842 lines
24 KiB
C++
842 lines
24 KiB
C++
/*
|
|
* This program source code file is part of KiCad, a free EDA CAD application.
|
|
*
|
|
* Copyright (C) 2012 SoftPLC Corporation, Dick Hollenbeck <dick@softplc.com>
|
|
* Copyright (C) 2012-2022 Kicad Developers, see AUTHORS.txt for contributors.
|
|
* Copyright (C) 2013 CERN
|
|
* @author Tomasz Wlostowski <tomasz.wlostowski@cern.ch>
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, you may find one here:
|
|
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
|
|
* or you may search the http://www.gnu.org website for the version 2 license,
|
|
* or you may write to the Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
|
|
*/
|
|
|
|
#ifndef __BOX2_H
|
|
#define __BOX2_H
|
|
|
|
#include <limits>
|
|
#include <algorithm>
|
|
#include <optional>
|
|
|
|
#include <math/vector2d.h>
|
|
#include <geometry/eda_angle.h>
|
|
#include <trigo.h>
|
|
|
|
/**
|
|
* A 2D bounding box built on top of an origin point and size vector.
|
|
*/
|
|
template <class Vec>
|
|
class BOX2
|
|
{
|
|
public:
|
|
typedef typename Vec::coord_type coord_type;
|
|
typedef typename Vec::extended_type ecoord_type;
|
|
typedef std::numeric_limits<coord_type> coord_limits;
|
|
|
|
BOX2() :
|
|
m_Pos( 0, 0 ),
|
|
m_Size( 0, 0 ),
|
|
m_init( false )
|
|
{};
|
|
|
|
BOX2( const Vec& aPos, const Vec& aSize = Vec(0, 0) ) :
|
|
m_Pos( aPos ),
|
|
m_Size( aSize ),
|
|
m_init( true )
|
|
{
|
|
Normalize();
|
|
}
|
|
|
|
void SetMaximum()
|
|
{
|
|
m_Pos.x = m_Pos.y = coord_limits::lowest() / 2 + coord_limits::epsilon();
|
|
m_Size.x = m_Size.y = coord_limits::max() - coord_limits::epsilon();
|
|
m_init = true;
|
|
}
|
|
|
|
Vec Centre() const
|
|
{
|
|
return Vec( m_Pos.x + ( m_Size.x / 2 ),
|
|
m_Pos.y + ( m_Size.y / 2 ) );
|
|
}
|
|
|
|
/**
|
|
* Compute the bounding box from a given list of points.
|
|
*
|
|
* @param aPointList is the list points of the object.
|
|
*/
|
|
template <class Container>
|
|
void Compute( const Container& aPointList )
|
|
{
|
|
Vec vmin, vmax;
|
|
|
|
typename Container::const_iterator i;
|
|
|
|
if( !aPointList.size() )
|
|
return;
|
|
|
|
vmin = vmax = aPointList[0];
|
|
|
|
for( i = aPointList.begin(); i != aPointList.end(); ++i )
|
|
{
|
|
Vec p( *i );
|
|
vmin.x = std::min( vmin.x, p.x );
|
|
vmin.y = std::min( vmin.y, p.y );
|
|
vmax.x = std::max( vmax.x, p.x );
|
|
vmax.y = std::max( vmax.y, p.y );
|
|
}
|
|
|
|
SetOrigin( vmin );
|
|
SetSize( vmax - vmin );
|
|
}
|
|
|
|
/**
|
|
* Move the rectangle by the \a aMoveVector.
|
|
*
|
|
* @param aMoveVector is a point that is the value to move this rectangle.
|
|
*/
|
|
void Move( const Vec& aMoveVector )
|
|
{
|
|
m_Pos += aMoveVector;
|
|
}
|
|
|
|
/**
|
|
* Ensure that the height ant width are positive.
