kicad/pcbnew/class_board.cpp

2384 lines
66 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2018 Jean-Pierre Charras, jp.charras at wanadoo.fr
* Copyright (C) 2012 SoftPLC Corporation, Dick Hollenbeck <dick@softplc.com>
* Copyright (C) 2011 Wayne Stambaugh <stambaughw@verizon.net>
*
* Copyright (C) 1992-2020 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <algorithm>
#include <iterator>
#include <fctsys.h>
#include <pcb_base_frame.h>
#include <reporter.h>
#include <ws_proxy_view_item.h>
#include <board_commit.h>
#include <class_board.h>
#include <class_module.h>
#include <class_track.h>
#include <class_zone.h>
#include <class_marker_pcb.h>
#include <class_drawsegment.h>
#include <class_pcb_target.h>
#include <connectivity/connectivity_data.h>
#include <pgm_base.h>
#include <pcbnew_settings.h>
#include <project.h>
#include <project/net_settings.h>
#include <project/project_file.h>
#include <project/project_local_settings.h>
#include <ratsnest/ratsnest_data.h>
#include <ratsnest/ratsnest_viewitem.h>
#include <tool/selection_conditions.h>
/* This is an odd place for this, but CvPcb won't link if it is
* in class_board_item.cpp like I first tried it.
*/
wxPoint BOARD_ITEM::ZeroOffset( 0, 0 );
BOARD::BOARD() :
BOARD_ITEM_CONTAINER( (BOARD_ITEM*) NULL, PCB_T ),
m_paper( PAGE_INFO::A4 ),
m_project( nullptr ),
m_designSettings( new BOARD_DESIGN_SETTINGS( nullptr, "board.design_settings" ) ),
m_NetInfo( this ),
m_LegacyDesignSettingsLoaded( false ),
m_LegacyNetclassesLoaded( false )
{
// we have not loaded a board yet, assume latest until then.
m_fileFormatVersionAtLoad = LEGACY_BOARD_FILE_VERSION;
m_CurrentZoneContour = NULL; // This ZONE_CONTAINER handle the
// zone contour currently in progress
for( LAYER_NUM layer = 0; layer < PCB_LAYER_ID_COUNT; ++layer )
{
m_Layer[layer].m_name = GetStandardLayerName( ToLAYER_ID( layer ) );
if( IsCopperLayer( layer ) )
m_Layer[layer].m_type = LT_SIGNAL;
else
m_Layer[layer].m_type = LT_UNDEFINED;
}
BOARD_DESIGN_SETTINGS& bds = GetDesignSettings();
// Initialize default netclass.
NETCLASS* defaultClass = bds.GetDefault();
defaultClass->SetDescription( _( "This is the default net class." ) );
bds.SetCurrentNetClass( defaultClass->GetName() );
// Set sensible initial values for custom track width & via size
bds.UseCustomTrackViaSize( false );
bds.SetCustomTrackWidth( bds.GetCurrentTrackWidth() );
bds.SetCustomViaSize( bds.GetCurrentViaSize() );
bds.SetCustomViaDrill( bds.GetCurrentViaDrill() );
// Initialize ratsnest
m_connectivity.reset( new CONNECTIVITY_DATA() );
// Set flag bits on these that will only be cleared if these are loaded from a legacy file
m_LegacyVisibleLayers.reset().set( Rescue );
m_LegacyVisibleItems.reset().set( GAL_LAYER_INDEX( GAL_LAYER_ID_BITMASK_END ) );
}
BOARD::~BOARD()
{
while( m_ZoneDescriptorList.size() )
{
ZONE_CONTAINER* area_to_remove = m_ZoneDescriptorList[0];
Delete( area_to_remove );
}
// Clean up the owned elements
DeleteMARKERs();
DeleteZONEOutlines();
// Delete the modules
for( auto m : m_modules )
delete m;
m_modules.clear();
// Delete the tracks
for( auto t : m_tracks )
delete t;
m_tracks.clear();
// Delete the drawings
for (auto d : m_drawings )
delete d;
m_drawings.clear();
delete m_CurrentZoneContour;
m_CurrentZoneContour = NULL;
m_groups.clear();
}
void BOARD::BuildConnectivity()
{
GetConnectivity()->Build( this );
}
void BOARD::SetProject( PROJECT* aProject )
{
m_project = aProject;
if( aProject )
{
PROJECT_FILE& project = aProject->GetProjectFile();
// Link the design settings object to the project file
project.m_BoardSettings = &GetDesignSettings();
// Set parent, which also will load the values from JSON stored in the project
project.m_BoardSettings->SetParent( &project );
// The DesignSettings' netclasses pointer will be pointing to its internal netclasses
// list at this point. If we loaded anything into it from a legacy board file then we
// want to transfer it over to the project netclasses list.
if( m_LegacyNetclassesLoaded )
project.NetSettings().m_NetClasses = GetDesignSettings().GetNetClasses();
// Now update the DesignSettings' netclass pointer ot point into the project.
GetDesignSettings().SetNetClasses( &project.NetSettings().m_NetClasses );
}
}
void BOARD::ClearProject()
{
if( !m_project )
return;
PROJECT_FILE& project = m_project->GetProjectFile();
// Owned by the BOARD
if( project.m_BoardSettings )
{
project.ReleaseNestedSettings( project.m_BoardSettings );
project.m_BoardSettings = nullptr;
}
GetDesignSettings().SetParent( nullptr );
m_project = nullptr;
}
wxPoint BOARD::GetPosition() const
{
return ZeroOffset;
}
void BOARD::SetPosition( const wxPoint& aPos )
{
wxLogWarning( wxT( "This should not be called on the BOARD object") );
}
void BOARD::Move( const wxPoint& aMoveVector ) // overload
{
// @todo : anything like this elsewhere? maybe put into GENERAL_COLLECTOR class.
static const KICAD_T top_level_board_stuff[] = {
PCB_MARKER_T,
PCB_TEXT_T,
PCB_LINE_T,
PCB_DIMENSION_T,
PCB_TARGET_T,
PCB_VIA_T,
PCB_TRACE_T,
PCB_ARC_T,
// PCB_PAD_T, Can't be at board level
// PCB_MODULE_TEXT_T, Can't be at board level
PCB_MODULE_T,
PCB_ZONE_AREA_T,
EOT
};
INSPECTOR_FUNC inspector = [&] ( EDA_ITEM* item, void* testData )
{
BOARD_ITEM* brd_item = (BOARD_ITEM*) item;
// aMoveVector was snapshotted, don't need "data".
brd_item->Move( aMoveVector );
return SEARCH_RESULT::CONTINUE;
};
Visit( inspector, NULL, top_level_board_stuff );
}
TRACKS BOARD::TracksInNet( int aNetCode )
{
TRACKS ret;
INSPECTOR_FUNC inspector = [aNetCode,&ret] ( EDA_ITEM* item, void* testData )
{
TRACK* t = (TRACK*) item;
if( t->GetNetCode() == aNetCode )
ret.push_back( t );
return SEARCH_RESULT::CONTINUE;
};
// visit this BOARD's TRACKs and VIAs with above TRACK INSPECTOR which
// appends all in aNetCode to ret.
Visit( inspector, NULL, GENERAL_COLLECTOR::Tracks );
return ret;
}
bool BOARD::SetLayerDescr( PCB_LAYER_ID aIndex, const LAYER& aLayer )
{
if( unsigned( aIndex ) < arrayDim( m_Layer ) )
{
m_Layer[ aIndex ] = aLayer;
return true;
}
return false;
}
const PCB_LAYER_ID BOARD::GetLayerID( const wxString& aLayerName ) const
{
// Look for the BOARD specific copper layer names
for( LAYER_NUM layer = 0; layer < PCB_LAYER_ID_COUNT; ++layer )
{
if ( IsCopperLayer( layer ) && ( m_Layer[ layer ].m_name == aLayerName ) )
{
return ToLAYER_ID( layer );
}
}
// Otherwise fall back to the system standard layer names
for( LAYER_NUM layer = 0; layer < PCB_LAYER_ID_COUNT; ++layer )
{
if( GetStandardLayerName( ToLAYER_ID( layer ) ) == aLayerName )
{
return ToLAYER_ID( layer );
}
}
return UNDEFINED_LAYER;
}
const wxString BOARD::GetLayerName( PCB_LAYER_ID aLayer ) const
{
// All layer names are stored in the BOARD.
if( IsLayerEnabled( aLayer ) )
{
// Standard names were set in BOARD::BOARD() but they may be
// over-ridden by BOARD::SetLayerName().
