kicad/polygon/PolyLine.cpp

2003 lines
60 KiB
C++

// PolyLine.cpp ... implementation of CPolyLine class from FreePCB.
//
// implementation for kicad and kbool polygon clipping library
//
#include <math.h>
#include <vector>
#include <algorithm>
#include <fctsys.h>
#include <common.h> // KiROUND
#include <PolyLine.h>
#include <bezier_curves.h>
#include <polygon_test_point_inside.h>
#include <math_for_graphics.h>
CPolyLine::CPolyLine()
{
m_hatchStyle = NO_HATCH;
m_hatchPitch = 0;
m_layer = 0;
m_width = 0;
m_utility = 0;
m_Kbool_Poly_Engine = NULL;
}
// destructor, removes display elements
//
CPolyLine::~CPolyLine()
{
UnHatch();
if( m_Kbool_Poly_Engine )
delete m_Kbool_Poly_Engine;
}
/**
* Function armBoolEng
* Initialise parameters used in kbool
* @param aBooleng = pointer to the Bool_Engine to initialise
* @param aConvertHoles = mode for holes when a boolean operation is made
* true: holes are linked into outer contours by double overlapping segments
* false: holes are not linked: in this mode contours are added clockwise
* and polygons added counter clockwise are holes (default)
*/
void armBoolEng( Bool_Engine* aBooleng, bool aConvertHoles = false );
/**
* Function NormalizeWithKbool
* Use the Kbool Library to clip contours: if outlines are crossing, the self-crossing polygon
* is converted to non self-crossing polygon by adding extra points at the crossing locations
* and reordering corners
* if more than one outside contour are found, extra CPolyLines will be created
* because copper areas have only one outside contour
* Therefore, if this results in new CPolyLines, return them as std::vector pa
* @param aExtraPolyList: pointer on a std::vector<CPolyLine*> to store extra CPolyLines
* @param bRetainArcs == true, try to retain arcs in polys
* @return number of external contours, or -1 if error
*/
int CPolyLine::NormalizeWithKbool( std::vector<CPolyLine*>* aExtraPolyList, bool bRetainArcs )
{
std::vector<CArc> arc_array;
std::vector <void*> hole_array; // list of holes
std::vector<int>* hole; // used to store corners for a given hole
CPolyLine* polyline;
int n_ext_cont = 0; // CPolyLine count
/* Creates a bool engine from this CPolyLine.
* Normalized outlines and holes will be in m_Kbool_Poly_Engine
* If some polygons are self crossing, after running the Kbool Engine, self crossing polygons
* will be converted in non self crossing polygons by inserting extra points at the crossing locations
* True holes are combined if possible
*/
if( bRetainArcs )
MakeKboolPoly( &arc_array );
else
MakeKboolPoly( NULL );
UnHatch();
/* now, recreate polys
* if more than one outside contour are found, extra CPolyLines will be created
* because copper areas have only one outside contour
* the first outside contour found is the new "this" outside contour
* if others outside contours are found we create new CPolyLines
* Note: if there are holes in polygons, we must store them
* and when all outside contours are found, search the corresponding outside contour for each hole
*/
while( m_Kbool_Poly_Engine->StartPolygonGet() )
{
// See if the current polygon is flagged as a hole
if( m_Kbool_Poly_Engine->GetPolygonPointEdgeType() == KB_INSIDE_EDGE )
{
hole = new std::vector<int>;
hole_array.push_back( hole );
while( m_Kbool_Poly_Engine->PolygonHasMorePoints() ) // store hole
{
int x = (int) m_Kbool_Poly_Engine->GetPolygonXPoint();
int y = (int) m_Kbool_Poly_Engine->GetPolygonYPoint();
hole->push_back( x );
hole->push_back( y );
}
m_Kbool_Poly_Engine->EndPolygonGet();
}
else if( n_ext_cont == 0 )
{
// first external contour, replace this poly
m_CornersList.clear();
m_SideStyle.clear();
bool first = true;
while( m_Kbool_Poly_Engine->PolygonHasMorePoints() )
{
// foreach point in the polygon
int x = (int) m_Kbool_Poly_Engine->GetPolygonXPoint();
int y = (int) m_Kbool_Poly_Engine->GetPolygonYPoint();
if( first )
{
first = false;
Start( GetLayer(), x, y, GetHatchStyle() );
}
else
AppendCorner( x, y );
}
m_Kbool_Poly_Engine->EndPolygonGet();
CloseLastContour();
n_ext_cont++;
}
else if( aExtraPolyList ) // a new outside contour is found: create a new CPolyLine
{
polyline = new CPolyLine;
polyline->SetLayer( GetLayer() );
polyline->SetHatchStyle( GetHatchStyle() );
polyline->SetHatchPitch( GetHatchPitch() );
aExtraPolyList->push_back( polyline ); // put it in array
bool first = true;
while( m_Kbool_Poly_Engine->PolygonHasMorePoints() ) // read next external contour
{
int x = (int) m_Kbool_Poly_Engine->GetPolygonXPoint();
int y = (int) m_Kbool_Poly_Engine->GetPolygonYPoint();
if( first )
{
first = false;
polyline->Start( GetLayer(), x, y, GetHatchStyle() );
}
else
polyline->AppendCorner( x, y );
}
m_Kbool_Poly_Engine->EndPolygonGet();
polyline->CloseLastContour();
n_ext_cont++;
}
}
// now add cutouts to the corresponding CPolyLine(s)
for( unsigned ii = 0; ii < hole_array.size(); ii++ )
{
hole = (std::vector<int>*)hole_array[ii];
polyline = NULL;
if( n_ext_cont == 1 )
{
polyline = this;
}
else
{
// find the polygon that contains this hole
// testing one corner inside is enought because a hole is entirely inside the polygon
// so we test only the first corner
int x = (*hole)[0];
int y = (*hole)[1];
if( TestPointInside( x, y ) )
polyline = this;
else if( aExtraPolyList )
{
for( int ext_ic = 0; ext_ic<n_ext_cont - 1; ext_ic++ )
{
if( (*aExtraPolyList)[ext_ic]->TestPointInside( x, y ) )
{
polyline = (*aExtraPolyList)[ext_ic];
break;
}
}
}
}
if( !polyline )
wxASSERT( 0 );
else
{