|
|
*/
|
|
BOX2<Vec>& Normalize()
|
|
{
|
|
if( m_Size.y < 0 )
|
|
{
|
|
m_Size.y = -m_Size.y;
|
|
m_Pos.y -= m_Size.y;
|
|
}
|
|
|
|
if( m_Size.x < 0 )
|
|
{
|
|
m_Size.x = -m_Size.x;
|
|
m_Pos.x -= m_Size.x;
|
|
}
|
|
|
|
return *this;
|
|
}
|
|
|
|
/**
|
|
* @param aPoint is the point to test.
|
|
*
|
|
* @return true if \a aPoint is inside the boundary box. A point on a edge is seen as inside.
|
|
*/
|
|
bool Contains( const Vec& aPoint ) const
|
|
{
|
|
Vec rel_pos = aPoint - m_Pos;
|
|
Vec size = m_Size;
|
|
|
|
if( size.x < 0 )
|
|
{
|
|
size.x = -size.x;
|
|
rel_pos.x += size.x;
|
|
}
|
|
|
|
if( size.y < 0 )
|
|
{
|
|
size.y = -size.y;
|
|
rel_pos.y += size.y;
|
|
}
|
|
|
|
return ( rel_pos.x >= 0 ) && ( rel_pos.y >= 0 ) && ( rel_pos.y <= size.y) &&
|
|
( rel_pos.x <= size.x);
|
|
}
|
|
|
|
/**
|
|
* @param x is the x coordinate of the point to test.
|
|
* @param y is the x coordinate of the point to test.
|
|
* @return true if point is inside the boundary box. A point on a edge is seen as inside.
|
|
*/
|
|
bool Contains( coord_type x, coord_type y ) const { return Contains( Vec( x, y ) ); }
|
|
|
|
/**
|
|
* @param aRect is the the area to test.
|
|
*
|
|
* @return true if \a aRect is contained. A common edge is seen as contained.
|
|
*/
|
|
bool Contains( const BOX2<Vec>& aRect ) const
|
|
{
|
|
return Contains( aRect.GetOrigin() ) && Contains( aRect.GetEnd() );
|
|
}
|
|
|
|
const Vec& GetSize() const { return m_Size; }
|
|
coord_type GetX() const { return m_Pos.x; }
|
|
coord_type GetY() const { return m_Pos.y; }
|
|
|
|
const Vec& GetOrigin() const { return m_Pos; }
|
|
const Vec& GetPosition() const { return m_Pos; }
|
|
const Vec GetEnd() const { return Vec( GetRight(), GetBottom() ); }
|
|
|
|
coord_type GetWidth() const { return m_Size.x; }
|
|
coord_type GetHeight() const { return m_Size.y; }
|
|
coord_type GetRight() const { return m_Pos.x + m_Size.x; }
|
|
coord_type GetBottom() const { return m_Pos.y + m_Size.y; }
|
|
|
|
// Compatibility aliases
|
|
coord_type GetLeft() const { return GetX(); }
|
|
coord_type GetTop() const { return GetY(); }
|
|
const Vec GetCenter() const { return Centre(); }
|
|
|
|
/**
|
|
* @return the width or height, whichever is greater.
