
RN_EDGE_MST_PTR edge = std::make_shared<RN_EDGE_MST>( aNode1, aNode2, aDistance );
m_edges.push_back( edge );
return edge;
}
void RN_NET::compute()
{
const RN_LINKS::RN_NODE_SET& boardNodes = m_links.GetNodes();
const RN_LINKS::RN_EDGE_LIST& boardEdges = m_links.GetConnections();
// Special cases do not need complicated algorithms (actually, it does not work well with
// the Delaunay triangulator)
if( boardNodes.size() <= 2 )
{
m_rnEdges.reset( new std::vector<RN_EDGE_MST_PTR>( 0 ) );
// Check if the only possible connection exists
if( boardEdges.size() == 0 && boardNodes.size() == 2 )
{
RN_LINKS::RN_NODE_SET::const_iterator last = ++boardNodes.begin();
// There can be only one possible connection, but it is missing
RN_EDGE_MST_PTR edge = std::make_shared<RN_EDGE_MST>( *boardNodes.begin(), *last );
edge->GetSourceNode()->SetTag( 0 );
edge->GetTargetNode()->SetTag( 1 );
m_rnEdges->push_back( edge );
}
else
{
// Set tags to nodes as connected
for( RN_NODE_PTR node : boardNodes )
node->SetTag( 0 );
}
return;
}
// Move and sort (sorting speeds up) all nodes to a vector for the Delaunay triangulation
std::vector<RN_NODE_PTR> nodes( boardNodes.size() );
std::partial_sort_copy( boardNodes.begin(), boardNodes.end(), nodes.begin(), nodes.end() );
TRIANGULATOR triangulator;
triangulator.CreateDelaunay( nodes.begin(), nodes.end() );
std::unique_ptr<RN_LINKS::RN_EDGE_LIST> triangEdges( triangulator.GetEdges() );
// Compute weight/distance for edges resulting from triangulation
RN_LINKS::RN_EDGE_LIST::iterator eit, eitEnd;
for( eit = (*triangEdges).begin(), eitEnd = (*triangEdges).end(); eit != eitEnd; ++eit )
(*eit)->SetWeight( getDistance( (*eit)->GetSourceNode(), (*eit)->GetTargetNode() ) );
// Add the currently existing connections list to the results of triangulation
std::copy( boardEdges.begin(), boardEdges.end(), std::front_inserter( *triangEdges ) );
// Get the minimal spanning tree
m_rnEdges.reset( kruskalMST( *triangEdges, nodes ) );
}
void RN_NET::clearNode( const RN_NODE_PTR& aNode )
{
if( !m_rnEdges )
return;
std::vector<RN_EDGE_MST_PTR>::iterator newEnd;
// Remove all ratsnest edges for associated with the node
newEnd = std::remove_if( m_rnEdges->begin(), m_rnEdges->end(),
std::bind( isEdgeConnectingNode, _1, std::cref( aNode ) ) );
m_rnEdges->resize( std::distance( m_rnEdges->begin(), newEnd ) );
}
RN_POLY::RN_POLY( const SHAPE_POLY_SET* aParent,
int aSubpolygonIndex,
RN_LINKS& aConnections, const BOX2I& aBBox ) :
m_subpolygonIndex( aSubpolygonIndex ),
m_bbox( aBBox ),
m_parentPolyset( aParent )
{
const VECTOR2I& p = aParent->CVertex( 0, aSubpolygonIndex );
m_node = aConnections.AddNode( p.x, p.y );
// Mark it as not appropriate as a destination of ratsnest edges
// (edges coming out from a polygon vertex look weird)
m_node->SetNoLine( true );
}
bool RN_POLY::HitTest( const RN_NODE_PTR& aNode ) const
{
VECTOR2I p( aNode->GetX(), aNode->GetY() );
return m_parentPolyset->Contains( p, m_subpolygonIndex );
}
void RN_NET::Update()
{
// Add edges resulting from nodes being connected by zones