for( unsigned ii = 0; ii< (*hole).size(); ii++ )
{
int x = (*hole)[ii]; ii++;
int y = (*hole)[ii];
polyline->AppendCorner( x, y, STRAIGHT, false );
}
polyline->CloseLastContour();
}
}
if( bRetainArcs )
RestoreArcs( &arc_array, aExtraPolyList );
delete m_Kbool_Poly_Engine;
m_Kbool_Poly_Engine = NULL;
// free hole list
for( unsigned ii = 0; ii < hole_array.size(); ii++ )
delete (std::vector<int>*)hole_array[ii];
return n_ext_cont;
}
/**
* Function AddPolygonsToBoolEng
* Add a CPolyLine to a kbool engine, preparing a boolean op between polygons
* @param aBooleng : pointer on a bool engine (handle a set of polygons)
* @param aGroup : group to fill (aGroup = GROUP_A or GROUP_B) operations are made between GROUP_A and GROUP_B
*/
int CPolyLine::AddPolygonsToBoolEng( Bool_Engine* aBooleng, GroupType aGroup )
{
int count = 0;
/* Convert the current polyline contour to a kbool polygon: */
MakeKboolPoly();
/* add the resulting kbool set of polygons to the current kcool engine */
while( m_Kbool_Poly_Engine->StartPolygonGet() )
{
if( aBooleng->StartPolygonAdd( GROUP_A ) )
{
while( m_Kbool_Poly_Engine->PolygonHasMorePoints() )
{
int x = (int) m_Kbool_Poly_Engine->GetPolygonXPoint();
int y = (int) m_Kbool_Poly_Engine->GetPolygonYPoint();
aBooleng->AddPoint( x, y );
count++;
}
aBooleng->EndPolygonAdd();
}
m_Kbool_Poly_Engine->EndPolygonGet();
}
delete m_Kbool_Poly_Engine;
m_Kbool_Poly_Engine = NULL;
return count;
}
/**
* Function MakeKboolPoly
* fill a kbool engine with a closed polyline contour
* approximates arcs with multiple straight-line segments
* combining intersecting contours if possible
* @param arc_array : return corners computed from arcs approximations in arc_array
* @return error: 0 if Ok, 1 if error
*/
int CPolyLine::MakeKboolPoly( std::vector<CArc>* arc_array )
{
if( m_Kbool_Poly_Engine )
{
delete m_Kbool_Poly_Engine;
m_Kbool_Poly_Engine = NULL;
}
if( !GetClosed() )
return 1; // error
int n_arcs = 0;
int polycount = GetContoursCount();
int last_contour = polycount - 1;
if( arc_array )
arc_array->clear();
int iarc = 0;
for( int icont = 0; icont <= last_contour; icont++ )
{
// Fill a kbool engine for this contour,
// and combine it with previous contours
Bool_Engine* booleng = new Bool_Engine();
armBoolEng( booleng, false );
if( m_Kbool_Poly_Engine ) // a previous contour exists. Put it in new engine
{
while( m_Kbool_Poly_Engine->StartPolygonGet() )
{
if( booleng->StartPolygonAdd( GROUP_A ) )
{
while( m_Kbool_Poly_Engine->PolygonHasMorePoints() )
{
int x = (int) m_Kbool_Poly_Engine->GetPolygonXPoint();
int y = (int) m_Kbool_Poly_Engine->GetPolygonYPoint();
booleng->AddPoint( x, y );
}
booleng->EndPolygonAdd();
}
m_Kbool_Poly_Engine->EndPolygonGet();
}
}
// first, calculate number of vertices in contour
int n_vertices = 0;
int ic_st = GetContourStart( icont );
int ic_end = GetContourEnd( icont );
if( !booleng->StartPolygonAdd( GROUP_B ) )
{
wxASSERT( 0 );
return 1; // error
}
for( int ic = ic_st; ic<=ic_end; ic++ )
{
int style = m_SideStyle[ic];
if( style == STRAIGHT )
n_vertices++;
else
{
// style is ARC_CW or ARC_CCW
int n = CArc::ARC_STEPS;
n_vertices += n;
n_arcs++;
}
}
// now enter this contour to booleng
int ivtx = 0;
for( int ic = ic_st; ic<=ic_end; ic++ )
{
int style = m_SideStyle[ic];
int x1 = m_CornersList[ic].x;
int y1 = m_CornersList[ic].y;
int x2, y2;
if( ic < ic_end )
{
x2 = m_CornersList[ic + 1].x;
y2 = m_CornersList[ic + 1].y;
}
else
{
x2 = m_CornersList[ic_st].x;
y2 = m_CornersList[ic_st].y;
}
if( style == STRAIGHT )
{
booleng->AddPoint( x1, y1 );
ivtx++;
}
else
{
// style is arc_cw or arc_ccw
int n; // number of steps for arcs
n = CArc::ARC_STEPS;
double xo, yo, theta1, theta2, a, b;
a = fabs( (double) (x1 - x2) );
b = fabs( (double) (y1 - y2) );
if( style == CPolyLine::ARC_CW )
{
// clockwise arc (ie.quadrant of ellipse)
if( x2 > x1 && y2 > y1 )
{
// first quadrant, draw second quadrant of ellipse
xo = x2;
yo = y1;
theta1 = M_PI;
theta2 = M_PI / 2.0;
}
else if( x2 < x1 && y2 > y1 )
{
// second quadrant, draw third quadrant of ellipse
xo = x1;
yo = y2;
theta1 = 3.0 * M_PI / 2.0;
theta2 = M_PI;
}
else if( x2 < x1 && y2 < y1 )
{
// third quadrant, draw fourth quadrant of ellipse
xo = x2;
yo = y1;
theta1 = 2.0 * M_PI;
theta2 = 3.0 * M_PI / 2.0;
}
else
{
xo = x1; // fourth quadrant, draw first quadrant of ellipse
yo = y2;
theta1 = M_PI / 2.0;
theta2 = 0.0;
}
}
else
{
// counter-clockwise arc
if( x2 > x1 && y2 > y1 )
{
xo = x1; // first quadrant, draw fourth quadrant of ellipse
yo = y2;
theta1 = 3.0 * M_PI / 2.0;
theta2 = 2.0 * M_PI;
}
else if( x2 < x1 && y2 > y1 )
{
xo = x2; // second quadrant
yo = y1;
theta1 = 0.0;
theta2 = M_PI / 2.0;
}
else if( x2 < x1 && y2 < y1 )
{
xo = x1; // third quadrant
yo = y2;
theta1 = M_PI / 2.0;
theta2 = M_PI;
}
else
{
xo = x2; // fourth quadrant
yo = y1;
theta1 = M_PI;
theta2 = 3.0 * M_PI / 2.0;
}
}
// now write steps for arc
if( arc_array )
{
CArc new_arc;
new_arc.style = style;
new_arc.n_steps = n;
new_arc.xi = x1;
new_arc.yi = y1;
new_arc.xf = x2;
new_arc.yf = y2;
arc_array->push_back( new_arc );
iarc++;
}
for( int is = 0; is<n; is++ )
{
double theta = theta1 + ( (theta2 - theta1) * (double) is ) / n;
double x = xo + a* cos( theta );
double y = yo + b* sin( theta );
if( is == 0 )
{
x = x1;
y = y1;
}
booleng->AddPoint( x, y );
ivtx++;
}
}
}
if( n_vertices != ivtx )
{
wxASSERT( 0 );
}
// close list added to the bool engine
booleng->EndPolygonAdd();
/* now combine polygon to the previous polygons.