// For copper layers, return the actual copper layer name,
// otherwise return the Standard English layer name.
if( IsCopperLayer( aLayer ) )
return m_Layer[aLayer].m_name;
}
return GetStandardLayerName( aLayer );
}
bool BOARD::SetLayerName( PCB_LAYER_ID aLayer, const wxString& aLayerName )
{
if( !IsCopperLayer( aLayer ) )
return false;
if( aLayerName == wxEmptyString )
return false;
// no quote chars in the name allowed
if( aLayerName.Find( wxChar( '"' ) ) != wxNOT_FOUND )
return false;
wxString nameTemp = aLayerName;
// replace any spaces with underscores before we do any comparing
nameTemp.Replace( wxT( " " ), wxT( "_" ) );
if( IsLayerEnabled( aLayer ) )
{
m_Layer[aLayer].m_name = nameTemp;
return true;
}
return false;
}
LAYER_T BOARD::GetLayerType( PCB_LAYER_ID aLayer ) const
{
if( !IsCopperLayer( aLayer ) )
return LT_SIGNAL;
//@@IMB: The original test was broken due to the discontinuity
// in the layer sequence.
if( IsLayerEnabled( aLayer ) )
return m_Layer[aLayer].m_type;
return LT_SIGNAL;
}
bool BOARD::SetLayerType( PCB_LAYER_ID aLayer, LAYER_T aLayerType )
{
if( !IsCopperLayer( aLayer ) )
return false;
//@@IMB: The original test was broken due to the discontinuity
// in the layer sequence.
if( IsLayerEnabled( aLayer ) )
{
m_Layer[aLayer].m_type = aLayerType;
return true;
}
return false;
}
const char* LAYER::ShowType( LAYER_T aType )
{
const char* cp;
switch( aType )
{
default:
case LT_SIGNAL:
cp = "signal";
break;
case LT_POWER:
cp = "power";
break;
case LT_MIXED:
cp = "mixed";
break;
case LT_JUMPER:
cp = "jumper";
break;
}
return cp;
}
LAYER_T LAYER::ParseType( const char* aType )
{
if( strcmp( aType, "signal" ) == 0 )
return LT_SIGNAL;
else if( strcmp( aType, "power" ) == 0 )
return LT_POWER;
else if( strcmp( aType, "mixed" ) == 0 )
return LT_MIXED;
else if( strcmp( aType, "jumper" ) == 0 )
return LT_JUMPER;
else
return LT_UNDEFINED;
}
int BOARD::GetCopperLayerCount() const
{
return GetDesignSettings().GetCopperLayerCount();
}
void BOARD::SetCopperLayerCount( int aCount )
{
GetDesignSettings().SetCopperLayerCount( aCount );
}
LSET BOARD::GetEnabledLayers() const
{
return GetDesignSettings().GetEnabledLayers();
}
bool BOARD::IsLayerVisible( PCB_LAYER_ID aLayer ) const
{
// If there is no project, assume layer is visible always
return GetDesignSettings().IsLayerEnabled( aLayer )
&& ( !m_project || m_project->GetLocalSettings().m_VisibleLayers[aLayer] );
}
LSET BOARD::GetVisibleLayers() const
{
return m_project ? m_project->GetLocalSettings().m_VisibleLayers : LSET::AllLayersMask();
}
void BOARD::SetEnabledLayers( LSET aLayerSet )
{
GetDesignSettings().SetEnabledLayers( aLayerSet );
}
void BOARD::SetVisibleLayers( LSET aLayerSet )
{
if( m_project )
m_project->GetLocalSettings().m_VisibleLayers = aLayerSet;
}
void BOARD::SetVisibleElements( const GAL_SET& aSet )
{
// Call SetElementVisibility for each item
// to ensure specific calculations that can be needed by some items,
// just changing the visibility flags could be not sufficient.
for( size_t i = 0; i < aSet.size(); i++ )
SetElementVisibility( GAL_LAYER_ID_START + static_cast<int>( i ), aSet[i] );
}
void BOARD::SetVisibleAlls()
{
SetVisibleLayers( LSET().set() );
// Call SetElementVisibility for each item,
// to ensure specific calculations that can be needed by some items
for( GAL_LAYER_ID ii = GAL_LAYER_ID_START; ii < GAL_LAYER_ID_BITMASK_END; ++ii )
SetElementVisibility( ii, true );
}
GAL_SET BOARD::GetVisibleElements() const
{
return m_project ? m_project->GetLocalSettings().m_VisibleItems : GAL_SET().set();
}
bool BOARD::IsElementVisible( GAL_LAYER_ID aLayer ) const
{
return !m_project || m_project->GetLocalSettings().m_VisibleItems[aLayer - GAL_LAYER_ID_START];
}
void BOARD::SetElementVisibility( GAL_LAYER_ID aLayer, bool isEnabled )
{
if( m_project )
m_project->GetLocalSettings().m_VisibleItems.set( aLayer - GAL_LAYER_ID_START, isEnabled );
switch( aLayer )
{
case LAYER_RATSNEST:
{
// because we have a tool to show/hide ratsnest relative to a pad or a module
// so the hide/show option is a per item selection
for( auto track : Tracks() )
track->SetLocalRatsnestVisible( isEnabled );
for( auto mod : Modules() )
{
for( auto pad : mod->Pads() )
pad->SetLocalRatsnestVisible( isEnabled );
}
for( int i = 0; i<GetAreaCount(); i++ )
{
auto zone = GetArea( i );
zone->SetLocalRatsnestVisible( isEnabled );
}
break;
}
default:
;
}
}
bool BOARD::IsModuleLayerVisible( PCB_LAYER_ID aLayer )
{
switch( aLayer )
{
case F_Cu:
return IsElementVisible( LAYER_MOD_FR );
case B_Cu:
return IsElementVisible( LAYER_MOD_BK );
default:
wxFAIL_MSG( wxT( "BOARD::IsModuleLayerVisible() param error: bad layer" ) );
return true;
}
}
void BOARD::Add( BOARD_ITEM* aBoardItem, ADD_MODE aMode )
{
if( aBoardItem == NULL )
{
wxFAIL_MSG( wxT( "BOARD::Add() param error: aBoardItem NULL" ) );
return;
}
switch( aBoardItem->Type() )
{
case PCB_NETINFO_T:
m_NetInfo.AppendNet( (NETINFO_ITEM*) aBoardItem );
break;
// this one uses a vector
case PCB_MARKER_T:
m_markers.push_back( (MARKER_PCB*) aBoardItem );
break;
// this one uses a vector
case PCB_GROUP_T:
m_groups.push_back( (PCB_GROUP*) aBoardItem );
break;
// this one uses a vector
case PCB_ZONE_AREA_T:
m_ZoneDescriptorList.push_back( (ZONE_CONTAINER*) aBoardItem );
break;
case PCB_TRACE_T:
case PCB_VIA_T:
case PCB_ARC_T:
// N.B. This inserts a small memory leak as we lose the
if( !IsCopperLayer( aBoardItem->GetLayer() ) )
{
wxFAIL_MSG( wxT( "BOARD::Add() Cannot place Track on non-copper layer" ) );
return;
}
if( aMode == ADD_MODE::APPEND )
m_tracks.push_back( static_cast<TRACK*>( aBoardItem ) );
else
m_tracks.push_front( static_cast<TRACK*>( aBoardItem ) );
break;
case PCB_MODULE_T:
if( aMode == ADD_MODE::APPEND )
m_modules.push_back( (MODULE*) aBoardItem );
else
m_modules.push_front( (MODULE*) aBoardItem );
break;
case PCB_DIMENSION_T:
case PCB_LINE_T:
case PCB_TEXT_T:
case PCB_TARGET_T:
if( aMode == ADD_MODE::APPEND )
m_drawings.push_back( aBoardItem );
else
m_drawings.push_front( aBoardItem );
break;
// other types may use linked list
default:
{
wxString msg;
msg.Printf( wxT( "BOARD::Add() needs work: BOARD_ITEM type (%d) not handled" ),
aBoardItem->Type() );
wxFAIL_MSG( msg );
return;
}
break;
}
aBoardItem->SetParent( this );
aBoardItem->ClearEditFlags();
m_connectivity->Add( aBoardItem );
InvokeListeners( &BOARD_LISTENER::OnBoardItemAdded, *this, aBoardItem );
}
void BOARD::Remove( BOARD_ITEM* aBoardItem )
{
// find these calls and fix them! Don't send me no stinking' NULL.
