388 lines
14 KiB
C++
388 lines
14 KiB
C++
/*
|
|
* This program source code file
|
|
* is part of KiCad, a free EDA CAD application.
|
|
*
|
|
* Copyright (C) 2020 <janvi@veith.net>
|
|
* Copyright (C) 2021-2022 KiCad Developers, see AUTHORS.txt for contributors.
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by the
|
|
* Free Software Foundation, either version 3 of the License, or (at your
|
|
* option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <array>
|
|
#include <algorithm>
|
|
#include <limits>
|
|
#include "eseries.h"
|
|
|
|
/*
|
|
* If BENCHMARK is defined, any 4R E12 calculations will print its execution time to console
|
|
* My Hasswell Enthusiast reports 225 mSec what are reproducible within plusminus 2 percent
|
|
*/
|
|
//#define BENCHMARK
|
|
|
|
#ifdef BENCHMARK
|
|
#include <profile.h>
|
|
#endif
|
|
|
|
|
|
// Return a string from aValue (aValue is expected in ohms)
|
|
// If aValue < 1000 the returned string is aValue with unit = R
|
|
// If aValue >= 1000 the returned string is aValue/1000 with unit = K
|
|
// with notation similar to 2K2
|
|
// If aValue >= 1e6 the returned string is aValue/1e6 with unit = M
|
|
// with notation = 1M
|
|
static std::string strValue( double aValue )
|
|
{
|
|
std::string result;
|
|
|
|
if( aValue < 1000.0 )
|
|
{
|
|
result = std::to_string( static_cast<int>( aValue ) );
|
|
result += 'R';
|
|
}
|
|
else
|
|
{
|
|
double div = 1e3;
|
|
int unit = 'K';
|
|
|
|
if( aValue >= 1e6 )
|
|
{
|
|
div = 1e6;
|
|
unit = 'M';
|
|
}
|
|
|
|
aValue /= div;
|
|
|
|
int integer = static_cast<int>( aValue );
|
|
result = std::to_string(integer);
|
|
result += unit;
|
|
|
|
// Add mantissa: 1 digit, suitable for series up to E24
|
|
double mantissa = aValue - integer;
|
|
|
|
if( mantissa > 0 )
|
|
result += std::to_string( static_cast<int>( (mantissa*10)+0.5 ) );
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
E_SERIES::E_SERIES()
|
|
{
|
|
// Build the list of available resistor values in each En serie
|
|
double listValuesE1[] = { E1_VALUES };
|
|
double listValuesE3[] = { E3_VALUES };
|
|
double listValuesE6[] = { E6_VALUES };
|
|
double listValuesE12[] = { E12_VALUES };
|
|
double listValuesE24[] = { E24_VALUES };
|
|
// buildSeriesData must be called in the order of En series, because
|
|
// the list of series is expected indexed by En for the serie En
|
|
buildSeriesData( listValuesE1 );
|
|
buildSeriesData( listValuesE3 );
|
|
buildSeriesData( listValuesE6 );
|
|
buildSeriesData( listValuesE12 );
|
|
int count = buildSeriesData( listValuesE24 );
|
|
|
|
// Reserve a buffer for intermediate calculations:
|
|
// the buffer size is 2*count*count to store all combinaisons of 2 values
|
|
// there are 2*count*count = 29282 combinations for E24
|
|
int bufsize = 2*count*count;
|
|
m_combined_table.reserve( bufsize );
|
|
|
|
// Store predefined R_DATA items.
|
|
for( int ii = 0; ii < bufsize; ii++ )
|
|
m_combined_table.emplace_back( "", 0.0 );
|
|
}
|
|
|
|
|
|
int E_SERIES::buildSeriesData( const double aList[] )
|
|
{
|
|
double curr_decade = FIRST_VALUE;
|
|
int count = 0;
|
|
|
|
std::vector<R_DATA> curr_list;
|
|
|
|
for( ; ; )
|
|
{
|
|
double curr_r;
|
|
|
|
for( int ii = 0; ; ii++ )
|
|
{
|
|
if( aList[ii] == 0.0 ) // End of list
|
|
break;
|
|
|
|
curr_r = curr_decade * aList[ii];
|
|
curr_list.emplace_back( strValue( curr_r ), curr_r );
|
|
count++;
|
|
|
|
if( curr_r >= LAST_VALUE )
|
|
break;
|
|
}
|
|
|
|
if( curr_r >= LAST_VALUE )
|
|
break;
|
|
|
|
curr_decade *= 10;
|
|
}
|
|
|
|
m_tables.push_back( std::move( curr_list ) );
|
|
|
|
return count;
|
|
}
|
|
|
|
|
|
void E_SERIES::Exclude( double aValue )
|
|
{
|
|
if( aValue != 0.0 ) // if there is a value to exclude other than a wire jumper
|
|
{
|
|
for( R_DATA& i : m_tables[m_series] ) // then search it in the selected E-Series table
|
|
{
|
|
if( i.e_value == aValue ) // if the value to exclude is found
|
|
i.e_use = false; // disable its use