* note: the first polygon is the outline contour, and others are holes inside the first polygon
* The first polygon is ORed with nothing, but is is a trick to sort corners (vertex)
* clockwise with the kbool engine.
* Others polygons are substract to the outline and corners will be ordered counter clockwise
* by the kbool engine
*/
if( icont != 0 ) // substract hole to outside ( if the outline contour is take in account)
{
booleng->Do_Operation( BOOL_A_SUB_B );
}
else // add outside or add holes if we do not use the outline contour
{
booleng->Do_Operation( BOOL_OR );
}
// now use result as new polygon (delete the old one if exists)
if( m_Kbool_Poly_Engine )
delete m_Kbool_Poly_Engine;
m_Kbool_Poly_Engine = booleng;
}
return 0;
}
/**
* Function armBoolEng
* Initialise parameters used in kbool
* @param aBooleng = pointer to the Bool_Engine to initialise
* @param aConvertHoles = mode for holes when a boolean operation is made
* true: in resulting polygon, holes are linked into outer contours by double overlapping segments
* false: in resulting polygons, holes are not linked: they are separate polygons
*/
void armBoolEng( Bool_Engine* aBooleng, bool aConvertHoles )
{
// set some global vals to arm the boolean engine
// input points are scaled up with GetDGrid() * GetGrid()
// DGRID is only meant to make fractional parts of input data which
/*
* The input data scaled up with DGrid is related to the accuracy the user has in his input data.
* User data with a minimum accuracy of 0.001, means set the DGrid to 1000.
* The input data may contain data with a minimum accuracy much smaller, but by setting the DGrid
* everything smaller than 1/DGrid is rounded.
*
* DGRID is only meant to make fractional parts of input data which can be
* doubles, part of the integers used in vertexes within the boolean algorithm.
* And therefore DGRID bigger than 1 is not usefull, you would only loose accuracy.
* Within the algorithm all input data is multiplied with DGRID, and the result
* is rounded to an integer.
*/
double DGRID = 1000.0; // round coordinate X or Y value in calculations to this (initial value = 1000.0 in kbool example)
// kbool uses DGRID to convert float user units to integer
// kbool unit = (int)(user unit * DGRID)
// Note: in kicad, coordinates are already integer so DGRID could be set to 1
// we can choose 1.0,
// but choose DGRID = 1000.0 solves some filling problems
// (perhaps because this allows a better precision in kbool internal calculations
double MARGE = 1.0 / DGRID; // snap with in this range points to lines in the intersection routines
// should always be >= 1/DGRID a MARGE >= 10/DGRID is ok
// this is also used to remove small segments and to decide when
// two segments are in line. ( initial value = 0.001 )
// For kicad we choose MARGE = 1/DGRID
double CORRECTIONFACTOR = 0.0; // correct the polygons by this number: used in BOOL_CORRECTION operation
// this operation shrinks a polygon if CORRECTIONFACTOR < 0
// or stretch it if CORRECTIONFACTOR > 0
// the size change is CORRECTIONFACTOR (holes are correctly handled)
double CORRECTIONABER = 1.0; // the accuracy for the rounded shapes used in correction
double ROUNDFACTOR = 1.5; // when will we round the correction shape to a circle
double SMOOTHABER = 10.0; // accuracy when smoothing a polygon
double MAXLINEMERGE = 1000.0; // leave as is, segments of this length in smoothen
/*
* Grid makes sure that the integer data used within the algorithm has room for extra intersections
* smaller than the smallest number within the input data.
* The input data scaled up with DGrid is related to the accuracy the user has in his input data.
* Another scaling with Grid is applied on top of it to create space in the integer number for
* even smaller numbers.
*/
int GRID = (int) ( 10000.0 / DGRID ); // initial value = 10000 in kbool example but we use
// 10000/DGRID because the scaling is made by DGRID
// on integer pcbnew units and the global scaling
// ( GRID*DGRID) must be < 30000 to avoid overflow
// in calculations (made in long long in kbool)
if( GRID <= 1 ) // Cannot be null!
GRID = 1;
aBooleng->SetMarge( MARGE );
aBooleng->SetGrid( GRID );
aBooleng->SetDGrid( DGRID );
aBooleng->SetCorrectionFactor( CORRECTIONFACTOR );
aBooleng->SetCorrectionAber( CORRECTIONABER );
aBooleng->SetSmoothAber( SMOOTHABER );
aBooleng->SetMaxlinemerge( MAXLINEMERGE );
aBooleng->SetRoundfactor( ROUNDFACTOR );
aBooleng->SetWindingRule( true ); // This is the default kbool value
if( aConvertHoles )
{
#if 1 // Can be set to 1 for kbool version >= 2.1, must be set to 0 for previous versions
// SetAllowNonTopHoleLinking() exists only in kbool >= 2.1
aBooleng->SetAllowNonTopHoleLinking( false ); // Default = true, but i have problems (filling errors) when true
#endif
aBooleng->SetLinkHoles( true ); // holes will be connected by double overlapping segments
aBooleng->SetOrientationEntryMode( false ); // all polygons are contours, not holes
}
else
{
aBooleng->SetLinkHoles( false ); // holes will not be connected by double overlapping segments
aBooleng->SetOrientationEntryMode( true ); // holes are entered counter clockwise
}
}
int CPolyLine::NormalizeAreaOutlines( std::vector<CPolyLine*>* pa, bool bRetainArcs )
{
return NormalizeWithKbool( pa, bRetainArcs );
}
// Restore arcs to a polygon where they were replaced with steps
