kicad/pcbnew/drc/drc_test_provider_mechanica...

832 lines
30 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2021 KiCad Developers.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <common.h>
#include <macros.h>
#include <board_design_settings.h>
#include <footprint.h>
#include <pad.h>
#include <pcb_track.h>
#include <pcb_shape.h>
#include <zone.h>
#include <advanced_config.h>
#include <geometry/seg.h>
#include <geometry/shape_segment.h>
#include <drc/drc_engine.h>
#include <drc/drc_rtree.h>
#include <drc/drc_item.h>
#include <drc/drc_rule.h>
#include <drc/drc_test_provider_clearance_base.h>
/*
Mechanical clearance test.
Errors generated:
- DRCE_MECHANICAL_CLEARANCE
- DRCE_MECHANICAL_HOLE_CLEARANCE
*/
class DRC_TEST_PROVIDER_MECHANICAL_CLEARANCE : public DRC_TEST_PROVIDER_CLEARANCE_BASE
{
public:
DRC_TEST_PROVIDER_MECHANICAL_CLEARANCE () :
DRC_TEST_PROVIDER_CLEARANCE_BASE()
{
}
virtual ~DRC_TEST_PROVIDER_MECHANICAL_CLEARANCE()
{
}
virtual bool Run() override;
virtual const wxString GetName() const override
{
return "mechanical_clearance";
};
virtual const wxString GetDescription() const override
{
return "Tests item clearances irrespective of nets";
}
virtual std::set<DRC_CONSTRAINT_T> GetConstraintTypes() const override;
private:
bool testItemAgainstItem( BOARD_ITEM* item, SHAPE* itemShape, PCB_LAYER_ID layer,
BOARD_ITEM* other );
void testItemAgainstZones( BOARD_ITEM* aItem, PCB_LAYER_ID aLayer );
void testShapeLineChain( const SHAPE_LINE_CHAIN& aOutline, int aLineWidth,
BOARD_ITEM* aParentItem, DRC_CONSTRAINT& aConstraint );
void testZoneLayer( ZONE* aZone, PCB_LAYER_ID aLayer, DRC_CONSTRAINT& aConstraint );
private:
DRC_RTREE m_itemTree;
std::vector<BOARD_ITEM*> m_items;
std::vector<ZONE*> m_zones;
};
bool DRC_TEST_PROVIDER_MECHANICAL_CLEARANCE::Run()
{
m_board = m_drcEngine->GetBoard();
m_itemTree.clear();
m_zones.clear();
m_items.clear();
int errorMax = m_board->GetDesignSettings().m_MaxError;
DRC_CONSTRAINT worstConstraint;
if( m_drcEngine->QueryWorstConstraint( MECHANICAL_CLEARANCE_CONSTRAINT, worstConstraint ) )
m_largestClearance = worstConstraint.GetValue().Min();
if( m_drcEngine->QueryWorstConstraint( MECHANICAL_HOLE_CLEARANCE_CONSTRAINT, worstConstraint ) )
m_largestClearance = std::max( m_largestClearance, worstConstraint.GetValue().Min() );
if( m_largestClearance <= 0 )
{
reportAux( "No Clearance constraints found. Tests not run." );
return true; // continue with other tests
}
for( ZONE* zone : m_board->Zones() )
{
if( !zone->GetIsRuleArea() )
{
m_zones.push_back( zone );
m_largestClearance = std::max( m_largestClearance, zone->GetLocalClearance() );
}
}
for( FOOTPRINT* footprint : m_board->Footprints() )
{
for( PAD* pad : footprint->Pads() )
m_largestClearance = std::max( m_largestClearance, pad->GetLocalClearance() );
for( ZONE* zone : footprint->Zones() )
{
if( !zone->GetIsRuleArea() )
{
m_zones.push_back( zone );
m_largestClearance = std::max( m_largestClearance, zone->GetLocalClearance() );
}
}
}
reportAux( "Worst clearance : %d nm", m_largestClearance );
// This is the number of tests between 2 calls to the progress bar
size_t delta = 50;
size_t count = 0;
size_t ii = 0;
auto countItems =
[&]( BOARD_ITEM* item ) -> bool
{
++count;
return true;
};
auto addToItemTree =