processZones();
processPads();
compute();
for( RN_EDGE_MST_PTR& edge : *m_rnEdges )
validateEdge( edge );
m_dirty = false;
}
bool RN_NET::AddItem( const D_PAD* aPad )
{
// Ratsnest is not computed for non-copper pads
if( ( aPad->GetLayerSet() & LSET::AllCuMask() ).none() )
return false;
RN_NODE_PTR node = m_links.AddNode( aPad->GetPosition().x, aPad->GetPosition().y );
node->AddParent( aPad );
m_pads[aPad].m_Node = node;
m_dirty = true;
return true;
}
bool RN_NET::AddItem( const VIA* aVia )
{
RN_NODE_PTR node = m_links.AddNode( aVia->GetPosition().x, aVia->GetPosition().y );
node->AddParent( aVia );
m_vias[aVia] = node;
m_dirty = true;
return true;
}
bool RN_NET::AddItem( const TRACK* aTrack )
{
if( aTrack->GetStart() == aTrack->GetEnd() )
return false;
RN_NODE_PTR start = m_links.AddNode( aTrack->GetStart().x, aTrack->GetStart().y );
RN_NODE_PTR end = m_links.AddNode( aTrack->GetEnd().x, aTrack->GetEnd().y );
start->AddParent( aTrack );
end->AddParent( aTrack );
m_tracks[aTrack] = m_links.AddConnection( start, end );
m_dirty = true;
return true;
}
bool RN_NET::AddItem( const ZONE_CONTAINER* aZone )
{
// Prepare a list of polygons (every zone can contain one or more polygons)
const SHAPE_POLY_SET& polySet = aZone->GetFilledPolysList();
for( int i = 0; i < polySet.OutlineCount(); ++i )
{
const SHAPE_LINE_CHAIN& path = polySet.COutline( i );
RN_POLY poly = RN_POLY( &polySet, i, m_links, path.BBox() );
m_zones[aZone].m_Polygons.push_back( poly );
}
m_dirty = true;
return true;
}
bool RN_NET::RemoveItem( const D_PAD* aPad )
{
PAD_NODE_MAP::iterator it = m_pads.find( aPad );
if( it == m_pads.end() )
return false;
RN_PAD_DATA& pad_data = it->second;
removeNode( pad_data.m_Node, aPad );
for( RN_EDGE_MST_PTR& edge : pad_data.m_Edges )
removeEdge( edge, aPad );
m_pads.erase( aPad );
return true;
}
bool RN_NET::RemoveItem( const VIA* aVia )
{
VIA_NODE_MAP::iterator it = m_vias.find( aVia );
if( it == m_vias.end() )
return false;
removeNode( it->second, aVia );
m_vias.erase( it );
return true;
}
bool RN_NET::RemoveItem( const TRACK* aTrack )
{
TRACK_EDGE_MAP::iterator it = m_tracks.find( aTrack );
if( it == m_tracks.end() )
return false;
removeEdge( it->second, aTrack );
m_tracks.erase( it );
return true;
}
bool RN_NET::RemoveItem( const ZONE_CONTAINER* aZone )
{
ZONE_DATA_MAP::iterator it = m_zones.find( aZone );
if( it == m_zones.end() )
return false;
RN_ZONE_DATA& zoneData = it->second;
// Remove all subpolygons that make the zone
std::deque<RN_POLY>& polygons = zoneData.m_Polygons;
for( RN_POLY& polygon : polygons )
removeNode( polygon.GetNode(), aZone );
polygons.clear();
// Remove all connections added by the zone
std::deque<RN_EDGE_MST_PTR>& edges = zoneData.m_Edges;
for( RN_EDGE_MST_PTR edge : edges )
removeEdge( edge, aZone );
edges.clear();
m_zones.erase( it );
return true;
}
const RN_NODE_PTR RN_NET::GetClosestNode( const RN_NODE_PTR& aNode ) const
{
const RN_LINKS::RN_NODE_SET& nodes = m_links.GetNodes();
RN_LINKS::RN_NODE_SET::const_iterator it, itEnd;