// If pa != NULL, also use polygons in pa array
//
int CPolyLine::RestoreArcs( std::vector<CArc>* arc_array, std::vector<CPolyLine*>* pa )
{
// get poly info
int n_polys = 1;
if( pa )
n_polys += pa->size();
CPolyLine* poly;
// undraw polys and clear m_utility flag for all corners
for( int ip = 0; ip<n_polys; ip++ )
{
if( ip == 0 )
poly = this;
else
poly = (*pa)[ip - 1];
poly->UnHatch();
for( int ic = 0; ic<poly->GetNumCorners(); ic++ )
poly->SetUtility( ic, 0 );
// clear m_utility flag
}
// find arcs and replace them
bool bFound;
int arc_start = 0;
int arc_end = 0;
for( unsigned iarc = 0; iarc<arc_array->size(); iarc++ )
{
int arc_xi = (*arc_array)[iarc].xi;
int arc_yi = (*arc_array)[iarc].yi;
int arc_xf = (*arc_array)[iarc].xf;
int arc_yf = (*arc_array)[iarc].yf;
int n_steps = (*arc_array)[iarc].n_steps;
int style = (*arc_array)[iarc].style;
bFound = false;
// loop through polys
for( int ip = 0; ip<n_polys; ip++ )
{
if( ip == 0 )
poly = this;
else
poly = (*pa)[ip - 1];
int polycount = poly->GetContoursCount();
for( int icont = 0; icont < polycount; icont++ )
{
int ic_start = poly->GetContourStart( icont );
int ic_end = poly->GetContourEnd( icont );
if( (ic_end - ic_start) > n_steps )
{
for( int ic = ic_start; ic<=ic_end; ic++ )
{
int ic_next = ic + 1;
if( ic_next > ic_end )
ic_next = ic_start;
int xi = poly->GetX( ic );
int yi = poly->GetY( ic );
if( xi == arc_xi && yi == arc_yi )
{
// test for forward arc
int ic2 = ic + n_steps;
if( ic2 > ic_end )
ic2 = ic2 - ic_end + ic_start - 1;
int xf = poly->GetX( ic2 );
int yf = poly->GetY( ic2 );
if( xf == arc_xf && yf == arc_yf )
{
// arc from ic to ic2
bFound = true;
arc_start = ic;
arc_end = ic2;
}
else
{
// try reverse arc
ic2 = ic - n_steps;
if( ic2 < ic_start )
ic2 = ic2 - ic_start + ic_end + 1;
xf = poly->GetX( ic2 );
yf = poly->GetY( ic2 );
if( xf == arc_xf && yf == arc_yf )
{
// arc from ic2 to ic
bFound = true;
arc_start = ic2;
arc_end = ic;
style = 3 - style;
}
}
if( bFound )
{
poly->m_SideStyle[arc_start] = style;
// mark corners for deletion from arc_start+1 to arc_end-1
for( int i = arc_start + 1; i!=arc_end; )
{
if( i > ic_end )
i = ic_start;
poly->SetUtility( i, 1 );
if( i == ic_end )
i = ic_start;
else
i++;
}
break;
}
}
if( bFound )
break;
}
}
if( bFound )
break;
}
}
if( bFound )
(*arc_array)[iarc].bFound = true;
}
// now delete all marked corners
for( int ip = 0; ip<n_polys; ip++ )
{
if( ip == 0 )
poly = this;
else
poly = (*pa)[ip - 1];
for( int ic = poly->GetNumCorners() - 1; ic>=0; ic-- )
{
if( poly->GetUtility( ic ) )
poly->DeleteCorner( ic, false );
}
}
return 0;
}
// initialize new polyline
// set layer, width, selection box size, starting point, id and pointer
//
// if sel_box = 0, don't create selection elements at all
//
// if polyline is board outline, enter with:
// id.type = ID_BOARD
// id.st = ID_BOARD_OUTLINE
// id.i = 0
// ptr = NULL
//
// if polyline is copper area, enter with:
// id.type = ID_NET;
// id.st = ID_AREA
// id.i = index to area
// ptr = pointer to net
//
void CPolyLine::Start( int layer, int x, int y, int hatch )
{
m_layer = layer;
SetHatchStyle( (enum HATCH_STYLE) hatch );
CPolyPt poly_pt( x, y );
poly_pt.end_contour = false;
m_CornersList.push_back( poly_pt );
m_SideStyle.push_back( 0 );
}
// add a corner to unclosed polyline
//
void CPolyLine::AppendCorner( int x, int y, int style, bool bDraw )
{
UnHatch();
CPolyPt poly_pt( x, y );
poly_pt.end_contour = false;
// add entries for new corner and side
m_CornersList.push_back( poly_pt );
m_SideStyle.push_back( style );
if( m_CornersList.size() > 0 && !m_CornersList[m_CornersList.size() - 1].end_contour )
m_SideStyle[m_CornersList.size() - 1] = style;
if( bDraw )
Hatch();
}
// close last polyline contour
//
void CPolyLine::CloseLastContour()
{
m_CornersList[m_CornersList.size() - 1].end_contour = true;
}
// move corner of polyline
//
void CPolyLine::MoveCorner( int ic, int x, int y )
{
UnHatch();
m_CornersList[ic].x = x;
m_CornersList[ic].y = y;
Hatch();
}
// delete corner and adjust arrays
//
void CPolyLine::DeleteCorner( int ic, bool bDraw )
{
UnHatch();
int icont = GetContour( ic );
int istart = GetContourStart( icont );
int iend = GetContourEnd( icont );
bool bClosed = icont < GetContoursCount() - 1 || GetClosed();
if( !bClosed )
{
// open contour, must be last contour
m_CornersList.erase( m_CornersList.begin() + ic );
if( ic != istart )
m_SideStyle.erase( m_SideStyle.begin() + ic - 1 );
}
else
{
// closed contour
m_CornersList.erase( m_CornersList.begin() + ic );
m_SideStyle.erase( m_SideStyle.begin() + ic );
if( ic == iend )
m_CornersList[ic - 1].end_contour = true;
}
if( bClosed && GetContourSize( icont ) < 3 )
{
// delete the entire contour
RemoveContour( icont );
}
if( bDraw )
Hatch();
}
/******************************************/
void CPolyLine::RemoveContour( int icont )
/******************************************/
/**
* Function RemoveContour
* @param icont = contour number to remove
* remove a contour only if there is more than 1 contour
*/
{
UnHatch();
int istart = GetContourStart( icont );
int iend = GetContourEnd( icont );
int polycount = GetContoursCount();
if( icont == 0 && polycount == 1 )
{
// remove the only contour
wxASSERT( 0 );
}
else if( icont == polycount - 1 )
{
// remove last contour
m_CornersList.erase( m_CornersList.begin() + istart, m_CornersList.end() );
m_SideStyle.erase( m_SideStyle.begin() + istart, m_SideStyle.end() );