|
|
*/
|
|
int GetSizeMax() const { return ( m_Size.x > m_Size.y ) ? m_Size.x : m_Size.y; }
|
|
|
|
void SetOrigin( const Vec& pos )
|
|
{
|
|
m_Pos = pos;
|
|
m_init = true;
|
|
}
|
|
|
|
void SetOrigin( coord_type x, coord_type y )
|
|
{
|
|
SetOrigin( Vec( x, y ) );
|
|
}
|
|
|
|
void SetSize( const Vec& size )
|
|
{
|
|
m_Size = size;
|
|
m_init = true;
|
|
}
|
|
|
|
void SetSize( coord_type w, coord_type h )
|
|
{
|
|
SetSize( Vec( w, h ) );
|
|
}
|
|
|
|
void Offset( coord_type dx, coord_type dy )
|
|
{
|
|
m_Pos.x += dx;
|
|
m_Pos.y += dy;
|
|
}
|
|
|
|
void Offset( const Vec& offset )
|
|
{
|
|
Offset( offset.x, offset.y );
|
|
}
|
|
|
|
void SetX( coord_type val )
|
|
{
|
|
SetOrigin( val, m_Pos.y );
|
|
}
|
|
|
|
void SetY( coord_type val )
|
|
{
|
|
SetOrigin( m_Pos.x, val );
|
|
}
|
|
|
|
void SetWidth( coord_type val )
|
|
{
|
|
SetSize( val, m_Size.y );
|
|
}
|
|
|
|
void SetHeight( coord_type val )
|
|
{
|
|
SetSize( m_Size.x, val );
|
|
}
|
|
|
|
void SetEnd( coord_type x, coord_type y )
|
|
{
|
|
SetEnd( Vec( x, y ) );
|
|
}
|
|
|
|
void SetEnd( const Vec& pos )
|
|
{
|
|
SetSize( pos - m_Pos );
|
|
}
|
|
|
|
/**
|
|
* @return true if the argument rectangle intersects this rectangle.
|
|
* (i.e. if the 2 rectangles have at least a common point)
|
|
*/
|
|
bool Intersects( const BOX2<Vec>& aRect ) const
|
|
{
|
|
// this logic taken from wxWidgets' geometry.cpp file:
|
|
bool rc;
|
|
|
|
BOX2<Vec> me( *this );
|
|
BOX2<Vec> rect( aRect );
|
|
me.Normalize(); // ensure size is >= 0
|
|
rect.Normalize(); // ensure size is >= 0
|
|
|
|
// calculate the left common area coordinate:
|
|
int left = std::max( me.m_Pos.x, rect.m_Pos.x );
|
|
// calculate the right common area coordinate:
|
|
int right = std::min( me.m_Pos.x + me.m_Size.x, rect.m_Pos.x + rect.m_Size.x );
|
|
// calculate the upper common area coordinate:
|
|
int top = std::max( me.m_Pos.y, aRect.m_Pos.y );
|
|
// calculate the lower common area coordinate:
|
|
int bottom = std::min( me.m_Pos.y + me.m_Size.y, rect.m_Pos.y + rect.m_Size.y );
|
|
|
|
// if a common area exists, it must have a positive (null accepted) size
|
|
if( left <= right && top <= bottom )
|
|
rc = true;
|
|
else
|
|
rc = false;
|
|
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* @return true if this rectangle intersects \a aRect.
|
|
*/
|
|
BOX2<Vec> Intersect( const BOX2<Vec>& aRect )
|
|
{
|
|
BOX2<Vec> me( *this );
|
|
BOX2<Vec> rect( aRect );
|
|
me.Normalize(); // ensure size is >= 0
|
|
rect.Normalize(); // ensure size is >= 0
|
|
|
|
Vec topLeft, bottomRight;
|
|
|
|
topLeft.x = std::max( me.m_Pos.x, rect.m_Pos.x );
|
|
bottomRight.x = std::min( me.m_Pos.x + me.m_Size.x, rect.m_Pos.x + rect.m_Size.x );
|
|
topLeft.y = std::max( me.m_Pos.y, rect.m_Pos.y );
|
|
bottomRight.y = std::min( me.m_Pos.y + me.m_Size.y, rect.m_Pos.y + rect.m_Size.y );
|
|
|
|
if ( topLeft.x < bottomRight.x && topLeft.y < bottomRight.y )
|
|
return BOX2<Vec>( topLeft, bottomRight - topLeft );
|
|
else
|
|
return BOX2<Vec>( Vec( 0, 0 ), Vec( 0, 0 ) );
|
|
}
|
|
|
|
/**
|
|
* @return true if this rectangle intersects a line from \a aPoint1 to \a aPoint2
|
|
*/
|
|
bool Intersects( const Vec& aPoint1, const Vec& aPoint2 ) const
|
|
{
|
|
Vec point2, point4;
|
|
|
|
if( Contains( aPoint1 ) || Contains( aPoint2 ) )
|
|
return true;
|
|
|
|
point2.x = GetEnd().x;
|
|
point2.y = GetOrigin().y;
|
|
point4.x = GetOrigin().x;
|
|
point4.y = GetEnd().y;
|
|
|
|
//Only need to test 3 sides since a straight line can't enter and exit on same side
|
|
if( SegmentIntersectsSegment( aPoint1, aPoint2, GetOrigin(), point2 ) )
|
|
return true;
|
|
|
|
if( SegmentIntersectsSegment( aPoint1, aPoint2, point2, GetEnd() ) )
|
|
return true;
|
|
|
|
if( SegmentIntersectsSegment( aPoint1, aPoint2, GetEnd(), point4 ) )
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* @return true if this rectangle intersects a rotated rect given by \a aRect and
|
|
* \a aRotaiton.