unsigned int minDistance = std::numeric_limits<unsigned int>::max();
RN_NODE_PTR closest;
for( it = nodes.begin(), itEnd = nodes.end(); it != itEnd; ++it )
{
RN_NODE_PTR node = *it;
// Obviously the distance between node and itself is the shortest,
// that's why we have to skip it
if( node != aNode )
{
unsigned int distance = getDistance( node, aNode );
if( distance < minDistance )
{
minDistance = distance;
closest = node;
}
}
}
return closest;
}
const RN_NODE_PTR RN_NET::GetClosestNode( const RN_NODE_PTR& aNode,
const RN_NODE_FILTER& aFilter ) const
{
const RN_LINKS::RN_NODE_SET& nodes = m_links.GetNodes();
RN_LINKS::RN_NODE_SET::const_iterator it, itEnd;
unsigned int minDistance = std::numeric_limits<unsigned int>::max();
RN_NODE_PTR closest;
for( it = nodes.begin(), itEnd = nodes.end(); it != itEnd; ++it )
{
RN_NODE_PTR node = *it;
// Obviously the distance between node and itself is the shortest,
// that's why we have to skip it
if( node != aNode && aFilter( node ) )
{
unsigned int distance = getDistance( node, aNode );
if( distance < minDistance )
{
minDistance = distance;
closest = node;
}
}
}
return closest;
}
std::list<RN_NODE_PTR> RN_NET::GetClosestNodes( const RN_NODE_PTR& aNode, int aNumber ) const
{
std::list<RN_NODE_PTR> closest;
const RN_LINKS::RN_NODE_SET& nodes = m_links.GetNodes();
// Copy nodes
std::copy( nodes.begin(), nodes.end(), std::back_inserter( closest ) );
// Sort by the distance from aNode
closest.sort( std::bind( sortDistance, std::cref( aNode ), _1, _2 ) );
// aNode should not be returned in the results
closest.remove( aNode );
// Trim the result to the asked size
if( aNumber > 0 )
closest.resize( std::min( (size_t)aNumber, nodes.size() ) );
return closest;
}
std::list<RN_NODE_PTR> RN_NET::GetClosestNodes( const RN_NODE_PTR& aNode,
const RN_NODE_FILTER& aFilter, int aNumber ) const
{
std::list<RN_NODE_PTR> closest;
const RN_LINKS::RN_NODE_SET& nodes = m_links.GetNodes();
// Copy filtered nodes
std::copy_if( nodes.begin(), nodes.end(), std::back_inserter( closest ), std::cref( aFilter ) );
// Sort by the distance from aNode
closest.sort( std::bind( sortDistance, std::cref( aNode ), _1, _2 ) );
// aNode should not be returned in the results
closest.remove( aNode );
// Trim the result to the asked size
if( aNumber > 0 )
closest.resize( std::min( static_cast<size_t>( aNumber ), nodes.size() ) );
return closest;
}
void RN_NET::AddSimple( const BOARD_CONNECTED_ITEM* aItem )
{
for( RN_NODE_PTR node : GetNodes( aItem ) )
{
// Block all nodes, so they do not become targets for dynamic ratsnest lines
AddBlockedNode( node );
// Filter out junctions
if( node->GetRefCount() == 1 )
m_simpleNodes.insert( node );
}
}
std::list<RN_NODE_PTR> RN_NET::GetNodes( const BOARD_CONNECTED_ITEM* aItem ) const
{
std::list<RN_NODE_PTR> nodes;
switch( aItem->Type() )
{
case PCB_PAD_T:
{
PAD_NODE_MAP::const_iterator it = m_pads.find( static_cast<const D_PAD*>( aItem ) );
if( it != m_pads.end() )
nodes.push_back( it->second.m_Node );
}
break;
case PCB_VIA_T:
{