}
else
{
// remove closed contour
for( int ic = iend; ic>=istart; ic-- )
{
m_CornersList.erase( m_CornersList.begin() + ic );
m_SideStyle.erase( m_SideStyle.begin() + ic );
}
}
Hatch();
}
CPolyLine* CPolyLine::Chamfer( unsigned int aDistance )
{
CPolyLine* newPoly = new CPolyLine;
if( !aDistance )
{
newPoly->Copy( this );
return newPoly;
}
int polycount = GetContoursCount();
for( int contour = 0; contour < polycount; contour++ )
{
unsigned int startIndex = GetContourStart( contour );
unsigned int endIndex = GetContourEnd( contour );
for( unsigned int index = startIndex; index <= endIndex; index++ )
{
int x1, y1, nx, ny;
long long xa, ya, xb, yb;
x1 = m_CornersList[index].x;
y1 = m_CornersList[index].y;
if( index == startIndex )
{
xa = m_CornersList[endIndex].x - x1;
ya = m_CornersList[endIndex].y - y1;
}
else
{
xa = m_CornersList[index - 1].x - x1;
ya = m_CornersList[index - 1].y - y1;
}
if( index == endIndex )
{
xb = m_CornersList[startIndex].x - x1;
yb = m_CornersList[startIndex].y - y1;
}
else
{
xb = m_CornersList[index + 1].x - x1;
yb = m_CornersList[index + 1].y - y1;
}
unsigned int lena = (unsigned int) sqrt( (double) (xa * xa + ya * ya) );
unsigned int lenb = (unsigned int) sqrt( (double) (xb * xb + yb * yb) );
unsigned int distance = aDistance;
// Chamfer one half of an edge at most
if( 0.5 * lena < distance )
distance = (unsigned int) (0.5 * (double) lena);
if( 0.5 * lenb < distance )
distance = (unsigned int) (0.5 * (double) lenb);
nx = (int) ( (double) (distance * xa) / sqrt( (double) (xa * xa + ya * ya) ) );
ny = (int) ( (double) (distance * ya) / sqrt( (double) (xa * xa + ya * ya) ) );
if( index == startIndex )
newPoly->Start( GetLayer(), x1 + nx, y1 + ny, GetHatchStyle() );
else
newPoly->AppendCorner( x1 + nx, y1 + ny );
nx = (int) ( (double) (distance * xb) / sqrt( (double) (xb * xb + yb * yb) ) );
ny = (int) ( (double) (distance * yb) / sqrt( (double) (xb * xb + yb * yb) ) );
newPoly->AppendCorner( x1 + nx, y1 + ny );
}
newPoly->CloseLastContour();
}
return newPoly;
}
CPolyLine* CPolyLine::Fillet( unsigned int aRadius, unsigned int aSegments )
{
CPolyLine* newPoly = new CPolyLine;
if( !aRadius )
{
newPoly->Copy( this );
return newPoly;
}
int polycount = GetContoursCount();
for( int contour = 0; contour < polycount; contour++ )
{
unsigned int startIndex = GetContourStart( contour );
unsigned int endIndex = GetContourEnd( contour );
for( unsigned int index = startIndex; index <= endIndex; index++ )
{
int x1, y1; // Current vertex
long long xa, ya; // Previous vertex
long long xb, yb; // Next vertex
double nx, ny;
x1 = m_CornersList[index].x;
y1 = m_CornersList[index].y;
if( index == startIndex )
{
xa = m_CornersList[endIndex].x - x1;
ya = m_CornersList[endIndex].y - y1;
}
else
{
xa = m_CornersList[index - 1].x - x1;
ya = m_CornersList[index - 1].y - y1;
}
if( index == endIndex )
{
xb = m_CornersList[startIndex].x - x1;
yb = m_CornersList[startIndex].y - y1;
}
else
{
xb = m_CornersList[index + 1].x - x1;
yb = m_CornersList[index + 1].y - y1;
}
double lena = sqrt( (double) (xa * xa + ya * ya) );
double lenb = sqrt( (double) (xb * xb + yb * yb) );
double cosine = ( xa * xb + ya * yb ) / ( lena * lenb );
unsigned int radius = aRadius;
double denom = sqrt( 2.0 / ( 1 + cosine ) - 1 );
// Limit rounding distance to one half of an edge
if( 0.5 * lena * denom < radius )
radius = (unsigned int) (0.5 * lena * denom);
if( 0.5 * lenb * denom < radius )
radius = (unsigned int) (0.5 * lenb * denom);
// Calculate fillet arc absolute center point (xc, yx)
double k = radius / sqrt( .5 * ( 1 - cosine ) );
double lenab = sqrt( ( xa / lena + xb / lenb ) * ( xa / lena + xb / lenb ) +
( ya / lena + yb / lenb ) * ( ya / lena + yb / lenb ) );
double xc = x1 + k * ( xa / lena + xb / lenb ) / lenab;
double yc = y1 + k * ( ya / lena + yb / lenb ) / lenab;
// Calculate arc start and end vectors
k = radius / sqrt( 2 / ( 1 + cosine ) - 1 );
double xs = x1 + k * xa / lena - xc;
double ys = y1 + k * ya / lena - yc;
double xe = x1 + k * xb / lenb - xc;
double ye = y1 + k * yb / lenb - yc;
// Cosine of arc angle
double argument = ( xs * xe + ys * ye ) / ( radius * radius );
if( argument < -1 ) // Just in case...
argument = -1;
else if( argument > 1 )
argument = 1;
double arcAngle = acos( argument );
// Calculate the number of segments
double tempSegments = (double) aSegments * ( arcAngle / ( 2 * M_PI ) );
if( tempSegments - (int) tempSegments > 0 )
tempSegments++;
unsigned int segments = (unsigned int) tempSegments;
double deltaAngle = arcAngle / segments;
double startAngle = atan2( -ys, xs );
// Flip arc for inner corners
if( xa * yb - ya * xb <= 0 )
deltaAngle *= -1;
nx = xc + xs + 0.5;
ny = yc + ys + 0.5;
if( index == startIndex )
newPoly->Start( GetLayer(), (int) nx, (int) ny, GetHatchStyle() );
else
newPoly->AppendCorner( (int) nx, (int) ny );
unsigned int nVertices = 0;
for( unsigned int j = 0; j < segments; j++ )
{
nx = xc + cos( startAngle + (j + 1) * deltaAngle ) * radius + 0.5;
ny = yc - sin( startAngle + (j + 1) * deltaAngle ) * radius + 0.5;
newPoly->AppendCorner( (int) nx, (int) ny );
nVertices++;
}
}
newPoly->CloseLastContour();
}
return newPoly;
}
/******************************************/
void CPolyLine::RemoveAllContours( void )
/******************************************/
/**
* function RemoveAllContours
* removes all corners from the lists.