wxASSERT( aBoardItem );
switch( aBoardItem->Type() )
{
case PCB_NETINFO_T:
{
NETINFO_ITEM* item = (NETINFO_ITEM*) aBoardItem;
m_NetInfo.RemoveNet( item );
break;
}
case PCB_MARKER_T:
// find the item in the vector, then remove it
for( unsigned i = 0; i<m_markers.size(); ++i )
{
if( m_markers[i] == (MARKER_PCB*) aBoardItem )
{
m_markers.erase( m_markers.begin() + i );
break;
}
}
break;
case PCB_GROUP_T:
m_groups.erase( std::remove_if( m_groups.begin(), m_groups.end(),
[aBoardItem]( BOARD_ITEM* aItem ){ return aItem == aBoardItem; } ) );
break;
case PCB_ZONE_AREA_T: // this one uses a vector
// find the item in the vector, then delete then erase it.
for( unsigned i = 0; i<m_ZoneDescriptorList.size(); ++i )
{
if( m_ZoneDescriptorList[i] == (ZONE_CONTAINER*) aBoardItem )
{
m_ZoneDescriptorList.erase( m_ZoneDescriptorList.begin() + i );
break;
}
}
break;
case PCB_MODULE_T:
m_modules.erase( std::remove_if( m_modules.begin(), m_modules.end(),
[aBoardItem]( BOARD_ITEM* aItem )
{
return aItem == aBoardItem;
} ) );
break;
case PCB_TRACE_T:
case PCB_ARC_T:
case PCB_VIA_T:
m_tracks.erase( std::remove_if( m_tracks.begin(), m_tracks.end(),
[aBoardItem]( BOARD_ITEM* aItem )
{
return aItem == aBoardItem;
} ) );
break;
case PCB_DIMENSION_T:
case PCB_LINE_T:
case PCB_TEXT_T:
case PCB_TARGET_T:
m_drawings.erase( std::remove_if( m_drawings.begin(), m_drawings.end(),
[aBoardItem](BOARD_ITEM* aItem)
{
return aItem == aBoardItem;
} ) );
break;
// other types may use linked list
default:
wxFAIL_MSG( wxT( "BOARD::Remove() needs more ::Type() support" ) );
}
m_connectivity->Remove( aBoardItem );
InvokeListeners( &BOARD_LISTENER::OnBoardItemRemoved, *this, aBoardItem );
}
wxString BOARD::GetSelectMenuText( EDA_UNITS aUnits ) const
{
return wxString::Format( _( "PCB" ) );
}
void BOARD::DeleteMARKERs()
{
// the vector does not know how to delete the MARKER_PCB, it holds pointers
for( MARKER_PCB* marker : m_markers )
delete marker;
m_markers.clear();
}
void BOARD::DeleteMARKERs( bool aWarningsAndErrors, bool aExclusions )
{
// Deleting lots of items from a vector can be very slow. Copy remaining items instead.
MARKERS remaining;
for( MARKER_PCB* marker : m_markers )
{
if( ( marker->IsExcluded() && aExclusions )
|| ( !marker->IsExcluded() && aWarningsAndErrors ) )
{
delete marker;
}
else
{
remaining.push_back( marker );
}
}
m_markers = remaining;
}
void BOARD::DeleteZONEOutlines()
{
// the vector does not know how to delete the ZONE Outlines, it holds pointers
for( ZONE_CONTAINER* zone : m_ZoneDescriptorList )
delete zone;
m_ZoneDescriptorList.clear();
}
BOARD_ITEM* BOARD::GetItem( const KIID& aID )
{
if( aID == niluuid )
return nullptr;
for( TRACK* track : Tracks() )
if( track->m_Uuid == aID )
return track;
for( MODULE* module : Modules() )
{
if( module->m_Uuid == aID )
return module;
for( D_PAD* pad : module->Pads() )
if( pad->m_Uuid == aID )
return pad;
if( module->Reference().m_Uuid == aID )
return &module->Reference();
if( module->Value().m_Uuid == aID )
return &module->Value();
for( BOARD_ITEM* drawing : module->GraphicalItems() )
if( drawing->m_Uuid == aID )
return drawing;
}
for( ZONE_CONTAINER* zone : Zones() )
if( zone->m_Uuid == aID )
return zone;
for( BOARD_ITEM* drawing : Drawings() )
if( drawing->m_Uuid == aID )
return drawing;
for( MARKER_PCB* marker : m_markers )
if( marker->m_Uuid == aID )
return marker;
for( PCB_GROUP* group : m_groups )
if( group->m_Uuid == aID )
return group;
if( m_Uuid == aID )
return this;
// Not found; weak reference has been deleted.
return DELETED_BOARD_ITEM::GetInstance();
}
void BOARD::FillItemMap( std::map<KIID, EDA_ITEM*>& aMap )
{
for( TRACK* track : Tracks() )
aMap[ track->m_Uuid ] = track;
for( MODULE* module : Modules() )
{
aMap[ module->m_Uuid ] = module;
for( D_PAD* pad : module->Pads() )
aMap[ pad->m_Uuid ] = pad;
aMap[ module->Reference().m_Uuid ] = &module->Reference();
aMap[ module->Value().m_Uuid ] = &module->Value();
for( BOARD_ITEM* drawing : module->GraphicalItems() )
aMap[ drawing->m_Uuid ] = drawing;
}
for( ZONE_CONTAINER* zone : Zones() )
aMap[ zone->m_Uuid ] = zone;
for( BOARD_ITEM* drawing : Drawings() )
aMap[ drawing->m_Uuid ] = drawing;
for( MARKER_PCB* marker : m_markers )
aMap[ marker->m_Uuid ] = marker;
for( PCB_GROUP* group : m_groups )
aMap[ group->m_Uuid ] = group;
}
unsigned BOARD::GetNodesCount( int aNet )
{
unsigned retval = 0;
for( auto mod : Modules() )
{
for( auto pad : mod->Pads() )
{
if( ( aNet == -1 && pad->GetNetCode() > 0 ) || aNet == pad->GetNetCode() )
retval++;
}
}
return retval;
}
unsigned BOARD::GetUnconnectedNetCount() const
{
return m_connectivity->GetUnconnectedCount();
}
EDA_RECT BOARD::ComputeBoundingBox( bool aBoardEdgesOnly ) const
{
EDA_RECT area;
LSET visible = GetVisibleLayers();
bool showInvisibleText = IsElementVisible( LAYER_MOD_TEXT_INVISIBLE )
&& PgmOrNull() && !PgmOrNull()->m_Printing;
// Check segments, dimensions, texts, and fiducials
for( auto item : m_drawings )
{
if( aBoardEdgesOnly && ( item->GetLayer() != Edge_Cuts ) )
continue;
if( ( item->GetLayerSet() & visible ).any() )
area.Merge( item->GetBoundingBox() );
}
// Check modules
for( auto module : m_modules )
{
if( !( module->GetLayerSet() & visible ).any() )
continue;
if( aBoardEdgesOnly )
{
for( const auto edge : module->GraphicalItems() )
{
if( edge->GetLayer() == Edge_Cuts )
area.Merge( edge->GetBoundingBox() );
}
}
else
{
area.Merge( module->GetBoundingBox( showInvisibleText ) );
}
}
if( !aBoardEdgesOnly )
{
// Check tracks
for( auto track : m_tracks )
{
if( ( track->GetLayerSet() & visible ).any() )
area.Merge( track->GetBoundingBox() );
}
// Check zones
for( auto aZone : m_ZoneDescriptorList )
{
if( ( aZone->GetLayerSet() & visible ).any() )
area.Merge( aZone->GetBoundingBox() );
}
}
return area;
}
void BOARD::GetMsgPanelInfo( EDA_DRAW_FRAME* aFrame, std::vector<MSG_PANEL_ITEM>& aList )
{
wxString txt;
int viasCount = 0;
int trackSegmentsCount = 0;
for( auto item : m_tracks )
{
if( item->Type() == PCB_VIA_T )
viasCount++;
else
trackSegmentsCount++;
}
txt.Printf( wxT( "%d" ), GetPadCount() );
aList.emplace_back( _( "Pads" ), txt, DARKGREEN );
txt.Printf( wxT( "%d" ), viasCount );
aList.emplace_back( _( "Vias" ), txt, DARKGREEN );
txt.Printf( wxT( "%d" ), trackSegmentsCount );
aList.emplace_back( _( "Track Segments" ), txt, DARKGREEN );
txt.Printf( wxT( "%d" ), GetNodesCount() );
aList.emplace_back( _( "Nodes" ), txt, DARKCYAN );
txt.Printf( wxT( "%d" ), m_NetInfo.GetNetCount() - 1 /* Don't include "No Net" in count */ );
aList.emplace_back( _( "Nets" ), txt, RED );
txt.Printf( wxT( "%d" ), GetConnectivity()->GetUnconnectedCount() );
aList.emplace_back( _( "Unrouted" ), txt, BLUE );
}
SEARCH_RESULT BOARD::Visit( INSPECTOR inspector, void* testData, const KICAD_T scanTypes[] )
{
KICAD_T stype;
SEARCH_RESULT result = SEARCH_RESULT::CONTINUE;
const KICAD_T* p = scanTypes;
bool done = false;
#if 0 && defined(DEBUG)
std::cout << GetClass().mb_str() << ' ';
#endif
while( !done )
{
stype = *p;
switch( stype )
{
case PCB_T:
result = inspector( this, testData ); // inspect me
// skip over any types handled in the above call.