[&]( BOARD_ITEM* item ) -> bool
{
if( !reportProgress( ii++, count, delta ) )
return false;
m_items.push_back( item );
LSET layers = item->GetLayerSet();
// Special-case pad holes which pierce all the copper layers
if( item->Type() == PCB_PAD_T )
{
PAD* pad = static_cast<PAD*>( item );
if( pad->GetDrillSizeX() > 0 && pad->GetDrillSizeY() > 0 )
layers |= LSET::AllCuMask();
}
for( PCB_LAYER_ID layer : layers.Seq() )
m_itemTree.Insert( item, layer, m_largestClearance );
return true;
};
if( !reportPhase( _( "Gathering items..." ) ) )
return false; // DRC cancelled
static const std::vector<KICAD_T> itemTypes = {
PCB_TRACE_T, PCB_ARC_T, PCB_VIA_T, PCB_PAD_T, PCB_SHAPE_T, PCB_FP_SHAPE_T,
PCB_TEXT_T, PCB_FP_TEXT_T, PCB_DIMENSION_T, PCB_DIM_ALIGNED_T, PCB_DIM_LEADER_T,
PCB_DIM_CENTER_T, PCB_DIM_RADIAL_T, PCB_DIM_ORTHOGONAL_T
};
forEachGeometryItem( itemTypes, LSET::AllLayersMask(), countItems );
forEachGeometryItem( itemTypes, LSET::AllLayersMask(), addToItemTree );
std::map< std::pair<BOARD_ITEM*, BOARD_ITEM*>, int> checkedPairs;
auto testItem =
[&]( BOARD_ITEM* item, PCB_LAYER_ID layer )
{
std::shared_ptr<SHAPE> itemShape = item->GetEffectiveShape( layer );
m_itemTree.QueryColliding( item, layer, layer,
// Filter:
[&]( BOARD_ITEM* other ) -> bool
{
BOARD_ITEM* a = item;
BOARD_ITEM* b = other;
// store canonical order so we don't collide in both directions
// (a:b and b:a)
if( static_cast<void*>( a ) > static_cast<void*>( b ) )
std::swap( a, b );
if( checkedPairs.count( { a, b } ) )
{
return false;
}
else
{
checkedPairs[ { a, b } ] = 1;
return true;
}
},
// Visitor:
[&]( BOARD_ITEM* other ) -> bool
{
return testItemAgainstItem( item, itemShape.get(), layer, other );
},
m_largestClearance );
testItemAgainstZones( item, layer );
};
if( !m_drcEngine->IsErrorLimitExceeded( DRCE_CLEARANCE )
|| !m_drcEngine->IsErrorLimitExceeded( DRCE_HOLE_CLEARANCE ) )
{
if( !reportPhase( _( "Checking mechanical clearances..." ) ) )
return false; // DRC cancelled
ii = 0;
for( BOARD_ITEM* item : m_items )
{
if( !reportProgress( ii++, m_items.size(), delta ) )
break;
for( PCB_LAYER_ID layer : item->GetLayerSet().Seq() )
testItem( item, layer );
}
}
count = 0;
forEachGeometryItem( { PCB_ZONE_T, PCB_FP_ZONE_T, PCB_SHAPE_T, PCB_FP_SHAPE_T },
LSET::AllCuMask(),
[&]( BOARD_ITEM* item ) -> bool
{
PCB_SHAPE* shape = dynamic_cast<PCB_SHAPE*>( item );
ZONE* zone = dynamic_cast<ZONE*>( item );
if( shape )
{
switch( shape->GetShape() )
{
case SHAPE_T::POLY:
case SHAPE_T::BEZIER:
case SHAPE_T::ARC:
if( IsCopperLayer( shape->GetLayer() ) )
count++;
break;
default:
break;
}
}
if( zone )
{
count += ( item->GetLayerSet() & LSET::AllCuMask() ).count();
}
return true;
} );
ii = 0;
forEachGeometryItem( { PCB_ZONE_T, PCB_FP_ZONE_T, PCB_SHAPE_T, PCB_FP_SHAPE_T },
LSET::AllCuMask(),
[&]( BOARD_ITEM* item ) -> bool
{
for( PCB_LAYER_ID layer : item->GetLayerSet().Seq() )
{
if( IsCopperLayer( layer ) )
{
if( !reportProgress( ii++, count, delta ) )
return false;
PCB_SHAPE* shape = dynamic_cast<PCB_SHAPE*>( item );
ZONE* zone = dynamic_cast<ZONE*>( item );
DRC_CONSTRAINT c = m_drcEngine->EvalRules( MECHANICAL_CLEARANCE_CONSTRAINT,
item, nullptr, layer );
if( shape )
{
switch( shape->GetShape() )
{
case SHAPE_T::POLY:
testShapeLineChain( shape->GetPolyShape().Outline( 0 ),