|
|
*/
|
|
bool Intersects( const BOX2<Vec>& aRect, const EDA_ANGLE& aRotation ) const
|
|
{
|
|
if( !m_init )
|
|
return false;
|
|
|
|
EDA_ANGLE rotation = aRotation;
|
|
rotation.Normalize();
|
|
|
|
/*
|
|
* Most rectangles will be axis aligned. It is quicker to check for this case and pass
|
|
* the rect to the simpler intersection test.
|
|
*/
|
|
|
|
// Prevent floating point comparison errors
|
|
static const EDA_ANGLE ROT_EPSILON( 0.000000001, DEGREES_T );
|
|
|
|
static const EDA_ANGLE ROT_PARALLEL[] = { ANGLE_0, ANGLE_180, ANGLE_360 };
|
|
static const EDA_ANGLE ROT_PERPENDICULAR[] = { ANGLE_0, ANGLE_90, ANGLE_270 };
|
|
|
|
// Test for non-rotated rectangle
|
|
for( EDA_ANGLE ii : ROT_PARALLEL )
|
|
{
|
|
if( std::abs( rotation - ii ) < ROT_EPSILON )
|
|
return Intersects( aRect );
|
|
}
|
|
|
|
// Test for rectangle rotated by multiple of 90 degrees
|
|
for( EDA_ANGLE jj : ROT_PERPENDICULAR )
|
|
{
|
|
if( std::abs( rotation - jj ) < ROT_EPSILON )
|
|
{
|
|
BOX2<Vec> rotRect;
|
|
|
|
// Rotate the supplied rect by 90 degrees
|
|
rotRect.SetOrigin( aRect.Centre() );
|
|
rotRect.Inflate( aRect.GetHeight(), aRect.GetWidth() );
|
|
return Intersects( rotRect );
|
|
}
|
|
}
|
|
|
|
/* There is some non-orthogonal rotation.
|
|
* There are three cases to test:
|
|
* A) One point of this rect is inside the rotated rect
|
|
* B) One point of the rotated rect is inside this rect
|
|
* C) One of the sides of the rotated rect intersect this
|
|
*/
|
|
|
|
VECTOR2I corners[4];
|
|
|
|
/* Test A : Any corners exist in rotated rect? */
|
|
corners[0] = m_Pos;
|
|
corners[1] = m_Pos + VECTOR2I( m_Size.x, 0 );
|
|
corners[2] = m_Pos + VECTOR2I( m_Size.x, m_Size.y );
|
|
corners[3] = m_Pos + VECTOR2I( 0, m_Size.y );
|
|
|
|
VECTOR2I rCentre = aRect.Centre();
|
|
|
|
for( int i = 0; i < 4; i++ )
|
|
{
|
|
VECTOR2I delta = corners[i] - rCentre;
|
|
RotatePoint( delta, -rotation );
|
|
delta += rCentre;
|
|
|
|
if( aRect.Contains( delta ) )
|
|
return true;
|
|
}
|
|
|
|
/* Test B : Any corners of rotated rect exist in this one? */
|
|
int w = aRect.GetWidth() / 2;
|
|
int h = aRect.GetHeight() / 2;
|
|
|
|
// Construct corners around center of shape
|
|
corners[0] = VECTOR2I( -w, -h );
|
|
corners[1] = VECTOR2I( w, -h );
|
|
corners[2] = VECTOR2I( w, h );
|
|
corners[3] = VECTOR2I( -w, h );
|
|
|
|
// Rotate and test each corner
|
|
for( int j = 0; j < 4; j++ )
|
|
{
|
|
RotatePoint( corners[j], rotation );
|
|
corners[j] += rCentre;
|
|
|
|
if( Contains( corners[j] ) )
|
|
return true;
|
|
}
|
|
|
|
/* Test C : Any sides of rotated rect intersect this */
|
|
if( Intersects( corners[0], corners[1] ) || Intersects( corners[1], corners[2] )
|
|
|| Intersects( corners[2], corners[3] ) || Intersects( corners[3], corners[0] ) )
|
|
{
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* @return true if this rectangle intersects the circle defined by \a aCenter and \a aRadius.