++p;
break;
/* Instances of the requested KICAD_T live in a list, either one
* that I manage, or that my modules manage. If it's a type managed
* by class MODULE, then simply pass it on to each module's
* MODULE::Visit() function by way of the
* IterateForward( m_Modules, ... ) call.
*/
case PCB_MODULE_T:
case PCB_PAD_T:
case PCB_MODULE_TEXT_T:
case PCB_MODULE_EDGE_T:
case PCB_MODULE_ZONE_AREA_T:
// this calls MODULE::Visit() on each module.
result = IterateForward<MODULE*>( m_modules, inspector, testData, p );
// skip over any types handled in the above call.
for( ; ; )
{
switch( stype = *++p )
{
case PCB_MODULE_T:
case PCB_PAD_T:
case PCB_MODULE_TEXT_T:
case PCB_MODULE_EDGE_T:
case PCB_MODULE_ZONE_AREA_T:
continue;
default:
;
}
break;
}
break;
case PCB_LINE_T:
case PCB_TEXT_T:
case PCB_DIMENSION_T:
case PCB_TARGET_T:
result = IterateForward<BOARD_ITEM*>( m_drawings, inspector, testData, p );
// skip over any types handled in the above call.
for( ; ; )
{
switch( stype = *++p )
{
case PCB_LINE_T:
case PCB_TEXT_T:
case PCB_DIMENSION_T:
case PCB_TARGET_T:
continue;
default:
;
}
break;
}
;
break;
#if 0 // both these are on same list, so we must scan it twice in order
// to get VIA priority, using new #else code below.
// But we are not using separate lists for TRACKs and VIA, because
// items are ordered (sorted) in the linked
// list by netcode AND by physical distance:
// when created, if a track or via is connected to an existing track or
// via, it is put in linked list after this existing track or via
// So usually, connected tracks or vias are grouped in this list
// So the algorithm (used in ratsnest computations) which computes the
// track connectivity is faster (more than 100 time regarding to
// a non ordered list) because when it searches for a connection, first
// it tests the near (near in term of linked list) 50 items
// from the current item (track or via) in test.
// Usually, because of this sort, a connected item (if exists) is
// found.
// If not found (and only in this case) an exhaustive (and time
// consuming) search is made, but this case is statistically rare.
case PCB_VIA_T:
case PCB_TRACE_T:
case PCB_ARC_T:
result = IterateForward( m_Track, inspector, testData, p );
// skip over any types handled in the above call.
for( ; ; )
{
switch( stype = *++p )
{
case PCB_VIA_T:
case PCB_TRACE_T:
case PCB_ARC_T:
continue;
default:
;
}
break;
}
break;
#else
case PCB_VIA_T:
result = IterateForward<TRACK*>( m_tracks, inspector, testData, p );
++p;
break;
case PCB_TRACE_T:
case PCB_ARC_T:
result = IterateForward<TRACK*>( m_tracks, inspector, testData, p );
++p;
break;
#endif
case PCB_MARKER_T:
// MARKER_PCBS are in the m_markers std::vector
for( unsigned i = 0; i<m_markers.size(); ++i )
{
result = m_markers[i]->Visit( inspector, testData, p );
if( result == SEARCH_RESULT::QUIT )
break;
}
++p;
break;
case PCB_ZONE_AREA_T:
// PCB_ZONE_AREA_T are in the m_ZoneDescriptorList std::vector
for( unsigned i = 0; i< m_ZoneDescriptorList.size(); ++i )
{
result = m_ZoneDescriptorList[i]->Visit( inspector, testData, p );
if( result == SEARCH_RESULT::QUIT )
break;
}
++p;
break;
case PCB_GROUP_T:
result = IterateForward<PCB_GROUP*>( m_groups, inspector, testData, p );
++p;
break;
default: // catch EOT or ANY OTHER type here and return.
done = true;
break;
}
if( result == SEARCH_RESULT::QUIT )
break;
}
return result;
}
NETINFO_ITEM* BOARD::FindNet( int aNetcode ) const
{
// the first valid netcode is 1 and the last is m_NetInfo.GetCount()-1.
// zero is reserved for "no connection" and is not actually a net.
// NULL is returned for non valid netcodes
wxASSERT( m_NetInfo.GetNetCount() > 0 );
if( aNetcode == NETINFO_LIST::UNCONNECTED && m_NetInfo.GetNetCount() == 0 )
return NETINFO_LIST::OrphanedItem();
else
return m_NetInfo.GetNetItem( aNetcode );
}
NETINFO_ITEM* BOARD::FindNet( const wxString& aNetname ) const
{
return m_NetInfo.GetNetItem( aNetname );
}
MODULE* BOARD::FindModuleByReference( const wxString& aReference ) const
{
MODULE* found = nullptr;
// search only for MODULES
static const KICAD_T scanTypes[] = { PCB_MODULE_T, EOT };
INSPECTOR_FUNC inspector = [&] ( EDA_ITEM* item, void* testData )
{
MODULE* module = (MODULE*) item;
if( aReference == module->GetReference() )
{
found = module;
return SEARCH_RESULT::QUIT;
}
return SEARCH_RESULT::CONTINUE;
};
// visit this BOARD with the above inspector
BOARD* nonconstMe = (BOARD*) this;
nonconstMe->Visit( inspector, NULL, scanTypes );
return found;
}
MODULE* BOARD::FindModuleByPath( const KIID_PATH& aPath ) const
{
for( MODULE* module : m_modules )
{
if( module->GetPath() == aPath )
return module;
}
return nullptr;
}
// The pad count for each netcode, stored in a buffer for a fast access.
// This is needed by the sort function sortNetsByNodes()
static std::vector<int> padCountListByNet;
// Sort nets by decreasing pad count.