VIA_NODE_MAP::const_iterator it = m_vias.find( static_cast<const VIA*>( aItem ) );
if( it != m_vias.end() )
nodes.push_back( it->second );
}
break;
case PCB_TRACE_T:
{
TRACK_EDGE_MAP::const_iterator it = m_tracks.find( static_cast<const TRACK*>( aItem ) );
if( it != m_tracks.end() )
{
nodes.push_back( it->second->GetSourceNode() );
nodes.push_back( it->second->GetTargetNode() );
}
}
break;
case PCB_ZONE_AREA_T:
{
ZONE_DATA_MAP::const_iterator itz = m_zones.find( static_cast<const ZONE_CONTAINER*>( aItem ) );
if( itz != m_zones.end() )
{
const std::deque<RN_POLY>& polys = itz->second.m_Polygons;
for( std::deque<RN_POLY>::const_iterator it = polys.begin(); it != polys.end(); ++it )
nodes.push_back( it->GetNode() );
}
}
break;
default:
break;
}
return nodes;
}
void RN_NET::GetAllItems( std::list<BOARD_CONNECTED_ITEM*>& aOutput, RN_ITEM_TYPE aType ) const
{
if( aType & RN_PADS )
{
for( auto it : m_pads )
aOutput.push_back( const_cast<D_PAD*>( it.first ) );
}
if( aType & RN_VIAS )
{
for( auto it : m_vias )
aOutput.push_back( const_cast<VIA*>( it.first ) );
}
if( aType & RN_TRACKS )
{
for( auto it : m_tracks )
aOutput.push_back( const_cast<TRACK*>( it.first ) );
}
if( aType & RN_ZONES )
{
for( auto it : m_zones )
aOutput.push_back( const_cast<ZONE_CONTAINER*>( it.first ) );
}
}
void RN_NET::ClearSimple()
{
for( const RN_NODE_PTR& node : m_blockedNodes )
node->SetNoLine( false );
m_blockedNodes.clear();
m_simpleNodes.clear();
}
void RN_NET::GetConnectedItems( const BOARD_CONNECTED_ITEM* aItem,
std::list<BOARD_CONNECTED_ITEM*>& aOutput,
RN_ITEM_TYPE aTypes ) const
{
std::list<RN_NODE_PTR> nodes = GetNodes( aItem );
assert( !nodes.empty() );
int tag = nodes.front()->GetTag();
assert( tag >= 0 );
if( aTypes & RN_PADS )
{
for( PAD_NODE_MAP::const_iterator it = m_pads.begin(); it != m_pads.end(); ++it )
{
if( it->second.m_Node->GetTag() == tag )
aOutput.push_back( const_cast<D_PAD*>( it->first ) );
}
}
if( aTypes & RN_VIAS )
{
for( VIA_NODE_MAP::const_iterator it = m_vias.begin(); it != m_vias.end(); ++it )
{
if( it->second->GetTag() == tag )
aOutput.push_back( const_cast<VIA*>( it->first ) );
}
}
if( aTypes & RN_TRACKS )
{
for( TRACK_EDGE_MAP::const_iterator it = m_tracks.begin(); it != m_tracks.end(); ++it )
{
if( it->second->GetTag() == tag )
aOutput.push_back( const_cast<TRACK*>( it->first ) );
}
}
if( aTypes & RN_ZONES )
{
for( ZONE_DATA_MAP::const_iterator it = m_zones.begin(); it != m_zones.end(); ++it )
{
for( const RN_EDGE_MST_PTR& edge : it->second.m_Edges )
{
if( edge->GetTag() == tag )
{
aOutput.push_back( const_cast<ZONE_CONTAINER*>( it->first ) );
break;
}
}
}
}
}
void RN_DATA::AddSimple( const BOARD_ITEM* aItem )
{
if( aItem->IsConnected() )
{
const BOARD_CONNECTED_ITEM* item = static_cast<const BOARD_CONNECTED_ITEM*>( aItem );
int net = item->GetNetCode();
// Do not process orphaned & unconnected items
if( net <= NETINFO_LIST::UNCONNECTED )
return;
m_nets[net].AddSimple( item );
}
else if( aItem->Type() == PCB_MODULE_T )
{
const MODULE* module = static_cast<const MODULE*>( aItem );