|
|
*/
|
|
bool IntersectsCircle( const Vec& aCenter, const int aRadius ) const
|
|
{
|
|
if( !m_init )
|
|
return false;
|
|
|
|
Vec closest = ClosestPointTo( aCenter );
|
|
|
|
double dx = static_cast<double>( aCenter.x ) - closest.x;
|
|
double dy = static_cast<double>( aCenter.y ) - closest.y;
|
|
|
|
double r = static_cast<double>( aRadius );
|
|
|
|
return ( dx * dx + dy * dy ) <= ( r * r );
|
|
}
|
|
|
|
/**
|
|
* @return true if this rectangle intersects the edge of a circle defined by \a aCenter
|
|
* and \a aRadius.
|
|
*/
|
|
bool IntersectsCircleEdge( const Vec& aCenter, const int aRadius, const int aWidth ) const
|
|
{
|
|
if( !m_init )
|
|
return false;
|
|
|
|
BOX2<Vec> me( *this );
|
|
me.Normalize(); // ensure size is >= 0
|
|
|
|
// Test if the circle intersects at all
|
|
if( !IntersectsCircle( aCenter, aRadius + aWidth / 2 ) )
|
|
return false;
|
|
|
|
Vec farpt = FarthestPointTo( aCenter );
|
|
// Farthest point must be further than the inside of the line
|
|
double fx = (double) farpt.x;
|
|
double fy = (double) farpt.y;
|
|
|
|
double r = (double) aRadius - (double) aWidth / 2;
|
|
|
|
return ( fx * fx + fy * fy ) > ( r * r );
|
|
}
|
|
|
|
const std::string Format() const
|
|
{
|
|
std::stringstream ss;
|
|
|
|
ss << "( box corner " << m_Pos.Format() << " w " << m_Size.x << " h " << m_Size.y << " )";
|
|
|
|
return ss.str();
|
|
}
|
|
|
|
/**
|
|
* Inflates the rectangle horizontally by \a dx and vertically by \a dy. If \a dx
|
|
* and/or \a dy is negative the rectangle is deflated.
|
|
*/
|
|
BOX2<Vec>& Inflate( coord_type dx, coord_type dy )
|
|
{
|
|
if( m_Size.x >= 0 )
|
|
{
|
|
if( m_Size.x < -2 * dx )
|
|
{
|
|
// Don't allow deflate to eat more width than we have,
|
|
m_Pos.x += m_Size.x / 2;
|
|
m_Size.x = 0;
|
|
}
|
|
else
|
|
{
|
|
// The inflate is valid.
|
|
m_Pos.x -= dx;
|
|
m_Size.x += 2 * dx;
|
|
}
|
|
}
|
|
else // size.x < 0:
|
|
{
|
|
if( m_Size.x > -2 * dx )
|
|
{
|
|
// Don't allow deflate to eat more width than we have,
|
|
m_Pos.x -= m_Size.x / 2;
|
|
m_Size.x = 0;
|
|
}
|
|
else
|
|
{
|
|
// The inflate is valid.