shape->GetWidth(), item, c );
break;
case SHAPE_T::BEZIER:
{
SHAPE_LINE_CHAIN asPoly;
shape->RebuildBezierToSegmentsPointsList( shape->GetWidth() );
for( const wxPoint& pt : shape->GetBezierPoints() )
asPoly.Append( pt );
testShapeLineChain( asPoly, shape->GetWidth(), item, c );
break;
}
case SHAPE_T::ARC:
{
SHAPE_LINE_CHAIN asPoly;
wxPoint center = shape->GetCenter();
double angle = -shape->GetArcAngle();
double r = shape->GetRadius();
int steps = GetArcToSegmentCount( r, errorMax, angle / 10.0 );
asPoly.Append( shape->GetStart() );
for( int step = 1; step <= steps; ++step )
{
double rotation = ( angle * step ) / steps;
wxPoint pt = shape->GetStart();
RotatePoint( &pt, center, rotation );
asPoly.Append( pt );
}
testShapeLineChain( asPoly, shape->GetWidth(), item, c );
break;
}
default:
UNIMPLEMENTED_FOR( shape->SHAPE_T_asString() );
}
}
if( zone )
{
testZoneLayer( static_cast<ZONE*>( item ), layer, c );
}
}
}
return true;
} );
reportRuleStatistics();
return true;
}
void DRC_TEST_PROVIDER_MECHANICAL_CLEARANCE::testShapeLineChain( const SHAPE_LINE_CHAIN& aOutline,
int aLineWidth,
BOARD_ITEM* aParentItem,
DRC_CONSTRAINT& aConstraint )
{
// We don't want to collide with neighboring segments forming a curve until the concavity
// approaches 180 degrees.
double angleTolerance = DEG2RAD( 180.0 - ADVANCED_CFG::GetCfg().m_SliverAngleTolerance );
int epsilon = m_board->GetDesignSettings().GetDRCEpsilon();
int count = aOutline.SegmentCount();
int clearance = aConstraint.GetValue().Min();
// Trigonometry is not cheap; cache seg angles
std::vector<double> angles;
angles.reserve( count );
auto angleDiff =
[]( double a, double b ) -> double
{
if( a > b )
std::swap( a, b );
double diff = b - a;
if( diff > M_PI )
return 2 * M_PI - diff;
else
return diff;
};
for( int ii = 0; ii < count; ++ii )
{
const SEG& seg = aOutline.CSegment( ii );
// NB: don't store angles of really short segments (which could point anywhere)
if( seg.SquaredLength() > SEG::Square( epsilon * 2 ) )
{
angles.push_back( ( seg.B - seg.A ).Angle() );
}
else if( ii > 0 )
{
angles.push_back( angles.back() );
}
else
{
for( int jj = 1; jj < count; ++jj )
{
const SEG& following = aOutline.CSegment( jj );
if( following.SquaredLength() > SEG::Square( epsilon * 2 ) || jj == count - 1 )
{
angles.push_back( ( following.B - following.A ).Angle() );
break;
}
}
}
}
// Find collisions before reporting so that we can condense them into fewer reports.
std::vector< std::pair<VECTOR2I, int> > collisions;
for( int ii = 0; ii < count; ++ii )
{
const SEG seg = aOutline.CSegment( ii );
double segAngle = angles[ ii ];
// Exclude segments on either side of us until we reach the angle tolerance
int firstCandidate = ii + 1;
int lastCandidate = count - 1;
while( firstCandidate < count )
{
if( angleDiff( segAngle, angles[ firstCandidate ] ) < angleTolerance )
firstCandidate++;
else
break;
}
if( aOutline.IsClosed() )
{
if( ii > 0 )
lastCandidate = ii - 1;
while( lastCandidate != std::min( firstCandidate, count - 1 ) )
{
if( angleDiff( segAngle, angles[ lastCandidate ] ) < angleTolerance )
lastCandidate = ( lastCandidate == 0 ) ? count - 1 : lastCandidate - 1;
else
break;
}
}
// Now run the collision between seg and each candidate seg in the candidate range.
