211 lines
5.5 KiB
C++
211 lines
5.5 KiB
C++
/*
|
|
* This program source code file is part of KiCad, a free EDA CAD application.
|
|
*
|
|
* Copyright (C) 2018 KiCad Developers, see CHANGELOG.TXT for contributors.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, you may find one here:
|
|
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
|
|
* or you may search the http://www.gnu.org website for the version 2 license,
|
|
* or you may write to the Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
|
|
*/
|
|
|
|
#ifndef GEOM_TEST_UTILS_H
|
|
#define GEOM_TEST_UTILS_H
|
|
|
|
#include <math.h>
|
|
|
|
/**
|
|
* @brief Utility functions for testing geometry functions.
|
|
*/
|
|
namespace GEOM_TEST
|
|
{
|
|
|
|
/**
|
|
* @brief Check if a value is within a tolerance of a nominal value
|
|
*
|
|
* @return value is in [aNominal - aError, aNominal + aError]
|
|
*/
|
|
template<typename T>
|
|
bool IsWithin( T aValue, T aNominal, T aError )
|
|
{
|
|
return ( aValue >= aNominal - aError )
|
|
&& ( aValue <= aNominal + aError );
|
|
}
|
|
|
|
/**
|
|
* @brief Check if a value is within a tolerance of a nominal value,
|
|
* with different allowances for errors above and below.
|
|
*
|
|
* @return value is in [aNominal - aErrorBelow, aNominal + aErrorAbove]
|
|
*/
|
|
template<typename T>
|
|
bool IsWithin( T aValue, T aNominal, T aErrorAbove, T aErrorBelow )
|
|
{
|
|
return ( aValue >= aNominal - aErrorBelow )
|
|
&& ( aValue <= aNominal + aErrorAbove );
|
|
}
|
|
|
|
/**
|
|
* @brief value is in range [aNominal - aErrorBelow, aNominal]
|
|
*/
|
|
template<typename T>
|
|
bool IsWithinAndBelow( T aValue, T aNominal, T aErrorBelow )
|
|
{
|
|
return IsWithin( aValue, aNominal, 0, aErrorBelow );
|
|
}
|
|
|
|
/**
|
|
* @brief value is in range [aNominal, aNominal + aErrorAbove]
|
|
*/
|
|
template<typename T>
|
|
bool IsWithinAndAbove( T aValue, T aNominal, T aErrorAbove )
|
|
{
|
|
return IsWithin( aValue, aNominal, aErrorAbove, 0 );
|
|
}
|
|
|
|
/**
|
|
* @brief Geometric quadrants, from top-right, anti-clockwise
|
|
*
|
|
* ^ y
|
|
* |
|
|
* Q2 | Q1
|
|
* -------> x
|
|
* Q3 | Q4
|
|
*/
|
|
enum class QUADRANT {
|
|
Q1, Q2, Q3, Q4
|
|
};
|
|
|
|
/*
|
|
* @brief Check value in Quadrant 1 (x and y both >= 0)
|
|
*/
|
|
template<typename T>
|
|
bool IsInQuadrant( const VECTOR2<T>& aPoint, QUADRANT aQuadrant )
|
|
{
|
|
bool isInQuad = false;
|
|
|
|
switch( aQuadrant )
|
|
{
|
|
case QUADRANT::Q1:
|
|
isInQuad = aPoint.x >= 0 && aPoint.y >= 0;
|
|
break;
|
|
case QUADRANT::Q2:
|
|
isInQuad = aPoint.x <= 0 && aPoint.y >= 0;
|
|
break;
|
|
case QUADRANT::Q3:
|
|
isInQuad = aPoint.x <= 0 && aPoint.y <= 0;
|
|
break;
|
|
case QUADRANT::Q4:
|
|
isInQuad = aPoint.x >= 0 && aPoint.y <= 0;
|
|
break;
|
|
}
|
|
|
|
return isInQuad;
|
|
}
|
|
|
|
/*
|
|
* @Brief Check if both ends of a segment are in Quadrant 1
|
|
*/
|
|
bool SegmentCompletelyInQuadrant( const SEG& aSeg, QUADRANT aQuadrant )
|
|
{
|
|
return IsInQuadrant( aSeg.A, aQuadrant)
|
|
&& IsInQuadrant( aSeg.B, aQuadrant );
|
|
}
|
|
|
|
/*
|
|
* @brief Check if at least one end of the segment is in Quadrant 1
|
|
*/
|
|
bool SegmentEndsInQuadrant( const SEG& aSeg, QUADRANT aQuadrant )
|
|
{
|
|
return IsInQuadrant( aSeg.A, aQuadrant )
|
|
|| IsInQuadrant( aSeg.B, aQuadrant );
|
|
}
|
|
|
|
/*
|
|
* @brief Check if a segment is entirely within a certain radius of a point.