|
|
m_Pos.x += dx;
|
|
m_Size.x -= 2 * dx; // m_Size.x <0: inflate when dx > 0
|
|
}
|
|
}
|
|
|
|
if( m_Size.y >= 0 )
|
|
{
|
|
if( m_Size.y < -2 * dy )
|
|
{
|
|
// Don't allow deflate to eat more height than we have,
|
|
m_Pos.y += m_Size.y / 2;
|
|
m_Size.y = 0;
|
|
}
|
|
else
|
|
{
|
|
// The inflate is valid.
|
|
m_Pos.y -= dy;
|
|
m_Size.y += 2 * dy;
|
|
}
|
|
}
|
|
else // size.y < 0:
|
|
{
|
|
if( m_Size.y > 2 * dy )
|
|
{
|
|
// Don't allow deflate to eat more height than we have,
|
|
m_Pos.y -= m_Size.y / 2;
|
|
m_Size.y = 0;
|
|
}
|
|
else
|
|
{
|
|
// The inflate is valid.
|
|
m_Pos.y += dy;
|
|
m_Size.y -= 2 * dy; // m_Size.y <0: inflate when dy > 0
|
|
}
|
|
}
|
|
|
|
return *this;
|
|
}
|
|
|
|
/**
|
|
* Inflate the rectangle horizontally and vertically by \a aDelta. If \a aDelta
|
|
* is negative the rectangle is deflated.
|
|
*/
|
|
BOX2<Vec>& Inflate( int aDelta )
|
|
{
|
|
Inflate( aDelta, aDelta );
|
|
return *this;
|
|
}
|
|
|
|
/**
|
|
* Modify the position and size of the rectangle in order to contain \a aRect.
|
|
*
|
|
* @param aRect is the rectangle to merge with this rectangle.
|
|
*/
|
|
BOX2<Vec>& Merge( const BOX2<Vec>& aRect )
|
|
{
|
|
if( !m_init )
|
|
{
|
|
if( aRect.m_init )
|
|
{
|
|
m_Pos = aRect.GetPosition();
|
|
m_Size = aRect.GetSize();
|
|
m_init = true;
|
|
}
|
|
|
|
return *this;
|
|
}
|
|
|
|
Normalize(); // ensure width and height >= 0
|
|
BOX2<Vec> rect = aRect;
|
|
rect.Normalize(); // ensure width and height >= 0
|
|
Vec end = GetEnd();
|
|
Vec rect_end = rect.GetEnd();
|
|
|
|
// Change origin and size in order to contain the given rect
|
|
m_Pos.x = std::min( m_Pos.x, rect.m_Pos.x );
|
|
m_Pos.y = std::min( m_Pos.y, rect.m_Pos.y );
|
|
end.x = std::max( end.x, rect_end.x );
|
|
end.y = std::max( end.y, rect_end.y );
|
|
SetEnd( end );
|
|
return *this;
|
|
}
|
|
|
|
/**
|
|
* Modify the position and size of the rectangle in order to contain the given point.
|
|
*
|
|
* @param aPoint is the point to merge with the rectangle.
|
|
*/
|
|
BOX2<Vec>& Merge( const Vec& aPoint )
|
|
{
|
|
if( !m_init )
|
|
{
|
|
m_Pos = aPoint;
|
|
m_Size = VECTOR2I( 0, 0 );
|
|
m_init = true;
|
|
return *this;
|
|
}
|
|
|
|
Normalize(); // ensure width and height >= 0
|
|
|
|
Vec end = GetEnd();
|
|
|
|
// Change origin and size in order to contain the given rectangle.
|
|
m_Pos.x = std::min( m_Pos.x, aPoint.x );
|
|
m_Pos.y = std::min( m_Pos.y, aPoint.y );
|
|
end.x = std::max( end.x, aPoint.x );
|
|
end.y = std::max( end.y, aPoint.y );
|
|
SetEnd( end );
|
|
return *this;
|
|
}
|
|
|
|
/**
|
|
* Useful to calculate bounding box of rotated items, when rotation is not cardinal.