// For same pad count, sort by alphabetic names
static bool sortNetsByNodes( const NETINFO_ITEM* a, const NETINFO_ITEM* b )
{
int countA = padCountListByNet[a->GetNet()];
int countB = padCountListByNet[b->GetNet()];
if( countA == countB )
return a->GetNetname() < b->GetNetname();
else
return countB < countA;
}
// Sort nets by alphabetic names
static bool sortNetsByNames( const NETINFO_ITEM* a, const NETINFO_ITEM* b )
{
return a->GetNetname() < b->GetNetname();
}
int BOARD::SortedNetnamesList( wxArrayString& aNames, bool aSortbyPadsCount )
{
if( m_NetInfo.GetNetCount() == 0 )
return 0;
// Build the list
std::vector <NETINFO_ITEM*> netBuffer;
netBuffer.reserve( m_NetInfo.GetNetCount() );
int max_netcode = 0;
for( NETINFO_ITEM* net : m_NetInfo )
{
auto netcode = net->GetNet();
if( netcode > 0 && net->IsCurrent() )
{
netBuffer.push_back( net );
max_netcode = std::max( netcode, max_netcode);
}
}
// sort the list
if( aSortbyPadsCount )
{
// Build the pad count by net:
padCountListByNet.clear();
std::vector<D_PAD*> pads = GetPads();
padCountListByNet.assign( max_netcode + 1, 0 );
for( D_PAD* pad : pads )
{
int netCode = pad->GetNetCode();
if( netCode >= 0 )
padCountListByNet[ netCode ]++;
}
sort( netBuffer.begin(), netBuffer.end(), sortNetsByNodes );
}
else
{
sort( netBuffer.begin(), netBuffer.end(), sortNetsByNames );
}
for( NETINFO_ITEM* net : netBuffer )
aNames.Add( UnescapeString( net->GetNetname() ) );
return netBuffer.size();
}
std::vector<wxString> BOARD::GetNetClassAssignmentCandidates()
{
std::vector<wxString> names;
for( NETINFO_ITEM* net : m_NetInfo )
{
if( !net->GetShortNetname().IsEmpty() )
names.emplace_back( net->GetShortNetname() );
}
return names;
}
void BOARD::SynchronizeNetsAndNetClasses()
{
if( m_project )
{
NET_SETTINGS* netSettings = m_project->GetProjectFile().m_NetSettings.get();
NETCLASSES& netClasses = netSettings->m_NetClasses;
NETCLASSPTR defaultNetClass = netClasses.GetDefault();
for( NETINFO_ITEM* net : m_NetInfo )
{
const wxString& netname = net->GetNetname();
const wxString& shortname = net->GetShortNetname();
if( netSettings->m_NetClassAssignments.count( netname ) )
{
const wxString& classname = netSettings->m_NetClassAssignments[ netname ];
net->SetClass( netClasses.Find( classname ) );
}
else if( netSettings->m_NetClassAssignments.count( shortname ) )
{
const wxString& classname = netSettings->m_NetClassAssignments[ shortname ];
net->SetClass( netClasses.Find( classname ) );
}
else
{
net->SetClass( defaultNetClass );
}
}
BOARD_DESIGN_SETTINGS& bds = GetDesignSettings();
// Set initial values for custom track width & via size to match the default netclass settings
bds.UseCustomTrackViaSize( false );
bds.SetCustomTrackWidth( defaultNetClass->GetTrackWidth() );
bds.SetCustomViaSize( defaultNetClass->GetViaDiameter() );
bds.SetCustomViaDrill( defaultNetClass->GetViaDrill() );
bds.SetCustomDiffPairWidth( defaultNetClass->GetDiffPairWidth() );
bds.SetCustomDiffPairGap( defaultNetClass->GetDiffPairGap() );
bds.SetCustomDiffPairViaGap( defaultNetClass->GetDiffPairViaGap() );
}
InvokeListeners( &BOARD_LISTENER::OnBoardNetSettingsChanged, *this );
}
int BOARD::SetAreasNetCodesFromNetNames()
{
int error_count = 0;
for( int ii = 0; ii < GetAreaCount(); ii++ )
{
ZONE_CONTAINER* it = GetArea( ii );
if( !it->IsOnCopperLayer() )
{
it->SetNetCode( NETINFO_LIST::UNCONNECTED );
continue;
}
if( it->GetNetCode() != 0 ) // i.e. if this zone is connected to a net
{
const NETINFO_ITEM* net = it->GetNet();
if( net )
{
it->SetNetCode( net->GetNet() );
}
else
{
error_count++;
// keep Net Name and set m_NetCode to -1 : error flag.
it->SetNetCode( -1 );
}
}
}
return error_count;
}
D_PAD* BOARD::GetPad( const wxPoint& aPosition, LSET aLayerSet )
{
if( !aLayerSet.any() )
aLayerSet = LSET::AllCuMask();
for( auto module : m_modules )
{
D_PAD* pad = NULL;
if( module->HitTest( aPosition ) )
pad = module->GetPad( aPosition, aLayerSet );
if( pad )
return pad;
}
return NULL;
}
D_PAD* BOARD::GetPad( TRACK* aTrace, ENDPOINT_T aEndPoint )
{
const wxPoint& aPosition = aTrace->GetEndPoint( aEndPoint );
LSET lset( aTrace->GetLayer() );
return GetPad( aPosition, lset );
}
D_PAD* BOARD::GetPadFast( const wxPoint& aPosition, LSET aLayerSet )
{
for( auto mod : Modules() )
{
for ( auto pad : mod->Pads() )
{
if( pad->GetPosition() != aPosition )
continue;
// Pad found, it must be on the correct layer
if( ( pad->GetLayerSet() & aLayerSet ).any() )
return pad;
}
}
return nullptr;
}
D_PAD* BOARD::GetPad( std::vector<D_PAD*>& aPadList, const wxPoint& aPosition, LSET aLayerSet )
{
// Search aPadList for aPosition
// aPadList is sorted by X then Y values, and a fast binary search is used
int idxmax = aPadList.size()-1;
int delta = aPadList.size();
int idx = 0; // Starting index is the beginning of list
while( delta )
{
// Calculate half size of remaining interval to test.
// Ensure the computed value is not truncated (too small)
if( (delta & 1) && ( delta > 1 ) )
delta++;
delta /= 2;
D_PAD* pad = aPadList[idx];
if( pad->GetPosition() == aPosition ) // candidate found
{
// The pad must match the layer mask:
if( ( aLayerSet & pad->GetLayerSet() ).any() )
return pad;
// More than one pad can be at aPosition
// search for a pad at aPosition that matched this mask
// search next
for( int ii = idx+1; ii <= idxmax; ii++ )
{
pad = aPadList[ii];
if( pad->GetPosition() != aPosition )
break;
if( ( aLayerSet & pad->GetLayerSet() ).any() )
return pad;
}
// search previous
for( int ii = idx-1 ;ii >=0; ii-- )
{
pad = aPadList[ii];
if( pad->GetPosition() != aPosition )
break;
if( ( aLayerSet & pad->GetLayerSet() ).any() )
return pad;
}
// Not found:
return 0;
}
if( pad->GetPosition().x == aPosition.x ) // Must search considering Y coordinate
{
if( pad->GetPosition().y < aPosition.y ) // Must search after this item
{
idx += delta;
if( idx > idxmax )
idx = idxmax;
}
else // Must search before this item
{
idx -= delta;
if( idx < 0 )
idx = 0;
}
}
else if( pad->GetPosition().x < aPosition.x ) // Must search after this item
{
idx += delta;
if( idx > idxmax )
idx = idxmax;
}
else // Must search before this item
{
idx -= delta;
if( idx < 0 )
idx = 0;
}
}
return NULL;
}
/**
* Function SortPadsByXCoord
* is used by GetSortedPadListByXCoord to Sort a pad list by x coordinate value.
