kicad/polygon/poly2tri/common/shapes.h

352 lines
8.2 KiB
C++

/*
* Poly2Tri Copyright (c) 2009-2010, Poly2Tri Contributors
* http://code.google.com/p/poly2tri/
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* * Neither the name of Poly2Tri nor the names of its contributors may be
* used to endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
// Include guard
#ifndef SHAPES_H
#define SHAPES_H
#include <vector>
#include <cstddef>
#include <assert.h>
#include <cmath>
namespace p2t {
struct Edge;
struct Point
{
double x, y;
/// Default constructor does nothing (for performance).
Point()
{
x = 0.0;
y = 0.0;
}
/// The edges this point constitutes an upper ending point
std::vector<Edge*> edge_list;
/// Construct using coordinates.
Point( double x, double y ) : x( x ), y( y ) {}
/// Set this point to all zeros.
void set_zero()
{
x = 0.0;
y = 0.0;
}
/// Set this point to some specified coordinates.
void set( double x_, double y_ )
{
x = x_;
y = y_;
}
/// Negate this point.
Point operator -() const
{
Point v;
v.set( -x, -y );
return v;
}
/// Add a point to this point.
void operator +=( const Point& v )
{
x += v.x;
y += v.y;
}
/// Subtract a point from this point.
void operator -=( const Point& v )
{
x -= v.x;
y -= v.y;
}
/// Multiply this point by a scalar.
void operator *=( double a )
{
x *= a;
y *= a;
}
/// Get the length of this point (the norm).
double Length() const
{
return sqrt( x * x + y * y );
}
/// Convert this point into a unit point. Returns the Length.
double Normalize()
{
double len = Length();
x /= len;
y /= len;
return len;
}
};
// Represents a simple polygon's edge
struct Edge
{
Point* p, * q;
/// Constructor
Edge( Point& p1, Point& p2 ) : p( &p1 ), q( &p2 )
{
if( p1.y > p2.y )
{
q = &p1;
p = &p2;
}
else if( p1.y == p2.y )
{
if( p1.x > p2.x )
{
q = &p1;
p = &p2;
}
else if( p1.x == p2.x )
{
// Repeat points
assert( false );
}
}
q->edge_list.push_back( this );
}
};
// Triangle-based data structures are know to have better performance than quad-edge structures
// See: J. Shewchuk, "Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator"
// "Triangulations in CGAL"
class Triangle
{
public:
/// Constructor
Triangle( Point& a, Point& b, Point& c );
/// Flags to determine if an edge is a Constrained edge
bool constrained_edge[3];
/// Flags to determine if an edge is a Delauney edge
bool delaunay_edge[3];
Point* GetPoint( const int& index );
Point* PointCW( Point& point );
Point* PointCCW( Point& point );
Point* OppositePoint( Triangle& t, Point& p );
Triangle* GetNeighbor( const int& index );
void MarkNeighbor( Point* p1, Point* p2, Triangle* t );
void MarkNeighbor( Triangle& t );
void MarkConstrainedEdge( const int index );
void MarkConstrainedEdge( Edge& edge );
void MarkConstrainedEdge( Point* p, Point* q );
int Index( const Point* p );
int EdgeIndex( const Point* p1, const Point* p2 );
Triangle* NeighborCW( Point& point );
Triangle* NeighborCCW( Point& point );
bool GetConstrainedEdgeCCW( Point& p );
bool GetConstrainedEdgeCW( Point& p );
void SetConstrainedEdgeCCW( Point& p, bool ce );
void SetConstrainedEdgeCW( Point& p, bool ce );
bool GetDelunayEdgeCCW( Point& p );
bool GetDelunayEdgeCW( Point& p );
void SetDelunayEdgeCCW( Point& p, bool e );
void SetDelunayEdgeCW( Point& p, bool e );
bool Contains( Point* p );
bool Contains( const Edge& e );
bool Contains( Point* p, Point* q );
void Legalize( Point& point );
void Legalize( Point& opoint, Point& npoint );
/**
* Clears all references to all other triangles and points
*/
void Clear();
void ClearNeighbor( Triangle* triangle );
void ClearNeighbors();
void ClearDelunayEdges();
inline bool IsInterior();
inline void IsInterior( bool b );
Triangle& NeighborAcross( Point& opoint );
void DebugPrint();
private:
/// Triangle points
Point* points_[3];
/// Neighbor list
Triangle* neighbors_[3];
/// Has this triangle been marked as an interior triangle?
bool interior_;
};
inline bool cmp( const Point* a, const Point* b )
{
if( a->y < b->y )
{
return true;
}
else if( a->y == b->y )
{
// Make sure q is point with greater x value
if( a->x < b->x )
{
return true;
}
}
return false;
}
/// Add two points_ component-wise.
inline Point operator +( const Point& a, const Point& b )
{
return Point( a.x + b.x, a.y + b.y );
}
/// Subtract two points_ component-wise.
inline Point operator -( const Point& a, const Point& b )
{
return Point( a.x - b.x, a.y - b.y );
}
/// Multiply point by scalar
inline Point operator *( double s, const Point& a )
{
return Point( s * a.x, s * a.y );
}
inline bool operator ==( const Point& a, const Point& b )
{
return a.x == b.x && a.y == b.y;
}
inline bool operator !=( const Point& a, const Point& b )
{
return !(a.x == b.x) && !(a.y == b.y);
}
/// Peform the dot product on two vectors.
inline double Dot( const Point& a, const Point& b )
{
return a.x * b.x + a.y * b.y;
}
/// Perform the cross product on two vectors. In 2D this produces a scalar.
inline double Cross( const Point& a, const Point& b )
{
return a.x * b.y - a.y * b.x;
}
/// Perform the cross product on a point and a scalar. In 2D this produces
/// a point.
inline Point Cross( const Point& a, double s )
{
return Point( s * a.y, -s * a.x );
}
/// Perform the cross product on a scalar and a point. In 2D this produces
/// a point.
inline Point Cross( const double s, const Point& a )
{
return Point( -s * a.y, s * a.x );
}
inline Point* Triangle::GetPoint( const int& index )
{
return points_[index];
}
inline Triangle* Triangle::GetNeighbor( const int& index )
{
return neighbors_[index];
}
inline bool Triangle::Contains( Point* p )
{
return p == points_[0] || p == points_[1] || p == points_[2];
}
inline bool Triangle::Contains( const Edge& e )
{
return Contains( e.p ) && Contains( e.q );
}
inline bool Triangle::Contains( Point* p, Point* q )
{
return Contains( p ) && Contains( q );
}
inline bool Triangle::IsInterior()
{
return interior_;
}
inline void Triangle::IsInterior( bool b )
{
interior_ = b;
}
}
#endif