|
|
*
|
|
* @return the bounding box of this, after rotation.
|
|
*/
|
|
const BOX2<Vec> GetBoundingBoxRotated( const VECTOR2I& aRotCenter,
|
|
const EDA_ANGLE& aAngle ) const
|
|
{
|
|
VECTOR2I corners[4];
|
|
|
|
// Build the corners list
|
|
corners[0] = GetOrigin();
|
|
corners[2] = GetEnd();
|
|
corners[1].x = corners[0].x;
|
|
corners[1].y = corners[2].y;
|
|
corners[3].x = corners[2].x;
|
|
corners[3].y = corners[0].y;
|
|
|
|
// Rotate all corners, to find the bounding box
|
|
for( int ii = 0; ii < 4; ii++ )
|
|
RotatePoint( corners[ii], aRotCenter, aAngle );
|
|
|
|
// Find the corners bounding box
|
|
VECTOR2I start = corners[0];
|
|
VECTOR2I end = corners[0];
|
|
|
|
for( int ii = 1; ii < 4; ii++ )
|
|
{
|
|
start.x = std::min( start.x, corners[ii].x );
|
|
start.y = std::min( start.y, corners[ii].y );
|
|
end.x = std::max( end.x, corners[ii].x );
|
|
end.y = std::max( end.y, corners[ii].y );
|
|
}
|
|
|
|
BOX2<Vec> bbox;
|
|
bbox.SetOrigin( start );
|
|
bbox.SetEnd( end );
|
|
|
|
return bbox;
|
|
}
|
|
|
|
/**
|
|
* Mirror the rectangle from the X axis (negate Y pos and size).
|
|
*/
|
|
void RevertYAxis()
|
|
{
|
|
m_Pos.y = -m_Pos.y;
|
|
m_Size.y = -m_Size.y;
|
|
Normalize();
|
|
}
|
|
|
|
/**
|
|
* Return the area of the rectangle.
|
|
*
|
|
* @return The area of the rectangle.
|
|
*/
|
|
ecoord_type GetArea() const
|
|
{
|
|
return (ecoord_type) GetWidth() * (ecoord_type) GetHeight();
|
|
}
|
|
|
|
/**
|
|
* Return the length of the diagonal of the rectangle.
|
|
*
|
|
* @return The length of the rectangle diagonal.
|
|
*/
|
|
ecoord_type Diagonal() const
|
|
{
|
|
return m_Size.EuclideanNorm();
|
|
}
|
|
|
|
ecoord_type SquaredDistance( const Vec& aP ) const
|
|
{
|
|
ecoord_type x2 = m_Pos.x + m_Size.x;
|
|
ecoord_type y2 = m_Pos.y + m_Size.y;
|
|
ecoord_type xdiff = std::max( aP.x < m_Pos.x ? m_Pos.x - aP.x : m_Pos.x - x2,
|
|
(ecoord_type) 0 );
|
|
ecoord_type ydiff = std::max( aP.y < m_Pos.y ? m_Pos.y - aP.y : m_Pos.y - y2,
|
|
(ecoord_type) 0 );
|
|
return xdiff * xdiff + ydiff * ydiff;
|
|
}
|
|
|
|
ecoord_type Distance( const Vec& aP ) const
|
|
{
|
|
return sqrt( SquaredDistance( aP ) );
|
|
}
|
|
|
|
/**
|
|
* Return the square of the minimum distance between self and box \a aBox
|
|
*
|
|
* @param aBox is the other box.
|
|
* @return The distance squared from \a aBox.