* This function is used to build ordered pads lists
*/
bool sortPadsByXthenYCoord( D_PAD* const & ref, D_PAD* const & comp )
{
if( ref->GetPosition().x == comp->GetPosition().x )
return ref->GetPosition().y < comp->GetPosition().y;
return ref->GetPosition().x < comp->GetPosition().x;
}
void BOARD::GetSortedPadListByXthenYCoord( std::vector<D_PAD*>& aVector, int aNetCode )
{
for ( auto mod : Modules() )
{
for ( auto pad : mod->Pads( ) )
{
if( aNetCode < 0 || pad->GetNetCode() == aNetCode )
{
aVector.push_back( pad );
}
}
}
std::sort( aVector.begin(), aVector.end(), sortPadsByXthenYCoord );
}
void BOARD::PadDelete( D_PAD* aPad )
{
GetConnectivity()->Remove( aPad );
InvokeListeners( &BOARD_LISTENER::OnBoardItemRemoved, *this, aPad );
aPad->DeleteStructure();
}
std::tuple<int, double, double> BOARD::GetTrackLength( const TRACK& aTrack ) const
{
int count = 0;
double length = 0.0;
double package_length = 0.0;
constexpr KICAD_T types[] = { PCB_TRACE_T, PCB_ARC_T, PCB_VIA_T, PCB_PAD_T, EOT };
auto connectivity = GetBoard()->GetConnectivity();
for( auto item : connectivity->GetConnectedItems(
static_cast<const BOARD_CONNECTED_ITEM*>( &aTrack ), types ) )
{
count++;
if( auto track = dyn_cast<TRACK*>( item ) )
{
bool inPad = false;
for( auto pad_it : connectivity->GetConnectedPads( item ) )
{
auto pad = static_cast<D_PAD*>( pad_it );
if( pad->HitTest( track->GetStart(), track->GetWidth() / 2 )
&& pad->HitTest( track->GetEnd(), track->GetWidth() / 2 ) )
{
inPad = true;
break;
}
}
if( !inPad )
length += track->GetLength();
}
else if( auto pad = dyn_cast<D_PAD*>( item ) )
package_length += pad->GetPadToDieLength();
}
return std::make_tuple( count, length, package_length );
}
MODULE* BOARD::GetFootprint( const wxPoint& aPosition, PCB_LAYER_ID aActiveLayer,
bool aVisibleOnly, bool aIgnoreLocked )
{
MODULE* module = NULL;
MODULE* alt_module = NULL;
int min_dim = 0x7FFFFFFF;
int alt_min_dim = 0x7FFFFFFF;
bool current_layer_back = IsBackLayer( aActiveLayer );
for( auto pt_module : m_modules )
{
// is the ref point within the module's bounds?
if( !pt_module->HitTest( aPosition ) )
continue;
// if caller wants to ignore locked modules, and this one is locked, skip it.
if( aIgnoreLocked && pt_module->IsLocked() )
continue;
PCB_LAYER_ID layer = pt_module->GetLayer();
// Filter non visible modules if requested
if( !aVisibleOnly || IsModuleLayerVisible( layer ) )
{
EDA_RECT bb = pt_module->GetFootprintRect();
int offx = bb.GetX() + bb.GetWidth() / 2;
int offy = bb.GetY() + bb.GetHeight() / 2;
// off x & offy point to the middle of the box.
int dist = ( aPosition.x - offx ) * ( aPosition.x - offx ) +
( aPosition.y - offy ) * ( aPosition.y - offy );
if( current_layer_back == IsBackLayer( layer ) )
{
if( dist <= min_dim )
{
// better footprint shown on the active side
module = pt_module;
min_dim = dist;
}
}
else if( aVisibleOnly && IsModuleLayerVisible( layer ) )
{
if( dist <= alt_min_dim )
{
// better footprint shown on the other side
alt_module = pt_module;
alt_min_dim = dist;
}
}
}
}
if( module )
{
return module;
}
if( alt_module)
{
return alt_module;
}
return NULL;
}
std::list<ZONE_CONTAINER*> BOARD::GetZoneList( bool aIncludeZonesInFootprints )
{
std::list<ZONE_CONTAINER*> zones;
for( int ii = 0; ii < GetAreaCount(); ii++ )
{
zones.push_back( GetArea( ii ) );
}
if( aIncludeZonesInFootprints )
{
for( MODULE* mod : m_modules )
{
for( MODULE_ZONE_CONTAINER* zone : mod->Zones() )
{
zones.push_back( zone );
}
}
}
return zones;
}
ZONE_CONTAINER* BOARD::AddArea( PICKED_ITEMS_LIST* aNewZonesList, int aNetcode, PCB_LAYER_ID aLayer,
wxPoint aStartPointPosition, ZONE_BORDER_DISPLAY_STYLE aHatch )
{
ZONE_CONTAINER* new_area = InsertArea( aNetcode,
m_ZoneDescriptorList.size( ) - 1,
aLayer, aStartPointPosition.x,
aStartPointPosition.y, aHatch );
if( aNewZonesList )
{
ITEM_PICKER picker( nullptr, new_area, UR_NEW );
aNewZonesList->PushItem( picker );
}
return new_area;
}
void BOARD::RemoveArea( PICKED_ITEMS_LIST* aDeletedList, ZONE_CONTAINER* area_to_remove )
{
if( area_to_remove == NULL )
return;
if( aDeletedList )
{
ITEM_PICKER picker( nullptr, area_to_remove, UR_DELETED );
aDeletedList->PushItem( picker );
Remove( area_to_remove ); // remove from zone list, but does not delete it
}
else
{
Delete( area_to_remove );
}
}
ZONE_CONTAINER* BOARD::InsertArea( int aNetcode, int aAreaIdx, PCB_LAYER_ID aLayer, int aCornerX,
int aCornerY, ZONE_BORDER_DISPLAY_STYLE aHatch )
{
ZONE_CONTAINER* new_area = new ZONE_CONTAINER( this );
new_area->SetNetCode( aNetcode );
new_area->SetLayer( aLayer );
if( aAreaIdx < (int) ( m_ZoneDescriptorList.size() - 1 ) )
m_ZoneDescriptorList.insert( m_ZoneDescriptorList.begin() + aAreaIdx + 1, new_area );
else
m_ZoneDescriptorList.push_back( new_area );
new_area->SetHatchStyle( (ZONE_BORDER_DISPLAY_STYLE) aHatch );
// Add the first corner to the new zone
new_area->AppendCorner( wxPoint( aCornerX, aCornerY ), -1 );
return new_area;
}
bool BOARD::NormalizeAreaPolygon( PICKED_ITEMS_LIST * aNewZonesList, ZONE_CONTAINER* aCurrArea )
{
// mark all areas as unmodified except this one, if modified
for( ZONE_CONTAINER* zone : m_ZoneDescriptorList )
zone->SetLocalFlags( 0 );
aCurrArea->SetLocalFlags( 1 );
if( aCurrArea->Outline()->IsSelfIntersecting() )
{
aCurrArea->UnHatchBorder();
// Normalize copied area and store resulting number of polygons
int n_poly = aCurrArea->Outline()->NormalizeAreaOutlines();
// If clipping has created some polygons, we must add these new copper areas.
