kicad/common/lib_tree_model.cpp

377 lines
10 KiB
C++

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*lib_tree_model
* Copyright (C) 2017 Chris Pavlina <pavlina.chris@gmail.com>
* Copyright (C) 2014 Henner Zeller <h.zeller@acm.org>
* Copyright (C) 2014-2019 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <lib_tree_model.h>
#include <algorithm>
#include <eda_pattern_match.h>
#include <lib_tree_item.h>
#include <utility>
#include <pgm_base.h>
#include <string_utils.h>
// Each node gets this lowest score initially, without any matches applied.
// Matches will then increase this score depending on match quality. This way,
// an empty search string will result in all components being displayed as they
// have the minimum score. However, in that case, we avoid expanding all the
// nodes asd the result is very unspecific.
static const unsigned kLowestDefaultScore = 1;
// Creates a score depending on the position of a string match. If the position
// is 0 (= prefix match), this returns the maximum score. This degrades until
// pos == max, which returns a score of 0; Evertyhing else beyond that is just
// 0. Only values >= 0 allowed for position and max.
//
// @param aPosition is the position a string has been found in a substring.
// @param aMaximum is the maximum score this function returns.
// @return position dependent score.
static int matchPosScore(int aPosition, int aMaximum)
{
return ( aPosition < aMaximum ) ? aMaximum - aPosition : 0;
}
void LIB_TREE_NODE::ResetScore()
{
for( std::unique_ptr<LIB_TREE_NODE>& child: m_Children )
child->ResetScore();
m_Score = kLowestDefaultScore;
}
void LIB_TREE_NODE::AssignIntrinsicRanks( bool presorted )
{
std::vector<LIB_TREE_NODE*> sort_buf;
if( presorted )
{
int max = m_Children.size() - 1;
for( int i = 0; i <= max; ++i )
m_Children[i]->m_IntrinsicRank = max - i;
}
else
{
for( std::unique_ptr<LIB_TREE_NODE>& child: m_Children )
sort_buf.push_back( child.get() );
std::sort( sort_buf.begin(), sort_buf.end(),
[]( LIB_TREE_NODE* a, LIB_TREE_NODE* b ) -> bool
{
return StrNumCmp( a->m_Name, b->m_Name, true ) > 0;
} );
for( int i = 0; i < (int) sort_buf.size(); ++i )
sort_buf[i]->m_IntrinsicRank = i;
}
}
void LIB_TREE_NODE::SortNodes()
{
std::sort( m_Children.begin(), m_Children.end(),
[]( std::unique_ptr<LIB_TREE_NODE>& a, std::unique_ptr<LIB_TREE_NODE>& b )
{
return Compare( *a, *b ) > 0;
} );
for( std::unique_ptr<LIB_TREE_NODE>& node: m_Children )
node->SortNodes();
}
int LIB_TREE_NODE::Compare( LIB_TREE_NODE const& aNode1, LIB_TREE_NODE const& aNode2 )
{
if( aNode1.m_Type != aNode2.m_Type )
return 0;
// Recently used sorts at top
if( aNode1.m_Name.StartsWith( wxT( "-- " ) ) )
return 1;
else if( aNode2.m_Name.StartsWith( wxT( "-- " ) ) )
return 0;
// Pinned nodes go next
if( aNode1.m_Pinned && !aNode2.m_Pinned )
return 1;
else if( aNode2.m_Pinned && !aNode1.m_Pinned )
return -1;
if( aNode1.m_Parent != aNode2.m_Parent )
return 0;
return aNode1.m_IntrinsicRank - aNode2.m_IntrinsicRank;
}
LIB_TREE_NODE::LIB_TREE_NODE()
: m_Parent( nullptr ),
m_Type( INVALID ),
m_IntrinsicRank( 0 ),
m_Score( kLowestDefaultScore ),
m_Pinned( false ),
m_Normalized( false ),
m_Unit( 0 ),
m_IsRoot( false )
{}
LIB_TREE_NODE_UNIT::LIB_TREE_NODE_UNIT( LIB_TREE_NODE* aParent, LIB_TREE_ITEM* aItem, int aUnit )
{
static void* locale = nullptr;
static wxString namePrefix;
// Fetching translations can take a surprising amount of time when loading libraries,
// so only do it when necessary.