|
|
*/
|
|
ecoord_type SquaredDistance( const BOX2<Vec>& aBox ) const
|
|
{
|
|
ecoord_type s = 0;
|
|
|
|
if( aBox.m_Pos.x + aBox.m_Size.x < m_Pos.x )
|
|
{
|
|
ecoord_type d = aBox.m_Pos.x + aBox.m_Size.x - m_Pos.x;
|
|
s += d * d;
|
|
}
|
|
else if( aBox.m_Pos.x > m_Pos.x + m_Size.x )
|
|
{
|
|
ecoord_type d = aBox.m_Pos.x - m_Size.x - m_Pos.x;
|
|
s += d * d;
|
|
}
|
|
|
|
if( aBox.m_Pos.y + aBox.m_Size.y < m_Pos.y )
|
|
{
|
|
ecoord_type d = aBox.m_Pos.y + aBox.m_Size.y - m_Pos.y;
|
|
s += d * d;
|
|
}
|
|
else if( aBox.m_Pos.y > m_Pos.y + m_Size.y )
|
|
{
|
|
ecoord_type d = aBox.m_Pos.y - m_Size.y - m_Pos.y;
|
|
s += d * d;
|
|
}
|
|
|
|
return s;
|
|
}
|
|
|
|
/**
|
|
* Return the minimum distance between self and \a aBox.
|
|
*
|
|
* @param aBox is the other box to get the distance from.
|
|
* @return The distance from \a aBox.
|
|
*/
|
|
ecoord_type Distance( const BOX2<Vec>& aBox ) const
|
|
{
|
|
return sqrt( SquaredDistance( aBox ) );
|
|
}
|
|
|
|
/**
|
|
* Return the point in this rect that is closest to the provided point
|
|
*/
|
|
const Vec ClosestPointTo( const Vec& aPoint ) const
|
|
{
|
|
BOX2<Vec> me( *this );
|
|
|
|
me.Normalize(); // ensure size is >= 0
|
|
|
|
// Determine closest point to the circle centre within this rect
|
|
coord_type nx = std::max( me.GetLeft(), std::min( aPoint.x, me.GetRight() ) );
|
|
coord_type ny = std::max( me.GetTop(), std::min( aPoint.y, me.GetBottom() ) );
|
|
|
|
return Vec( nx, ny );
|
|
}
|
|
|
|
/**
|
|
* Return the point in this rect that is farthest from the provided point
|
|
*/
|
|
const Vec FarthestPointTo( const Vec& aPoint ) const
|
|
{
|
|
BOX2<Vec> me( *this );
|
|
|
|
me.Normalize(); // ensure size is >= 0
|
|
|
|
coord_type fx = std::max( std::abs( aPoint.x - me.GetLeft() ), std::abs( aPoint.x - me.GetRight() ) );
|
|
coord_type fy = std::max( std::abs( aPoint.y - me.GetTop() ), std::abs( aPoint.y - me.GetBottom() ) );
|
|
|
|
return Vec( fx, fy );
|
|
}
|
|
|
|
bool operator==( const BOX2<Vec>& aOther ) const
|
|
{
|
|
auto t1 ( *this );
|
|
auto t2 ( aOther );
|
|
t1.Normalize();
|
|
t2.Normalize();
|
|
return ( t1.m_Pos == t2.m_Pos && t1.m_Size == t2.m_Size );
|
|
}
|
|
|
|
bool operator!=( const BOX2<Vec>& aOther ) const
|
|
{
|
|
auto t1 ( *this );
|
|
auto t2 ( aOther );
|
|
t1.Normalize();
|
|
t2.Normalize();
|
|
return ( t1.m_Pos != t2.m_Pos || t1.m_Size != t2.m_Size );
|
|
}
|
|
|
|
private:
|
|
Vec m_Pos; // Rectangle Origin
|
|
Vec m_Size; // Rectangle Size
|
|
|
|
bool m_init; // Is the rectangle initialized
|
|
};
|
|
|
|
/* Default specializations */
|
|
typedef BOX2<VECTOR2I> BOX2I;
|
|
typedef BOX2<VECTOR2D> BOX2D;
|
|
|
|
typedef std::optional<BOX2I> OPT_BOX2I;
|
|
|
|
|
|
#endif
|