* Others params are not chnaged
*/
{
m_CornersList.clear();
m_SideStyle.clear();
}
/**
* Function InsertCorner
* insert a new corner between two existing corners
* @param ic = index for the insertion point: the corner is inserted AFTER ic
* @param x, y = coordinates corner to insert
*/
void CPolyLine::InsertCorner( int ic, int x, int y )
{
UnHatch();
if( (unsigned) (ic) >= m_CornersList.size() )
{
m_CornersList.push_back( CPolyPt( x, y ) );
m_SideStyle.push_back( STRAIGHT );
}
else
{
m_CornersList.insert( m_CornersList.begin() + ic + 1, CPolyPt( x, y ) );
m_SideStyle.insert( m_SideStyle.begin() + ic + 1, STRAIGHT );
}
if( (unsigned) (ic + 1) < m_CornersList.size() )
{
if( m_CornersList[ic].end_contour )
{
m_CornersList[ic + 1].end_contour = true;
m_CornersList[ic].end_contour = false;
}
}
Hatch();
}
// undraw polyline by removing all graphic elements from display list
//
void CPolyLine::UnHatch()
{
m_HatchLines.clear();
}
int CPolyLine::GetEndContour( int ic )
{
return m_CornersList[ic].end_contour;
}
CRect CPolyLine::GetBounds()
{
CRect r = GetCornerBounds();
r.left -= m_width / 2;
r.right += m_width / 2;
r.bottom -= m_width / 2;
r.top += m_width / 2;
return r;
}
CRect CPolyLine::GetCornerBounds()
{
CRect r;
r.left = r.bottom = INT_MAX;
r.right = r.top = INT_MIN;
for( unsigned i = 0; i<m_CornersList.size(); i++ )
{
r.left = min( r.left, m_CornersList[i].x );
r.right = max( r.right, m_CornersList[i].x );
r.bottom = min( r.bottom, m_CornersList[i].y );
r.top = max( r.top, m_CornersList[i].y );
}
return r;
}
CRect CPolyLine::GetCornerBounds( int icont )
{
CRect r;
r.left = r.bottom = INT_MAX;
r.right = r.top = INT_MIN;
int istart = GetContourStart( icont );
int iend = GetContourEnd( icont );
for( int i = istart; i<=iend; i++ )
{
r.left = min( r.left, m_CornersList[i].x );
r.right = max( r.right, m_CornersList[i].x );
r.bottom = min( r.bottom, m_CornersList[i].y );
r.top = max( r.top, m_CornersList[i].y );
}
return r;
}
int CPolyLine::GetNumCorners()
{
return m_CornersList.size();
}
int CPolyLine::GetNumSides()
{
if( GetClosed() )
return m_CornersList.size();
else
return m_CornersList.size() - 1;
}
int CPolyLine::GetContoursCount()
{
int ncont = 0;
if( !m_CornersList.size() )
return 0;
for( unsigned ic = 0; ic < m_CornersList.size(); ic++ )
if( m_CornersList[ic].end_contour )
ncont++;
if( !m_CornersList[m_CornersList.size() - 1].end_contour )
ncont++;
return ncont;
}
int CPolyLine::GetContour( int ic )
{
int ncont = 0;
for( int i = 0; i<ic; i++ )
{
if( m_CornersList[i].end_contour )
ncont++;
}
return ncont;
}
int CPolyLine::GetContourStart( int icont )
{
if( icont == 0 )
return 0;
int ncont = 0;
for( unsigned i = 0; i<m_CornersList.size(); i++ )
{
if( m_CornersList[i].end_contour )
{
ncont++;
if( ncont == icont )
return i + 1;
}
}
wxASSERT( 0 );
return 0;
}
int CPolyLine::GetContourEnd( int icont )
{
if( icont < 0 )
return 0;
if( icont == GetContoursCount() - 1 )
return m_CornersList.size() - 1;
int ncont = 0;
for( unsigned i = 0; i<m_CornersList.size(); i++ )
{
if( m_CornersList[i].end_contour )
{
if( ncont == icont )
return i;
ncont++;
}
}
wxASSERT( 0 );
return 0;
}
int CPolyLine::GetContourSize( int icont )
{
return GetContourEnd( icont ) - GetContourStart( icont ) + 1;
}
void CPolyLine::SetSideStyle( int is, int style )
{
UnHatch();
wxPoint p1, p2;
if( is == (int) (m_CornersList.size() - 1) )
{
p1.x = m_CornersList[m_CornersList.size() - 1].x;
p1.y = m_CornersList[m_CornersList.size() - 1].y;
p2.x = m_CornersList[0].x;
p2.y = m_CornersList[0].y;
}
else
{
p1.x = m_CornersList[is].x;
p1.y = m_CornersList[is].y;
p2.x = m_CornersList[is + 1].x;
p2.y = m_CornersList[is + 1].y;
}
if( p1.x == p2.x || p1.y == p2.y )
m_SideStyle[is] = STRAIGHT;
else
m_SideStyle[is] = style;
Hatch();
}
int CPolyLine::GetSideStyle( int is )
{
return m_SideStyle[is];
}
int CPolyLine::GetClosed()
{
if( m_CornersList.size() == 0 )
return 0;
else
return m_CornersList[m_CornersList.size() - 1].end_contour;
}
// Creates hatch lines inside the outline of the complex polygon
//
// sort function used in ::Hatch to sort points by descending wxPoint.x values
bool sort_ends_by_descending_X( const wxPoint& ref, const wxPoint& tst )
{
return tst.x < ref.x;
}
void CPolyLine::Hatch()
{
m_HatchLines.clear();
if( m_hatchStyle == NO_HATCH || m_hatchPitch == 0 )
return;
if( !GetClosed() ) // If not closed, the poly is beeing created and not finalised. Not not hatch
return;
// define range for hatch lines
int min_x = m_CornersList[0].x;
int max_x = m_CornersList[0].x;
int min_y = m_CornersList[0].y;
int max_y = m_CornersList[0].y;
for( unsigned ic = 1; ic < m_CornersList.size(); ic++ )
{
if( m_CornersList[ic].x < min_x )
min_x = m_CornersList[ic].x;
if( m_CornersList[ic].x > max_x )
max_x = m_CornersList[ic].x;
if( m_CornersList[ic].y < min_y )
min_y = m_CornersList[ic].y;
if( m_CornersList[ic].y > max_y )
max_y = m_CornersList[ic].y;
}
// Calculate spacing betwwen 2 hatch lines
int spacing;
if( m_hatchStyle == DIAGONAL_EDGE )
spacing = m_hatchPitch;
else
spacing = m_hatchPitch * 2;
// set the "lenght" of hatch lines (the lenght on horizontal axis)
double hatch_line_len = m_hatchPitch;
// To have a better look, give a slope depending on the layer
int layer = GetLayer();
int slope_flag = (layer & 1) ? 1 : -1; // 1 or -1
double slope = 0.707106 * slope_flag; // 45 degrees slope
int max_a, min_a;
if( slope_flag == 1 )
{
max_a = (int) (max_y - slope * min_x);
min_a = (int) (min_y - slope * max_x);
}
else
{
max_a = (int) (max_y - slope * max_x);
min_a = (int) (min_y - slope * min_x);
}
min_a = (min_a / spacing) * spacing;
// calculate an offset depending on layer number,
// for a better look of hatches on a multilayer board
int offset = (layer * 7) / 8;
min_a += offset;
// now calculate and draw hatch lines
int nc = m_CornersList.size();
// loop through hatch lines
#define MAXPTS 200 // Usually we store only few values per one hatch line
// depending on the compexity of the zone outline
static std::vector <wxPoint> pointbuffer;
pointbuffer.clear();
pointbuffer.reserve( MAXPTS + 2 );
for( int a = min_a; a < max_a; a += spacing )
{
// get intersection points for this hatch line
// Note: because we should have an even number of intersections with the
// current hatch line and the zone outline (a closed polygon,
// or a set of closed polygons), if an odd count is found
// we skip this line (should not occur)
pointbuffer.clear();
int i_start_contour = 0;
for( int ic = 0; ic<nc; ic++ )
{
double x, y, x2, y2;
int ok;
if( m_CornersList[ic].end_contour || ( ic == (int) (m_CornersList.size() - 1) ) )
{
ok = FindLineSegmentIntersection( a, slope,
m_CornersList[ic].x, m_CornersList[ic].y,
m_CornersList[i_start_contour].x,
m_CornersList[i_start_contour].y,
m_SideStyle[ic],
&x, &y, &x2, &y2 );
i_start_contour = ic + 1;
}
else
{
ok = FindLineSegmentIntersection( a, slope,
m_CornersList[ic].x, m_CornersList[ic].y,
m_CornersList[ic + 1].x, m_CornersList[ic + 1].y,
m_SideStyle[ic],
&x, &y, &x2, &y2 );
}
if( ok )
{
wxPoint point( (int) x, (int) y );
pointbuffer.push_back( point );
}
if( ok == 2 )
{
wxPoint point( (int) x2, (int) y2 );
pointbuffer.push_back( point );
}
if( pointbuffer.size() >= MAXPTS ) // overflow
{
wxASSERT( 0 );
break;
}
}
// ensure we have found an even intersection points count
// because intersections are the ends of segments
// inside the polygon(s) and a segment has 2 ends.