for( const D_PAD* pad = module->Pads().GetFirst(); pad; pad = pad->Next() )
AddSimple( pad );
}
}
void RN_DATA::AddBlocked( const BOARD_ITEM* aItem )
{
if( aItem->IsConnected() )
{
const BOARD_CONNECTED_ITEM* item = static_cast<const BOARD_CONNECTED_ITEM*>( aItem );
int net = item->GetNetCode();
// Do not process orphaned & unconnected items
if( net <= NETINFO_LIST::UNCONNECTED )
return;
// Block all nodes belonging to the item
for( RN_NODE_PTR node : m_nets[net].GetNodes( item ) )
m_nets[net].AddBlockedNode( node );
}
else if( aItem->Type() == PCB_MODULE_T )
{
const MODULE* module = static_cast<const MODULE*>( aItem );
for( const D_PAD* pad = module->Pads().GetFirst(); pad; pad = pad->Next() )
AddBlocked( pad );
}
}
void RN_DATA::GetConnectedItems( const BOARD_CONNECTED_ITEM* aItem,
std::list<BOARD_CONNECTED_ITEM*>& aOutput,
RN_ITEM_TYPE aTypes ) const
{
int net = aItem->GetNetCode();
if( net < 1 )
return;
assert( net < (int) m_nets.size() );
m_nets[net].GetConnectedItems( aItem, aOutput, aTypes );
}
void RN_DATA::GetNetItems( int aNetCode, std::list<BOARD_CONNECTED_ITEM*>& aOutput,
RN_ITEM_TYPE aTypes ) const
{
if( aNetCode < 1 )
return;
assert( aNetCode < (int) m_nets.size() );
m_nets[aNetCode].GetAllItems( aOutput, aTypes );
}
bool RN_DATA::AreConnected( const BOARD_CONNECTED_ITEM* aItem, const BOARD_CONNECTED_ITEM* aOther )
{
int net1 = aItem->GetNetCode();
int net2 = aOther->GetNetCode();
if( net1 < 1 || net2 < 1 || net1 != net2 )
return false;
assert( net1 < (int) m_nets.size() && net2 < (int) m_nets.size() );
// net1 == net2
std::list<RN_NODE_PTR> items1 = m_nets[net1].GetNodes( aItem );
std::list<RN_NODE_PTR> items2 = m_nets[net1].GetNodes( aOther );
assert( !items1.empty() && !items2.empty() );
return ( items1.front()->GetTag() == items2.front()->GetTag() );
}
int RN_DATA::GetUnconnectedCount() const
{
int count = 0;
for( unsigned i = 0; i < m_nets.size(); ++i )
{
const std::vector<RN_EDGE_MST_PTR>* unconnected = m_nets[i].GetUnconnected();
if( unconnected )
count += unconnected->size();
}
return count;
}
void RN_NET::processZones()
{
for( ZONE_DATA_MAP::iterator it = m_zones.begin(); it != m_zones.end(); ++it )
{
const ZONE_CONTAINER* zone = it->first;
RN_ZONE_DATA& zoneData = it->second;
// Reset existing connections
for( RN_EDGE_MST_PTR edge : zoneData.m_Edges )
m_links.RemoveConnection( edge );
zoneData.m_Edges.clear();
LSET layers = zone->GetLayerSet();
// Compute new connections
RN_LINKS::RN_NODE_SET candidates = m_links.GetNodes();
RN_LINKS::RN_NODE_SET::const_iterator point, pointEnd;
// Sorting by area should speed up the processing, as smaller polygons are computed
// faster and may reduce the number of points for further checks
std::sort( zoneData.m_Polygons.begin(), zoneData.m_Polygons.end(), sortArea );
for( std::deque<RN_POLY>::iterator poly = zoneData.m_Polygons.begin(),
polyEnd = zoneData.m_Polygons.end(); poly != polyEnd; ++poly )
{
const RN_NODE_PTR& node = poly->GetNode();
point = candidates.begin();
pointEnd = candidates.end();