if( n_poly > 1 )
{
ZONE_CONTAINER* NewArea;
// Move the newly created polygons to new areas, removing them from the current area
for( int ip = 1; ip < n_poly; ip++ )
{
// Create new copper area and copy poly into it
SHAPE_POLY_SET* new_p = new SHAPE_POLY_SET( aCurrArea->Outline()->UnitSet( ip ) );
NewArea = AddArea( aNewZonesList, aCurrArea->GetNetCode(), aCurrArea->GetLayer(),
wxPoint(0, 0), aCurrArea->GetHatchStyle() );
// remove the poly that was automatically created for the new area
// and replace it with a poly from NormalizeAreaOutlines
delete NewArea->Outline();
NewArea->SetOutline( new_p );
NewArea->HatchBorder();
NewArea->SetLocalFlags( 1 );
}
SHAPE_POLY_SET* new_p = new SHAPE_POLY_SET( aCurrArea->Outline()->UnitSet( 0 ) );
delete aCurrArea->Outline();
aCurrArea->SetOutline( new_p );
}
}
aCurrArea->HatchBorder();
return true;
}
/* Extracts the board outlines and build a closed polygon
* from lines, arcs and circle items on edge cut layer
* Any closed outline inside the main outline is a hole
* All contours should be closed, i.e. are valid vertices for a closed polygon
* return true if success, false if a contour is not valid
*/
extern bool BuildBoardPolygonOutlines( BOARD* aBoard, SHAPE_POLY_SET& aOutlines,
wxString* aErrorText, unsigned int aTolerance,
wxPoint* aErrorLocation = nullptr );
bool BOARD::GetBoardPolygonOutlines( SHAPE_POLY_SET& aOutlines, wxString* aErrorText, wxPoint* aErrorLocation )
{
bool success = BuildBoardPolygonOutlines( this, aOutlines, aErrorText,
GetDesignSettings().m_MaxError, aErrorLocation );
// Make polygon strictly simple to avoid issues (especially in 3D viewer)
aOutlines.Simplify( SHAPE_POLY_SET::PM_STRICTLY_SIMPLE );
return success;
}
const std::vector<D_PAD*> BOARD::GetPads()
{
std::vector<D_PAD*> allPads;
for( MODULE* mod : Modules() )
{
for( D_PAD* pad : mod->Pads() )
allPads.push_back( pad );
}
return allPads;
}
unsigned BOARD::GetPadCount()
{
unsigned retval = 0;
for( auto mod : Modules() )
retval += mod->Pads().size();
return retval;
}
/**
* Function GetPad
* @return D_PAD* - at the \a aIndex
*/
D_PAD* BOARD::GetPad( unsigned aIndex ) const
{
unsigned count = 0;
for( auto mod : m_modules )
{
for( auto pad : mod->Pads() )
{
if( count == aIndex )
return pad;
count++;
}
}
return nullptr;
}
const std::vector<BOARD_CONNECTED_ITEM*> BOARD::AllConnectedItems()
{
std::vector<BOARD_CONNECTED_ITEM*> items;
for( auto track : Tracks() )
{
items.push_back( track );
}
for( auto mod : Modules() )
{
for( auto pad : mod->Pads() )
{
items.push_back( pad );
}
}
for( int i = 0; i<GetAreaCount(); i++ )
{
auto zone = GetArea( i );
items.push_back( zone );
}
return items;
}
void BOARD::ClearAllNetCodes()
{
for( BOARD_CONNECTED_ITEM* item : AllConnectedItems() )
item->SetNetCode( 0 );
}
void BOARD::MapNets( const BOARD* aDestBoard )
{
for( BOARD_CONNECTED_ITEM* item : AllConnectedItems() )
{
NETINFO_ITEM* netInfo = aDestBoard->FindNet( item->GetNetname() );
if( netInfo )
item->SetNet( netInfo );
else
item->SetNetCode( 0 );
}
}
void BOARD::SanitizeNetcodes()
{
for ( BOARD_CONNECTED_ITEM* item : AllConnectedItems() )
{
if( FindNet( item->GetNetCode() ) == nullptr )
item->SetNetCode( NETINFO_LIST::ORPHANED );
}
}
void BOARD::AddListener( BOARD_LISTENER* aListener )
{
if( std::find( m_listeners.begin(), m_listeners.end(), aListener ) == m_listeners.end() )
m_listeners.push_back( aListener );
}
void BOARD::RemoveListener( BOARD_LISTENER* aListener )
{
auto i = std::find( m_listeners.begin(), m_listeners.end(), aListener );
if( i != m_listeners.end() )
{
std::iter_swap( i, m_listeners.end() - 1 );
m_listeners.pop_back();
}
}
void BOARD::OnItemChanged( BOARD_ITEM* aItem )
{
InvokeListeners( &BOARD_LISTENER::OnBoardItemChanged, *this, aItem );
}
void BOARD::ResetNetHighLight()
{
m_highLight.Clear();
m_highLightPrevious.Clear();
InvokeListeners( &BOARD_LISTENER::OnBoardHighlightNetChanged, *this );
}
void BOARD::SetHighLightNet( int aNetCode, bool aMulti )
{
if( !m_highLight.m_netCodes.count( aNetCode ) )
{
if( !aMulti )
m_highLight.m_netCodes.clear();
m_highLight.m_netCodes.insert( aNetCode );
InvokeListeners( &BOARD_LISTENER::OnBoardHighlightNetChanged, *this );
}
}
void BOARD::HighLightON( bool aValue )
{
if( m_highLight.m_highLightOn != aValue )
{
m_highLight.m_highLightOn = aValue;
InvokeListeners( &BOARD_LISTENER::OnBoardHighlightNetChanged, *this );
}
}
PCB_GROUP* BOARD::TopLevelGroup( BOARD_ITEM* item, PCB_GROUP* scope )
{
PCB_GROUP* candidate = NULL;
bool foundParent;
do
{
foundParent = false;
for( PCB_GROUP* group : m_groups )
{
BOARD_ITEM* toFind = ( candidate == NULL ) ? item : candidate;
if( group->GetItems().find( toFind ) != group->GetItems().end() )
{
if( scope == group && candidate != NULL )
{
wxCHECK( candidate->Type() == PCB_GROUP_T, NULL );
return candidate;
}
candidate = group;
foundParent = true;
}
}
} while( foundParent );
if( scope != NULL )
{
return NULL;
}
return candidate;
}
PCB_GROUP* BOARD::ParentGroup( BOARD_ITEM* item )
{
for( PCB_GROUP* group : m_groups )
{
if( group->GetItems().find( item ) != group->GetItems().end() )
return group;
}
return NULL;
}
wxString BOARD::GroupsSanityCheck( bool repair )
{
if( repair )
{
while( GroupsSanityCheckInternal( repair ) != wxEmptyString );
return wxEmptyString;
}
return GroupsSanityCheckInternal( repair );
}
wxString BOARD::GroupsSanityCheckInternal( bool repair )
{
BOARD& board = *this;
GROUPS& groups = board.Groups();
std::unordered_set<wxString> groupNames;
std::unordered_set<wxString> allMembers;
// To help with cycle detection, construct a mapping from
// each group to the at most single parent group it could belong to.
std::vector<int> parentGroupIdx( groups.size(), -1 );
for( size_t idx = 0; idx < groups.size(); idx++ )
{
PCB_GROUP& group = *( groups[idx] );
BOARD_ITEM* testItem = board.GetItem( group.m_Uuid );
if( testItem != groups[idx] )
{
if( repair )
board.Groups().erase( board.Groups().begin() + idx );
return wxString::Format( _( "Group Uuid %s maps to 2 different BOARD_ITEMS: %p and %p" ),
group.m_Uuid.AsString(),
testItem, groups[idx] );
}
// Non-blank group names must be unique
if( !group.GetName().empty() )
{
if( groupNames.find( group.GetName() ) != groupNames.end() )
{
if( repair )
group.SetName( group.GetName() + "-" + group.m_Uuid.AsString() );
return wxString::Format( _( "Two groups of identical name: %s" ), group.GetName() );
}
wxCHECK( groupNames.insert( group.GetName() ).second == true,
"Insert failed of new group" );
}
for( const BOARD_ITEM* member : group.GetItems() )
{
BOARD_ITEM* item = board.GetItem( member->m_Uuid );
if( ( item == nullptr ) || ( item->Type() == NOT_USED ) )
{
if( repair )
group.RemoveItem( member );
return wxString::Format( _( "Group %s contains deleted item %s" ),
group.m_Uuid.AsString(),
member->m_Uuid.AsString() );
}
if( item != member )
{
if( repair )
group.RemoveItem( member );
return wxString::Format( _( "Uuid %s maps to 2 different BOARD_ITEMS: %s %p %s and %p %s" ),
member->m_Uuid.AsString(),
item->m_Uuid.AsString(),
item,
item->GetSelectMenuText( EDA_UNITS::MILLIMETRES ),
member,
member->GetSelectMenuText( EDA_UNITS::MILLIMETRES )
);
}
if( allMembers.find( member->m_Uuid.AsString() ) != allMembers.end() )
{
if( repair )
group.RemoveItem( member );
return wxString::Format(
_( "BOARD_ITEM %s appears multiple times in groups (either in the "
"same group or in multiple groups) " ),
item->m_Uuid.AsString() );
}
wxCHECK( allMembers.insert( member->m_Uuid.AsString() ).second == true,
"Insert failed of new member" );
if( item->Type() == PCB_GROUP_T )
{
// Could speed up with a map structure if needed
size_t childIdx = std::distance(
groups.begin(), std::find( groups.begin(), groups.end(), item ) );
// This check of childIdx should never fail, because if a group
// is not found in the groups list, then the board.GetItem()
// check above should have failed.
wxCHECK( childIdx >= 0 && childIdx < groups.size(),
wxString::Format( "Group %s not found in groups list",
item->m_Uuid.AsString() ) );
wxCHECK( parentGroupIdx[childIdx] == -1,
wxString::Format( "Duplicate group despite allMembers check previously: %s",
item->m_Uuid.AsString() ) );
parentGroupIdx[childIdx] = idx;
}
}
if( group.GetItems().size() == 0 )
{
if( repair )
board.Groups().erase( board.Groups().begin() + idx );
return wxString::Format( _( "Group must have at least one member: %s" ), group.m_Uuid.AsString() );
}
}
// Cycle detection
//
// Each group has at most one parent group.