// if not, this is a strange case (a bug ?) so skip this hatch
if( pointbuffer.size() % 2 != 0 )
continue;
// sort points in order of descending x (if more than 2) to
// ensure the starting point and the ending point of the same segment
// are stored one just after the other.
if( pointbuffer.size() > 2 )
sort( pointbuffer.begin(), pointbuffer.end(), sort_ends_by_descending_X );
// creates lines or short segments inside the complex polygon
for( unsigned ip = 0; ip < pointbuffer.size(); ip += 2 )
{
double dx = pointbuffer[ip + 1].x - pointbuffer[ip].x;
// Push only one line for diagonal hatch,
// or for small lines < twice the line len
// else push 2 small lines
if( m_hatchStyle == DIAGONAL_FULL || fabs( dx ) < 2 * hatch_line_len )
{
m_HatchLines.push_back( CSegment( pointbuffer[ip], pointbuffer[ip + 1] ) );
}
else
{
double dy = pointbuffer[ip + 1].y - pointbuffer[ip].y;
double slope = dy / dx;
if( dx > 0 )
dx = hatch_line_len;
else
dx = -hatch_line_len;
double x1 = pointbuffer[ip].x + dx;
double x2 = pointbuffer[ip + 1].x - dx;
double y1 = pointbuffer[ip].y + dx * slope;
double y2 = pointbuffer[ip + 1].y - dx * slope;
m_HatchLines.push_back( CSegment( pointbuffer[ip].x,
pointbuffer[ip].y,
KiROUND( x1 ), KiROUND( y1 ) ) );
m_HatchLines.push_back( CSegment( pointbuffer[ip + 1].x,
pointbuffer[ip + 1].y,
KiROUND( x2 ), KiROUND( y2 ) ) );
}
}
}
}
// test to see if a point is inside polyline
//
bool CPolyLine::TestPointInside( int px, int py )
{
if( !GetClosed() )
{
wxASSERT( 0 );
}
// Test all polygons.
// Since the first is the main outline, and other are holes,
// if the tested point is inside only one contour, it is inside the whole polygon
// (in fact inside the main outline, and outside all holes).
// if inside 2 contours (the main outline + an hole), it is outside the poly.
int polycount = GetContoursCount();
bool inside = false;
for( int icont = 0; icont < polycount; icont++ )
{
int istart = GetContourStart( icont );
int iend = GetContourEnd( icont );
// Test this polygon:
if( TestPointInsidePolygon( m_CornersList, istart, iend, px, py ) ) // test point inside the current polygon
inside = not inside;
}
return inside;
}
// copy data from another poly, but don't draw it
//
void CPolyLine::Copy( CPolyLine* src )
{
UnHatch();
m_hatchStyle = src->m_hatchStyle;
m_hatchPitch = src->m_hatchPitch;
// copy corners, using vector copy
m_CornersList = src->m_CornersList;
// copy side styles, using vector copy
m_SideStyle = src->m_SideStyle;
}
/*******************************************/
bool CPolyLine::IsCutoutContour( int icont )
/*******************************************/
/*
* return true if the corner icont is inside the outline (i.e it is a hole)
*/
{
int ncont = GetContour( icont );
if( ncont == 0 ) // the first contour is the main outline, not an hole
return false;
return true;
}
void CPolyLine::MoveOrigin( int x_off, int y_off )
{
UnHatch();
for( int ic = 0; ic < GetNumCorners(); ic++ )
{
SetX( ic, GetX( ic ) + x_off );
SetY( ic, GetY( ic ) + y_off );
}
Hatch();
}
// Set various parameters:
// the calling function should UnHatch() before calling them,
// and Draw() after
//
void CPolyLine::SetX( int ic, int x )
{
m_CornersList[ic].x = x;
}
void CPolyLine::SetY( int ic, int y )
{
m_CornersList[ic].y = y;
}
void CPolyLine::SetEndContour( int ic, bool end_contour )
{
m_CornersList[ic].end_contour = end_contour;
}
/*
* AppendArc adds segments to current contour to approximate the given arc
*/
void CPolyLine::AppendArc( int xi, int yi, int xf, int yf, int xc, int yc, int num )
{
// get radius
double radius = hypot( (double) (xi - xc), (double) (yi - yc) );
// get angles of start and finish
double th_i = atan2( (double) (yi - yc), (double) (xi - xc) );
double th_f = atan2( (double) (yf - yc), (double) (xf - xc) );
double th_d = (th_f - th_i) / (num - 1);
double theta = th_i;
// generate arc
for( int ic = 0; ic < num; ic++ )
{
int x = KiROUND( xc + radius * cos( theta ) );
int y = KiROUND( yc + radius * sin( theta ) );
AppendCorner( x, y, STRAIGHT, 0 );
theta += th_d;
}
CloseLastContour();
}
// Bezier Support
void CPolyLine::AppendBezier( int x1, int y1, int x2, int y2, int x3, int y3 )
{
std::vector<wxPoint> bezier_points;
bezier_points = Bezier2Poly( x1, y1, x2, y2, x3, y3 );
for( unsigned int i = 0; i < bezier_points.size(); i++ )
AppendCorner( bezier_points[i].x, bezier_points[i].y );
}
void CPolyLine::AppendBezier( int x1, int y1, int x2, int y2, int x3, int y3, int x4, int y4 )
{
std::vector<wxPoint> bezier_points;
bezier_points = Bezier2Poly( x1, y1, x2, y2, x3, y3, x4, y4 );
for( unsigned int i = 0; i < bezier_points.size(); i++ )
AppendCorner( bezier_points[i].x, bezier_points[i].y );
}
/*
* Function Distance
* Calculates the distance between a segment and a polygon (with holes):
* param aStart is the starting point of the segment.
* param aEnd is the ending point of the segment.
* param aWidth is the width of the segment.
* return distance between the segment and outline.
* 0 if segment intersects or is inside
*/
int CPolyLine::Distance( wxPoint aStart, wxPoint aEnd, int aWidth )
{
// We calculate the min dist between the segment and each outline segment
// However, if the segment to test is inside the outline, and does not cross
// any edge, it can be seen outside the polygon.