while( point != pointEnd )
{
if( *point != node && ( (*point)->GetLayers() & layers ).any()
&& poly->HitTest( *point ) )
{
//(*point)->AddParent( zone ); // do not assign parent for helper links
RN_EDGE_MST_PTR connection = m_links.AddConnection( node, *point );
zoneData.m_Edges.push_back( connection );
// This point already belongs to a polygon, we do not need to check it anymore
point = candidates.erase( point );
pointEnd = candidates.end();
}
else
{
++point;
}
}
}
}
}
void RN_NET::processPads()
{
for( PAD_NODE_MAP::iterator it = m_pads.begin(); it != m_pads.end(); ++it )
{
const D_PAD* pad = it->first;
RN_NODE_PTR node = it->second.m_Node;
std::deque<RN_EDGE_MST_PTR>& edges = it->second.m_Edges;
// Reset existing connections
for( RN_EDGE_MST_PTR edge : edges )
m_links.RemoveConnection( edge );
LSET layers = pad->GetLayerSet();
const RN_LINKS::RN_NODE_SET& candidates = m_links.GetNodes();
RN_LINKS::RN_NODE_SET::const_iterator point, pointEnd;
point = candidates.begin();
pointEnd = candidates.end();
while( point != pointEnd )
{
if( *point != node && ( (*point)->GetLayers() & layers ).any() &&
pad->HitTest( wxPoint( (*point)->GetX(), (*point)->GetY() ) ) )
{
//(*point)->AddParent( pad ); // do not assign parent for helper links
RN_EDGE_MST_PTR connection = m_links.AddConnection( node, *point );
edges.push_back( connection );
}
++point;
}
}
}
bool RN_DATA::Add( const BOARD_ITEM* aItem )
{
int net = NETINFO_LIST::ORPHANED;
if( aItem->IsConnected() )
{
net = static_cast<const BOARD_CONNECTED_ITEM*>( aItem )->GetNetCode();
}
else if( aItem->Type() == PCB_MODULE_T )
{
const MODULE* module = static_cast<const MODULE*>( aItem );
for( const D_PAD* pad = module->Pads().GetFirst(); pad; pad = pad->Next() )
{
net = pad->GetNetCode();
// Do not process orphaned items
if( net <= NETINFO_LIST::ORPHANED )
continue;
Add( pad );
}
return true;
}
else if( aItem->Type() == PCB_NETINFO_T )
{
int netCount = m_board->GetNetCount();
if( (unsigned) netCount > m_nets.size() )
m_nets.resize( netCount );
return true;
}
else
{
return false;
}
if( net < 0 )
return false;
// Autoresize is necessary e.g. for module editor
if( net >= (int) m_nets.size() )
m_nets.resize( net + 1 );
switch( aItem->Type() )
{
case PCB_PAD_T:
return m_nets[net].AddItem( static_cast<const D_PAD*>( aItem ) );
break;
case PCB_TRACE_T:
return m_nets[net].AddItem( static_cast<const TRACK*>( aItem ) );
break;
case PCB_VIA_T:
return m_nets[net].AddItem( static_cast<const VIA*>( aItem ) );
break;
case PCB_ZONE_AREA_T:
return m_nets[net].AddItem( static_cast<const ZONE_CONTAINER*>( aItem ) );
break;
default:
break;
}
return false;
}
bool RN_DATA::Remove( const BOARD_ITEM* aItem )
{
int net = NETINFO_LIST::ORPHANED;
if( aItem->IsConnected() )
{
net = static_cast<const BOARD_CONNECTED_ITEM*>( aItem )->GetNetCode();
}
else if( aItem->Type() == PCB_MODULE_T )
{
const MODULE* module = static_cast<const MODULE*>( aItem );
for( const D_PAD* pad = module->Pads().GetFirst(); pad; pad = pad->Next() )
{
net = pad->GetNetCode();