if( lastCandidate < ii )
lastCandidate = count - 1;
for( int jj = firstCandidate; jj <= lastCandidate; ++jj )
{
const SEG candidate = aOutline.CSegment( jj );
int actual;
if( seg.Collide( candidate, clearance + aLineWidth - epsilon, &actual ) )
{
VECTOR2I firstPoint = seg.NearestPoint( candidate );
VECTOR2I secondPoint = candidate.NearestPoint( seg );
VECTOR2I pos = ( firstPoint + secondPoint ) / 2;
if( !collisions.empty() &&
( pos - collisions.back().first ).EuclideanNorm() < clearance * 2 )
{
if( actual < collisions.back().second )
{
collisions.back().first = pos;
collisions.back().second = actual;
}
continue;
}
collisions.push_back( { pos, actual } );
}
}
}
for( std::pair<VECTOR2I, int> collision : collisions )
{
std::shared_ptr<DRC_ITEM> drce = DRC_ITEM::Create( DRCE_CLEARANCE );
m_msg.Printf( _( "(%s clearance %s; actual %s)" ),
aConstraint.GetName(),
MessageTextFromValue( userUnits(), clearance ),
MessageTextFromValue( userUnits(), collision.second ) );
drce->SetErrorMessage( drce->GetErrorText() + wxS( " " ) + m_msg );
drce->SetItems( aParentItem );
drce->SetViolatingRule( aConstraint.GetParentRule() );
reportViolation( drce, (wxPoint) collision.first );
}
}
void DRC_TEST_PROVIDER_MECHANICAL_CLEARANCE::testZoneLayer( ZONE* aZone, PCB_LAYER_ID aLayer,
DRC_CONSTRAINT& aConstraint )
{
int epsilon = m_board->GetDesignSettings().GetDRCEpsilon();
int clearance = aConstraint.GetValue().Min();
SHAPE_POLY_SET fill = aZone->GetFilledPolysList( aLayer );
if( clearance - epsilon <= 0 )
return;
// Turn fractured fill into outlines and holes
fill.Simplify( SHAPE_POLY_SET::PM_FAST );
for( int outlineIdx = 0; outlineIdx < fill.OutlineCount(); ++outlineIdx )
{
SHAPE_LINE_CHAIN* firstOutline = &fill.Outline( outlineIdx );
// Step one: outline to outline clearance violations
for( int ii = outlineIdx + 1; ii < fill.OutlineCount(); ++ii )
{
SHAPE_LINE_CHAIN* secondOutline = &fill.Outline( ii );
for( int jj = 0; jj < secondOutline->SegmentCount(); ++jj )
{
SEG secondSeg = secondOutline->Segment( jj );
int actual;
VECTOR2I pos;
if( firstOutline->Collide( secondSeg, clearance - epsilon, &actual, &pos ) )
{
std::shared_ptr<DRC_ITEM> drce = DRC_ITEM::Create( DRCE_CLEARANCE );
m_msg.Printf( _( "(%s clearance %s; actual %s)" ),
aConstraint.GetName(),
MessageTextFromValue( userUnits(), clearance ),
MessageTextFromValue( userUnits(), actual ) );
drce->SetErrorMessage( drce->GetErrorText() + wxS( " " ) + m_msg );
drce->SetItems( aZone );
drce->SetViolatingRule( aConstraint.GetParentRule() );
reportViolation( drce, (wxPoint) pos );
}
}
}
// Step two: interior hole clearance violations
for( int holeIdx = 0; holeIdx < fill.HoleCount( outlineIdx ); ++holeIdx )
{
testShapeLineChain( fill.Hole( outlineIdx, holeIdx ), 0, aZone, aConstraint );
}
}
}
bool DRC_TEST_PROVIDER_MECHANICAL_CLEARANCE::testItemAgainstItem( BOARD_ITEM* item,
SHAPE* itemShape,
PCB_LAYER_ID layer,
BOARD_ITEM* other )
{
bool testClearance = !m_drcEngine->IsErrorLimitExceeded( DRCE_CLEARANCE );
bool testHoles = !m_drcEngine->IsErrorLimitExceeded( DRCE_HOLE_CLEARANCE );
DRC_CONSTRAINT constraint;
int clearance = 0;
int actual;
VECTOR2I pos;
std::shared_ptr<SHAPE> otherShape = DRC_ENGINE::GetShape( other, layer );
if( testClearance )
{
constraint = m_drcEngine->EvalRules( MECHANICAL_CLEARANCE_CONSTRAINT, item, other, layer );
clearance = constraint.GetValue().Min();
}
if( clearance > 0 )
{
if( itemShape->Collide( otherShape.get(), clearance, &actual, &pos ) )
{
std::shared_ptr<DRC_ITEM> drce = DRC_ITEM::Create( DRCE_CLEARANCE );
m_msg.Printf( _( "(%s clearance %s; actual %s)" ),
constraint.GetName(),
MessageTextFromValue( userUnits(), clearance ),
MessageTextFromValue( userUnits(), actual ) );