// So we start at group 0 and traverse the parent chain, marking groups seen along the way.
// If we ever see a group that we've already marked, that's a cycle.
// If we reach the end of the chain, we know all groups in that chain are not part of any cycle.
//
// Algorithm below is linear in the # of groups because each group is visited only once.
// There may be extra time taken due to the container access calls and iterators.
//
// Groups we know are cycle free
std::unordered_set<int> knownCycleFreeGroups;
// Groups in the current chain we're exploring.
std::unordered_set<int> currentChainGroups;
// Groups we haven't checked yet.
std::unordered_set<int> toCheckGroups;
// Initialize set of groups to check that could participate in a cycle.
for( size_t idx = 0; idx < groups.size(); idx++ )
{
wxCHECK( toCheckGroups.insert( idx ).second == true, "Insert of ints failed" );
}
while( !toCheckGroups.empty() )
{
currentChainGroups.clear();
int currIdx = *toCheckGroups.begin();
while( true )
{
if( currentChainGroups.find( currIdx ) != currentChainGroups.end() )
{
if( repair )
board.Groups().erase( board.Groups().begin() + currIdx );
return "Cycle detected in group membership";
}
else if( knownCycleFreeGroups.find( currIdx ) != knownCycleFreeGroups.end() )
{
// Parent is a group we know does not lead to a cycle
break;
}
wxCHECK( currentChainGroups.insert( currIdx ).second == true,
"Insert of new group to check failed" );
// We haven't visited currIdx yet, so it must be in toCheckGroups
wxCHECK( toCheckGroups.erase( currIdx ) == 1,
"Erase of idx for group just checked failed" );
currIdx = parentGroupIdx[currIdx];
if( currIdx == -1 )
{
// end of chain and no cycles found in this chain
break;
}
}
// No cycles found in chain, so add it to set of groups we know don't participate in a cycle.
knownCycleFreeGroups.insert( currentChainGroups.begin(), currentChainGroups.end() );
}
// Success
return "";
}
BOARD::GroupLegalOpsField BOARD::GroupLegalOps( const PCBNEW_SELECTION& selection ) const
{
GroupLegalOpsField legalOps = { false, false, false, false, false, false };
std::unordered_set<const BOARD_ITEM*> allMembers;
for( const PCB_GROUP* grp : m_groups )
{
for( const BOARD_ITEM* member : grp->GetItems() )
{
// Item can be member of at most one group.
wxCHECK( allMembers.insert( member ).second == true, legalOps );
}
}
bool hasGroup = ( SELECTION_CONDITIONS::HasType( PCB_GROUP_T ) )( selection );
// All elements of selection are groups, and no element is a descendant group of any other.
bool onlyGroups = ( SELECTION_CONDITIONS::OnlyType( PCB_GROUP_T ) )( selection );
// Any elements of the selections are already members of groups
bool anyGrouped = false;
// Any elements of the selections, except the first group, are already members of groups.
bool anyGroupedExceptFirst = false;
// All elements of the selections are already members of groups
bool allGrouped = true;
bool seenFirstGroup = false;
if( onlyGroups )
{
// Check that no groups are descendant subgroups of another group in the selection
for( EDA_ITEM* item : selection )
{
const PCB_GROUP* group = static_cast<const PCB_GROUP*>( item );
std::unordered_set<const PCB_GROUP*> subgroupos;
std::queue<const PCB_GROUP*> toCheck;
toCheck.push( group );
while( !toCheck.empty() )
{
const PCB_GROUP* candidate = toCheck.front();
toCheck.pop();
for( const BOARD_ITEM* aChild : candidate->GetItems() )
{
if( aChild->Type() == PCB_GROUP_T )
{
const PCB_GROUP* childGroup = static_cast<const PCB_GROUP*>( aChild );
subgroupos.insert( childGroup );
toCheck.push( childGroup );
}
}
}
for( EDA_ITEM* otherItem : selection )
{
if( otherItem != item
&& subgroupos.find( static_cast<PCB_GROUP*>( otherItem ) ) != subgroupos.end() )
{
// otherItem is a descendant subgroup of item
onlyGroups = false;
}
}
}
}
for( EDA_ITEM* item : selection )
{
BOARD_ITEM* board_item = static_cast<BOARD_ITEM*>( item );
bool isFirstGroup = !seenFirstGroup && board_item->Type() == PCB_GROUP_T;
if( isFirstGroup )
{
seenFirstGroup = true;
}
if( allMembers.find( board_item ) == allMembers.end() )
{
allGrouped = false;
}
else
{
anyGrouped = true;
if( !isFirstGroup )
{
anyGroupedExceptFirst = true;
}
}
}
legalOps.create = !anyGrouped;
legalOps.merge = hasGroup && !anyGroupedExceptFirst && ( selection.Size() > 1 );
legalOps.ungroup = onlyGroups;
legalOps.removeItems = allGrouped;
legalOps.flatten = onlyGroups;
legalOps.enter = onlyGroups && selection.Size() == 1;
return legalOps;
}
void BOARD::GroupRemoveItems( const PCBNEW_SELECTION& selection, BOARD_COMMIT* commit )
{
std::unordered_set<BOARD_ITEM*> emptyGroups;
std::unordered_set<PCB_GROUP*> emptyGroupParents;
// groups who have had children removed, either items or empty groups.
std::unordered_set<PCB_GROUP*> itemParents;
std::unordered_set<BOARD_ITEM*> itemsToRemove;
for( EDA_ITEM* item : selection )
{
BOARD_ITEM* board_item = static_cast<BOARD_ITEM*>( item );
itemsToRemove.insert( board_item );
}
for( BOARD_ITEM* item : itemsToRemove )
{
PCB_GROUP* parentGroup = ParentGroup( item );
itemParents.insert( parentGroup );
while( parentGroup != nullptr )
{
// Test if removing this item would make parent empty
bool allRemoved = true;
for( BOARD_ITEM* grpItem : parentGroup->GetItems() )
{
if( ( itemsToRemove.find( grpItem ) == itemsToRemove.end() )
&& ( emptyGroups.find( grpItem ) == emptyGroups.end() ) )
allRemoved = false;
}
if( allRemoved )
{
emptyGroups.insert( parentGroup );
parentGroup = ParentGroup( parentGroup );
if( parentGroup != nullptr )
itemParents.insert( parentGroup );
}
else
{
break;
}
}
}
// Items themselves are removed outside the context of this function
// First let's check the parents of items that are no empty
for( PCB_GROUP* grp : itemParents )
{
if( emptyGroups.find( grp ) == emptyGroups.end() )
{
commit->Modify( grp );
ITEM_SET members = grp->GetItems();
bool removedSomething = false;
for( BOARD_ITEM* member : members )
{
if( ( itemsToRemove.find( member ) != itemsToRemove.end() )
|| ( emptyGroups.find( member ) != emptyGroups.end() ) )
{
grp->RemoveItem( member );
removedSomething = true;
}
}
wxCHECK_RET( removedSomething, "Item to be removed not found in it's parent group" );
}
}
for( BOARD_ITEM* grp : emptyGroups )
{
commit->Remove( grp );
}
}