|
|
*/
|
|
bool SegmentCompletelyWithinRadius( const SEG& aSeg, const VECTOR2I& aPt,
|
|
const int aRadius )
|
|
{
|
|
// This is true iff both ends of the segment are within the radius
|
|
return ( ( aSeg.A - aPt ).EuclideanNorm() < aRadius )
|
|
&& ( ( aSeg.B - aPt ).EuclideanNorm() < aRadius );
|
|
}
|
|
|
|
/*
|
|
* @brief Check if two vectors are perpendicular
|
|
*
|
|
* @param a: vector A
|
|
* @param b: vector B
|
|
* @param aTolerance: the allowed deviation from PI/2 (e.g. when rounding)
|
|
*/
|
|
|
|
template<typename T>
|
|
bool ArePerpendicular( const VECTOR2<T>& a, const VECTOR2<T>& b, double aTolerance )
|
|
{
|
|
auto angle = std::abs( a.Angle() - b.Angle() );
|
|
|
|
// Normalise: angles of 3*pi/2 are also perpendicular
|
|
if (angle > M_PI)
|
|
{
|
|
angle -= M_PI;
|
|
}
|
|
|
|
return IsWithin( angle, M_PI / 2.0, aTolerance );
|
|
}
|
|
|
|
/**
|
|
* @brief construct a square polygon of given size width and centre
|
|
*
|
|
* @param aSize: the side width (must be divisible by 2 if want to avoid rounding)
|
|
* @param aCentre: the centre of the square
|
|
*/
|
|
SHAPE_LINE_CHAIN MakeSquarePolyLine( int aSize, const VECTOR2I& aCentre )
|
|
{
|
|
SHAPE_LINE_CHAIN polyLine;
|
|
|
|
const VECTOR2I corner = aCentre + aSize / 2;
|
|
|
|
polyLine.Append( VECTOR2I( corner.x, corner.y ) );
|
|
polyLine.Append( VECTOR2I( -corner.x, corner.y ) ) ;
|
|
polyLine.Append( VECTOR2I( -corner.x, -corner.y ) );
|
|
polyLine.Append( VECTOR2I( corner.x, -corner.y ) );
|
|
|
|
polyLine.SetClosed( true );
|
|
|
|
return polyLine;
|
|
}
|
|
|
|
/*
|
|
* @brief Fillet every polygon in a set and return a new set
|
|
*/
|
|
SHAPE_POLY_SET FilletPolySet( SHAPE_POLY_SET& aPolySet, int aRadius,
|
|
int aError )
|
|
{
|
|
SHAPE_POLY_SET filletedPolySet;
|
|
|
|
for ( int i = 0; i < aPolySet.OutlineCount(); ++i )
|
|
{
|
|
const auto filleted = aPolySet.FilletPolygon( aRadius, aError, i );
|
|
|
|
filletedPolySet.AddOutline( filleted[0] );
|
|
}
|
|
|
|
return filletedPolySet;
|
|
}
|
|
|
|
}
|
|
|
|
#endif // GEOM_TEST_UTILS_H
|