drce->SetErrorMessage( drce->GetErrorText() + wxS( " " ) + m_msg );
drce->SetItems( item, other );
drce->SetViolatingRule( constraint.GetParentRule() );
reportViolation( drce, (wxPoint) pos );
}
}
if( testHoles )
{
std::unique_ptr<SHAPE_SEGMENT> itemHoleShape;
std::unique_ptr<SHAPE_SEGMENT> otherHoleShape;
clearance = 0;
if( item->Type() == PCB_VIA_T )
{
PCB_VIA* via = static_cast<PCB_VIA*>( item );
pos = via->GetPosition();
if( via->GetLayerSet().Contains( layer ) )
itemHoleShape.reset( new SHAPE_SEGMENT( pos, pos, via->GetDrill() ) );
}
else if( item->Type() == PCB_PAD_T )
{
PAD* pad = static_cast<PAD*>( item );
if( pad->GetDrillSize().x )
itemHoleShape.reset( new SHAPE_SEGMENT( *pad->GetEffectiveHoleShape() ) );
}
if( other->Type() == PCB_VIA_T )
{
PCB_VIA* via = static_cast<PCB_VIA*>( other );
pos = via->GetPosition();
if( via->GetLayerSet().Contains( layer ) )
otherHoleShape.reset( new SHAPE_SEGMENT( pos, pos, via->GetDrill() ) );
}
else if( other->Type() == PCB_PAD_T )
{
PAD* pad = static_cast<PAD*>( other );
if( pad->GetDrillSize().x )
otherHoleShape.reset( new SHAPE_SEGMENT( *pad->GetEffectiveHoleShape() ) );
}
if( itemHoleShape || otherHoleShape )
{
constraint = m_drcEngine->EvalRules( MECHANICAL_HOLE_CLEARANCE_CONSTRAINT, other, item,
layer );
clearance = constraint.GetValue().Min();
}
if( clearance > 0 && itemHoleShape && itemHoleShape->Collide( otherShape.get(), clearance,
&actual, &pos ) )
{
std::shared_ptr<DRC_ITEM> drce = DRC_ITEM::Create( DRCE_HOLE_CLEARANCE );
m_msg.Printf( _( "(%s clearance %s; actual %s)" ),
constraint.GetName(),
MessageTextFromValue( userUnits(), clearance ),
MessageTextFromValue( userUnits(), actual ) );
drce->SetErrorMessage( drce->GetErrorText() + wxS( " " ) + m_msg );
drce->SetItems( item, other );
drce->SetViolatingRule( constraint.GetParentRule() );
reportViolation( drce, (wxPoint) pos );
}
if( clearance > 0 && otherHoleShape && otherHoleShape->Collide( itemShape, clearance,
&actual, &pos ) )
{
std::shared_ptr<DRC_ITEM> drce = DRC_ITEM::Create( DRCE_HOLE_CLEARANCE );
m_msg.Printf( _( "(%s clearance %s; actual %s)" ),
constraint.GetName(),
MessageTextFromValue( userUnits(), clearance ),
MessageTextFromValue( userUnits(), actual ) );
drce->SetErrorMessage( drce->GetErrorText() + wxS( " " ) + m_msg );
drce->SetItems( item, other );
drce->SetViolatingRule( constraint.GetParentRule() );
reportViolation( drce, (wxPoint) pos );
}
}
return true;
}
void DRC_TEST_PROVIDER_MECHANICAL_CLEARANCE::testItemAgainstZones( BOARD_ITEM* aItem,
PCB_LAYER_ID aLayer )
{
for( ZONE* zone : m_zones )
{
if( !zone->GetLayerSet().test( aLayer ) )
continue;
if( aItem->GetBoundingBox().Intersects( zone->GetCachedBoundingBox() ) )
{
bool testClearance = !m_drcEngine->IsErrorLimitExceeded( DRCE_CLEARANCE );
bool testHoles = !m_drcEngine->IsErrorLimitExceeded( DRCE_HOLE_CLEARANCE );
if( !testClearance && !testHoles )
return;
DRC_RTREE* zoneTree = m_board->m_CopperZoneRTrees[ zone ].get();
EDA_RECT itemBBox = aItem->GetBoundingBox();
DRC_CONSTRAINT constraint;
bool colliding;
int clearance = -1;
int actual;
VECTOR2I pos;
if( testClearance )
{
constraint = m_drcEngine->EvalRules( MECHANICAL_CLEARANCE_CONSTRAINT, aItem, zone,
aLayer );
clearance = constraint.GetValue().Min();
}
if( clearance > 0 )
{
std::shared_ptr<SHAPE> itemShape = aItem->GetEffectiveShape( aLayer );
if( aItem->Type() == PCB_PAD_T )
{
PAD* pad = static_cast<PAD*>( aItem );
if( !pad->FlashLayer( aLayer ) )
{
if( pad->GetDrillSize().x == 0 && pad->GetDrillSize().y == 0 )
continue;
const SHAPE_SEGMENT* hole = pad->GetEffectiveHoleShape();
int size = hole->GetWidth();
// Note: drill size represents finish size, which means the actual hole
// size is the plating thickness larger.