// Do not process orphaned items
if( net <= NETINFO_LIST::ORPHANED )
continue;
Remove( pad );
}
return true;
}
else
{
return false;
}
if( net < 0 )
return false;
// Autoresize is necessary e.g. for module editor
if( net >= (int) m_nets.size() )
{
m_nets.resize( net + 1 );
return false; // if it was resized, then surely the item had not been added before
}
switch( aItem->Type() )
{
case PCB_PAD_T:
return m_nets[net].RemoveItem( static_cast<const D_PAD*>( aItem ) );
break;
case PCB_TRACE_T:
return m_nets[net].RemoveItem( static_cast<const TRACK*>( aItem ) );
break;
case PCB_VIA_T:
return m_nets[net].RemoveItem( static_cast<const VIA*>( aItem ) );
break;
case PCB_ZONE_AREA_T:
return m_nets[net].RemoveItem( static_cast<const ZONE_CONTAINER*>( aItem ) );
break;
default:
break;
}
return false;
}
bool RN_DATA::Update( const BOARD_ITEM* aItem )
{
if( Remove( aItem ) )
{
bool res = Add( aItem );
assert( res );
return true;
}
return false;
}
void RN_DATA::ProcessBoard()
{
int netCount = m_board->GetNetCount();
m_nets.clear();
m_nets.resize( netCount );
int netCode;
// Iterate over all items that may need to be connected
for( MODULE* module = m_board->m_Modules; module; module = module->Next() )
{
for( D_PAD* pad = module->Pads().GetFirst(); pad; pad = pad->Next() )
{
netCode = pad->GetNetCode();
assert( netCode >= 0 && netCode < netCount );
if( netCode >= 0 && netCode < netCount )
m_nets[netCode].AddItem( pad );
}
}
for( TRACK* track = m_board->m_Track; track; track = track->Next() )
{
netCode = track->GetNetCode();
assert( netCode >= 0 && netCode < netCount );
if( netCode >= 0 && netCode < netCount )
{
if( track->Type() == PCB_VIA_T )
m_nets[netCode].AddItem( static_cast<VIA*>( track ) );
else if( track->Type() == PCB_TRACE_T )
m_nets[netCode].AddItem( track );
}
}
for( int i = 0; i < m_board->GetAreaCount(); ++i )
{
ZONE_CONTAINER* zone = m_board->GetArea( i );
netCode = zone->GetNetCode();
assert( netCode >= 0 && netCode < netCount );
if( netCode >= 0 && netCode < netCount )
m_nets[netCode].AddItem( zone );
}
Recalculate();
}
void RN_DATA::Recalculate( int aNet )
{
unsigned int netCount = m_board->GetNetCount();
if( aNet <= 0 && netCount > 1 ) // Recompute everything
{
#ifdef PROFILE
prof_counter totalRealTime;
prof_start( &totalRealTime );
#endif
unsigned int i;
#ifdef USE_OPENMP
#pragma omp parallel shared(netCount) private(i)
{
#pragma omp for schedule(guided, 1)
#else /* USE_OPENMP */
{
#endif
// Start with net number 1, as 0 stands for not connected
for( i = 1; i < netCount; ++i )
{
if( m_nets[i].IsDirty() )
updateNet( i );
}
} /* end of parallel section */
#ifdef PROFILE
prof_end( &totalRealTime );
wxLogDebug( wxT( "Recalculate all nets: %.1f ms" ), totalRealTime.msecs() );
#endif /* PROFILE */
}
else if( aNet > 0 ) // Recompute only specific net
{
updateNet( aNet );
}
}
void RN_DATA::updateNet( int aNetCode )
{
assert( aNetCode < (int) m_nets.size() );
if( aNetCode < 1 || aNetCode > (int) m_nets.size() )
return;
m_nets[aNetCode].ClearSimple();
m_nets[aNetCode].Update();
}