// Therefore test if a segment end is inside ( testing only one end is enough )
if( TestPointInside( aStart.x, aStart.y ) )
return 0;
int distance = INT_MAX;
int polycount = GetContoursCount();
for( int icont = 0; icont < polycount; icont++ )
{
int ic_start = GetContourStart( icont );
int ic_end = GetContourEnd( icont );
// now test spacing between area outline and segment
for( int ic2 = ic_start; ic2 <= ic_end; ic2++ )
{
int bx1 = GetX( ic2 );
int by1 = GetY( ic2 );
int bx2, by2;
if( ic2 == ic_end )
{
bx2 = GetX( ic_start );
by2 = GetY( ic_start );
}
else
{
bx2 = GetX( ic2 + 1 );
by2 = GetY( ic2 + 1 );
}
int bstyle = GetSideStyle( ic2 );
int d = GetClearanceBetweenSegments( bx1, by1, bx2, by2, bstyle, 0,
aStart.x, aStart.y, aEnd.x, aEnd.y,
CPolyLine::STRAIGHT, aWidth,
1, // min clearance, should be > 0
NULL, NULL );
if( distance > d )
distance = d;
if( distance <= 0 )
return 0;
}
}
return distance;
}
/*
* Function Distance
* Calculates the distance between a point and polygon (with holes):
* param aPoint is the coordinate of the point.
* return distance between the point and outline.
* 0 if the point is inside
*/
int CPolyLine::Distance( const wxPoint& aPoint )
{
// We calculate the dist between the point and each outline segment
// If the point is inside the outline, the dist is 0.
if( TestPointInside( aPoint.x, aPoint.y ) )
return 0;
int distance = INT_MAX;
int polycount = GetContoursCount();
for( int icont = 0; icont < polycount; icont++ )
{
int ic_start = GetContourStart( icont );
int ic_end = GetContourEnd( icont );
// now test spacing between area outline and segment
for( int ic2 = ic_start; ic2 <= ic_end; ic2++ )
{
int bx1 = GetX( ic2 );
int by1 = GetY( ic2 );
int bx2, by2;
if( ic2 == ic_end )
{
bx2 = GetX( ic_start );
by2 = GetY( ic_start );
}
else
{
bx2 = GetX( ic2 + 1 );
by2 = GetY( ic2 + 1 );
}
// Here we expect only straight lines for vertices
// (no arcs, not yet supported in Pcbnew)
int d = KiROUND( GetPointToLineSegmentDistance( aPoint.x, aPoint.y,
bx1, by1, bx2, by2 ) );
if( distance > d )
distance = d;
if( distance <= 0 )
return 0;
}
}
return distance;
}
/**
* Function CopyPolysListToKiPolygonWithHole
* converts the outline contours aPolysList to a KI_POLYGON_WITH_HOLES
*
* @param aPolysList = the list of corners of contours
* @param aPolygoneWithHole = a KI_POLYGON_WITH_HOLES to populate
*/
void CopyPolysListToKiPolygonWithHole( const std::vector<CPolyPt>& aPolysList,
KI_POLYGON_WITH_HOLES& aPolygoneWithHole )
{
unsigned corners_count = aPolysList.size();
std::vector<KI_POLY_POINT> cornerslist;
KI_POLYGON poly;
// Enter main outline: this is the first contour
unsigned ic = 0;
while( ic < corners_count )
{
const CPolyPt& corner = aPolysList[ic++];
cornerslist.push_back( KI_POLY_POINT( corner.x, corner.y ) );
if( corner.end_contour )
break;
}
aPolygoneWithHole.set( cornerslist.begin(), cornerslist.end() );
// Enter holes: they are next contours (when exist)
if( ic < corners_count )
{
KI_POLYGON_SET holePolyList;
while( ic < corners_count )
{
cornerslist.clear();
while( ic < corners_count )
{
const CPolyPt& corner = aPolysList[ic++];
cornerslist.push_back( KI_POLY_POINT( corner.x, corner.y ) );
if( corner.end_contour )
break;
}
bpl::set_points( poly, cornerslist.begin(), cornerslist.end() );
holePolyList.push_back( poly );
}
aPolygoneWithHole.set_holes( holePolyList.begin(), holePolyList.end() );
}
}
/**
* Function ConvertPolysListWithHolesToOnePolygon
* converts the outline contours aPolysListWithHoles with holes to one polygon
* with no holes (only one contour)
* holes are linked to main outlines by overlap segments, to give only one polygon
*
* @param aPolysListWithHoles = the list of corners of contours (haing holes
* @param aOnePolyList = a polygon with no holes
*/
void ConvertPolysListWithHolesToOnePolygon( const std::vector<CPolyPt>& aPolysListWithHoles,
std::vector<CPolyPt>& aOnePolyList )
{
unsigned corners_count = aPolysListWithHoles.size();
int polycount = 0;
for( unsigned ii = 0; ii < corners_count; ii++ )
{
const CPolyPt& corner = aPolysListWithHoles[ii];
if( corner.end_contour )
polycount++;
}
// If polycount<= 1, there is no holes found.
if( polycount<= 1 )
{
aOnePolyList = aPolysListWithHoles;
return;
}
// Holes are found: convert them to only one polygon with overlap segments
KI_POLYGON_SET polysholes;
KI_POLYGON_SET mainpoly;
KI_POLYGON poly_tmp;
std::vector<KI_POLY_POINT> cornerslist;
corners_count = aPolysListWithHoles.size();
unsigned ic = 0;
// enter main outline
while( ic < corners_count )
{
const CPolyPt& corner = aPolysListWithHoles[ic++];
cornerslist.push_back( KI_POLY_POINT( corner.x, corner.y ) );
if( corner.end_contour )
break;
}
bpl::set_points( poly_tmp, cornerslist.begin(), cornerslist.end() );
mainpoly.push_back( poly_tmp );
while( ic < corners_count )
{
cornerslist.clear();
{
while( ic < corners_count )
{
const CPolyPt& corner = aPolysListWithHoles[ic++];
cornerslist.push_back( KI_POLY_POINT( corner.x, corner.y ) );
if( corner.end_contour )
break;
}
bpl::set_points( poly_tmp, cornerslist.begin(), cornerslist.end() );
polysholes.push_back( poly_tmp );
}
}
mainpoly -= polysholes;
// copy polygon with no holes to destination
// We should have only one polygon in list
wxASSERT( mainpoly.size() != 1 );
{
KI_POLYGON& poly_nohole = mainpoly[0];
CPolyPt corner( 0, 0, false );
for( unsigned jj = 0; jj < poly_nohole.size(); jj++ )
{
KI_POLY_POINT point = *(poly_nohole.begin() + jj);
corner.x = point.x();
corner.y = point.y();
corner.end_contour = false;
aOnePolyList.push_back( corner );
}
corner.end_contour = true;
aOnePolyList.pop_back();
aOnePolyList.push_back( corner );
}
}