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void E_SERIES::simple_solution( uint32_t aSize )
|
|
{
|
|
uint32_t i;
|
|
|
|
m_results.at( S2R ).e_value = std::numeric_limits<double>::max(); // assume no 2R solution or max deviation
|
|
|
|
for( i = 0; i < aSize; i++ )
|
|
{
|
|
if( abs( m_combined_table.at( i ).e_value - m_required_value ) < abs( m_results.at( S2R ).e_value ) )
|
|
{
|
|
m_results[S2R].e_value = m_combined_table[ i ].e_value - m_required_value; // save signed deviation in Ohms
|
|
m_results[S2R].e_name = m_combined_table[ i ].e_name; // save combination text
|
|
m_results[S2R].e_use = true; // this is a possible solution
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void E_SERIES::combine4( uint32_t aSize )
|
|
{
|
|
uint32_t i,j;
|
|
double tmp;
|
|
|
|
m_results[S4R].e_use = false; // disable 4R solution, until
|
|
m_results[S4R].e_value = m_results[S3R].e_value; // 4R becomes better than 3R solution
|
|
|
|
#ifdef BENCHMARK
|
|
PROF_TIMER timer; // start timer to count execution time
|
|
#endif
|
|
|
|
for( i = 0; i < aSize; i++ ) // 4R search outer loop
|
|
{ // scan valid intermediate 2R solutions
|
|
for( j = 0; j < aSize; j++ ) // inner loop combines all with itself
|
|
{
|
|
tmp = m_combined_table[i].e_value + m_combined_table[j].e_value; // calculate 2R+2R serial
|
|
tmp -= m_required_value; // calculate 4R deviation
|
|
|
|
if( abs( tmp ) < abs( m_results.at(S4R).e_value ) ) // if new 4R is better
|
|
{
|
|
m_results[S4R].e_value = tmp; // save amount of benefit
|
|
std::string s = "( ";
|
|
s.append( m_combined_table[i].e_name ); // mention 1st 2 component
|
|
s.append( " ) + ( " ); // in series
|
|
s.append( m_combined_table[j].e_name ); // with 2nd 2 components
|
|
s.append( " )" );
|
|
m_results[S4R].e_name = s; // save the result and
|
|
m_results[S4R].e_use = true; // enable for later use
|
|
}
|
|
|
|
tmp = ( m_combined_table[i].e_value * m_combined_table[j].e_value ) /
|
|
( m_combined_table[i].e_value + m_combined_table[j].e_value ); // calculate 2R|2R parallel
|
|
tmp -= m_required_value; // calculate 4R deviation
|
|
|
|
if( abs( tmp ) < abs( m_results[S4R].e_value ) ) // if new 4R is better
|
|
{
|
|
m_results[S4R].e_value = tmp; // save amount of benefit
|
|
std::string s = "( ";
|
|
s.append( m_combined_table[i].e_name ); // mention 1st 2 component
|
|
s.append( " ) | ( " ); // in parallel
|
|
s.append( m_combined_table[j].e_name ); // with 2nd 2 components
|
|
s.append( " )" );
|
|
m_results[S4R].e_name = s; // save the result
|
|
m_results[S4R].e_use = true; // enable later use
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef BENCHMARK
|
|
printf( "Calculation time = %d mS", timer.msecs() );
|
|
fflush( 0 );
|
|
#endif
|
|
}
|
|
|
|
|
|
void E_SERIES::NewCalc()
|
|
{
|
|
for( R_DATA& i : m_combined_table )
|
|
i.e_use = false; // before any calculation is done, assume that
|
|
|
|
for( R_DATA& i : m_results )
|
|
i.e_use = false; // no combinations and no results are available
|
|
|
|
for( R_DATA& i : m_tables[m_series])
|
|
i.e_use = true; // all selected E-values available
|
|
}
|
|
|
|
|
|
uint32_t E_SERIES::combine2()
|
|
{
|
|
uint32_t combi2R = 0; // target index counts calculated 2R combinations
|
|
std::string s;
|
|
|
|
for( const R_DATA& i : m_tables[m_series] ) // outer loop to sweep selected source lookup table
|
|
{
|
|
if( i.e_use )
|
|
{
|
|
for( const R_DATA& j : m_tables[m_series] ) // inner loop to combine values with itself
|
|
{
|
|
if( j.e_use )
|
|
{
|
|
m_combined_table[combi2R].e_use = true;
|
|
m_combined_table[combi2R].e_value = i.e_value + j.e_value; // calculate 2R serial
|
|
s = i.e_name;
|
|
s.append( " + " );
|
|
m_combined_table[combi2R].e_name = s.append( j.e_name);
|
|
combi2R++; // next destination
|
|
m_combined_table[combi2R].e_use = true; // calculate 2R parallel
|
|
m_combined_table[combi2R].e_value = i.e_value * j.e_value / ( i.e_value + j.e_value );
|
|