if( pad->GetAttribute() == PAD_ATTRIB::PTH )
size += m_board->GetDesignSettings().GetHolePlatingThickness();
itemShape = std::make_shared<SHAPE_SEGMENT>( hole->GetSeg(), size );
}
}
if( zoneTree )
{
colliding = zoneTree->QueryColliding( itemBBox, itemShape.get(), aLayer,
clearance, &actual, &pos );
}
else
{
colliding = zone->Outline()->Collide( itemShape.get(), clearance, &actual,
&pos );
}
if( colliding )
{
std::shared_ptr<DRC_ITEM> drce = DRC_ITEM::Create( DRCE_CLEARANCE );
m_msg.Printf( _( "(%s clearance %s; actual %s)" ),
constraint.GetName(),
MessageTextFromValue( userUnits(), clearance ),
MessageTextFromValue( userUnits(), actual ) );
drce->SetErrorMessage( drce->GetErrorText() + wxS( " " ) + m_msg );
drce->SetItems( aItem, zone );
drce->SetViolatingRule( constraint.GetParentRule() );
reportViolation( drce, (wxPoint) pos );
}
}
if( testHoles && ( aItem->Type() == PCB_VIA_T || aItem->Type() == PCB_PAD_T ) )
{
std::unique_ptr<SHAPE_SEGMENT> holeShape;
if( aItem->Type() == PCB_VIA_T )
{
PCB_VIA* via = static_cast<PCB_VIA*>( aItem );
pos = via->GetPosition();
if( via->GetLayerSet().Contains( aLayer ) )
holeShape.reset( new SHAPE_SEGMENT( pos, pos, via->GetDrill() ) );
}
else if( aItem->Type() == PCB_PAD_T )
{
PAD* pad = static_cast<PAD*>( aItem );
if( pad->GetDrillSize().x )
holeShape.reset( new SHAPE_SEGMENT( *pad->GetEffectiveHoleShape() ) );
}
if( holeShape )
{
constraint = m_drcEngine->EvalRules( MECHANICAL_HOLE_CLEARANCE_CONSTRAINT,
aItem, zone, aLayer );
clearance = constraint.GetValue().Min();
if( clearance > 0 && zoneTree->QueryColliding( itemBBox, holeShape.get(),
aLayer, clearance, &actual,
&pos ) )
{
std::shared_ptr<DRC_ITEM> drce = DRC_ITEM::Create( DRCE_HOLE_CLEARANCE );
m_msg.Printf( _( "(%s clearance %s; actual %s)" ),
constraint.GetName(),
MessageTextFromValue( userUnits(), clearance ),
MessageTextFromValue( userUnits(), actual ) );
drce->SetErrorMessage( drce->GetErrorText() + wxS( " " ) + m_msg );
drce->SetItems( aItem, zone );
drce->SetViolatingRule( constraint.GetParentRule() );
reportViolation( drce, (wxPoint) pos );
}
}
}
}
}
}
std::set<DRC_CONSTRAINT_T> DRC_TEST_PROVIDER_MECHANICAL_CLEARANCE::GetConstraintTypes() const
{
return { MECHANICAL_CLEARANCE_CONSTRAINT, MECHANICAL_HOLE_CLEARANCE_CONSTRAINT };
}
namespace detail
{
static DRC_REGISTER_TEST_PROVIDER<DRC_TEST_PROVIDER_MECHANICAL_CLEARANCE> dummy;
}