s = i.e_name;
|
|
s.append( " | " );
|
|
m_combined_table[combi2R].e_name = s.append( j.e_name );
|
|
combi2R++; // next destination
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return combi2R;
|
|
}
|
|
|
|
|
|
void E_SERIES::combine3( uint32_t aSize )
|
|
{
|
|
uint32_t j = 0;
|
|
double tmp = 0; // avoid warning for being uninitialized
|
|
std::string s;
|
|
|
|
m_results[S3R].e_use = false; // disable 3R solution, until 3R
|
|
m_results[S3R].e_value = m_results[S2R].e_value; // becomes better than 2R solution
|
|
|
|
for( const R_DATA& i : m_tables[m_series] ) // 3R Outer loop to selected primary E series table
|
|
{
|
|
if( i.e_use ) // skip all excluded values
|
|
{
|
|
for( j = 0; j < aSize; j++ ) // inner loop combines with all 2R intermediate
|
|
{ // results R+2R serial combi
|
|
tmp = m_combined_table[j].e_value + i.e_value;
|
|
tmp -= m_required_value; // calculate deviation
|
|
|
|
if( abs( tmp ) < abs( m_results[S3R].e_value ) ) // compare if better
|
|
{ // then take it
|
|
s = i.e_name; // mention 3rd component
|
|
s.append( " + ( " ); // in series
|
|
s.append( m_combined_table[j].e_name ); // with 2R combination
|
|
s.append( " )" );
|
|
m_results[S3R].e_name = s; // save S3R result
|
|
m_results[S3R].e_value = tmp; // save amount of benefit
|
|
m_results[S3R].e_use = true; // enable later use
|
|
}
|
|
|
|
tmp = i.e_value * m_combined_table[j].e_value /
|
|
( i.e_value + m_combined_table[j].e_value ); // calculate R + 2R parallel
|
|
tmp -= m_required_value; // calculate deviation
|
|
|
|
if( abs( tmp ) < abs( m_results[S3R].e_value ) ) // compare if better
|
|
{ // then take it
|
|
s = i.e_name; // mention 3rd component
|
|
s.append( " | ( " ); // in parallel
|
|
s.append( m_combined_table[j].e_name ); // with 2R combination
|
|
s.append( " )" );
|
|
m_results[S3R].e_name = s;
|
|
m_results[S3R].e_value = tmp; // save amount of benefit
|
|
m_results[S3R].e_use = true; // enable later use
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// If there is a 3R result with remaining deviation consider to search a possibly better
|
|
// 4R solution
|
|
// calculate 4R for small series always
|
|
if( m_results[S3R].e_use && tmp )
|
|
combine4( aSize );
|
|
}
|
|
|
|
|
|
void E_SERIES::Calculate()
|
|
{
|
|
uint32_t no_of_2Rcombi = 0;
|
|
|
|
no_of_2Rcombi = combine2(); // combine all 2R combinations for selected E serie
|
|
simple_solution( no_of_2Rcombi ); // search for simple 2 component solution
|
|
|
|
if( m_results[S2R].e_value ) // if simple 2R result is not exact
|
|
combine3( no_of_2Rcombi ); // continiue searching for a possibly better solution
|
|
|
|
strip3();
|
|
strip4();
|
|
}
|
|
|
|
|
|
void E_SERIES::strip3()
|
|
{
|
|
std::string s;
|
|
|
|
if( m_results[S3R].e_use ) // if there is a 3 term result available
|
|
{ // what is connected either by two "|" or by 3 plus
|
|
s = m_results[S3R].e_name;
|
|
|
|
if( ( std::count( s.begin(), s.end(), '+' ) == 2 )
|
|
|| ( std::count( s.begin(), s.end(), '|' ) == 2 ) )
|
|
{ // then strip one pair of braces
|
|
s.erase( s.find( '(' ), 1 ); // it is known sure, this is available
|
|
s.erase( s.find( ')' ), 1 ); // in any unstripped 3R result term
|
|
m_results[S3R].e_name = s; // use stripped result
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void E_SERIES::strip4()
|
|
{
|
|
std::string s;
|
|
|
|
if( m_results[S4R].e_use ) // if there is a 4 term result available
|
|
{ // what are connected either by 3 "+" or by 3 "|"
|
|
s = m_results[S4R].e_name;
|
|
|
|
if( ( std::count( s.begin(), s.end(), '+' ) == 3 )
|
|
|| ( std::count( s.begin(), s.end(), '|' ) == 3 ) )
|
|
{ // then strip two pair of braces
|
|
s.erase( s.find( '(' ), 1 ); // it is known sure, they are available
|
|
s.erase( s.find( ')' ), 1 ); // in any unstripped 4R result term
|
|
s.erase( s.find( '(' ), 1 );
|
|
s.erase( s.find( ')' ), 1 );
|
|
m_results[S4R].e_name = s; // use stripped result
|
|
}
|
|
}
|
|
}
|
|
|
|
|