if( Pgm().GetLocale() != locale )
{
namePrefix = _( "Unit" );
locale = Pgm().GetLocale();
}
m_Parent = aParent;
m_Type = UNIT;
m_Unit = aUnit;
m_LibId = aParent->m_LibId;
m_Name = namePrefix + " " + aItem->GetUnitReference( aUnit );
if( aItem->HasUnitDisplayName( aUnit ) )
{
m_Desc = aItem->GetUnitDisplayName( aUnit );
}
else
{
m_Desc = wxEmptyString;
}
m_MatchName = wxEmptyString;
m_IntrinsicRank = -aUnit;
}
LIB_TREE_NODE_LIB_ID::LIB_TREE_NODE_LIB_ID( LIB_TREE_NODE* aParent, LIB_TREE_ITEM* aItem )
{
m_Type = LIBID;
m_Parent = aParent;
m_LibId.SetLibNickname( aItem->GetLibNickname() );
m_LibId.SetLibItemName( aItem->GetName() );
m_Name = aItem->GetName();
m_Desc = aItem->GetDescription();
m_Footprint = aItem->GetFootprint();
aItem->GetChooserFields( m_Fields );
m_MatchName = aItem->GetName();
m_SearchText = aItem->GetSearchText();
m_Normalized = false;
m_IsRoot = aItem->IsRoot();
if( aItem->GetUnitCount() > 1 )
{
for( int u = 1; u <= aItem->GetUnitCount(); ++u )
AddUnit( aItem, u );
}
}
LIB_TREE_NODE_UNIT& LIB_TREE_NODE_LIB_ID::AddUnit( LIB_TREE_ITEM* aItem, int aUnit )
{
LIB_TREE_NODE_UNIT* unit = new LIB_TREE_NODE_UNIT( this, aItem, aUnit );
m_Children.push_back( std::unique_ptr<LIB_TREE_NODE>( unit ) );
return *unit;
}
void LIB_TREE_NODE_LIB_ID::Update( LIB_TREE_ITEM* aItem )
{
m_LibId.SetLibNickname( aItem->GetLibId().GetLibNickname() );
m_LibId.SetLibItemName( aItem->GetName() );
m_Name = aItem->GetName();
m_Desc = aItem->GetDescription();
m_MatchName = aItem->GetName();
aItem->GetChooserFields( m_Fields );
m_SearchText = aItem->GetSearchText();
m_Normalized = false;
m_IsRoot = aItem->IsRoot();
m_Children.clear();
for( int u = 1; u <= aItem->GetUnitCount(); ++u )
AddUnit( aItem, u );
}
void LIB_TREE_NODE_LIB_ID::UpdateScore( EDA_COMBINED_MATCHER& aMatcher, const wxString& aLib )
{
if( m_Score <= 0 )
return; // Leaf nodes without scores are out of the game.
if( !m_Normalized )
{
m_MatchName = UnescapeString( m_MatchName ).Lower();
m_SearchText = m_SearchText.Lower();
m_Normalized = true;
}
if( !aLib.IsEmpty() && m_Parent->m_MatchName != aLib )
{
m_Score = 0;
return;
}
// Keywords and description we only count if the match string is at
// least two characters long. That avoids spurious, low quality
// matches. Most abbreviations are at three characters long.
int found_pos = EDA_PATTERN_NOT_FOUND;
int matchers_fired = 0;
if( aMatcher.GetPattern() == m_MatchName )
{
m_Score += 1000; // exact match. High score :)
}
else if( aMatcher.Find( m_MatchName, matchers_fired, found_pos ) )
{
// Substring match. The earlier in the string the better.
m_Score += matchPosScore( found_pos, 20 ) + 20;
}
else if( aMatcher.Find( m_Parent->m_MatchName, matchers_fired, found_pos ) )
{
m_Score += 19; // parent name matches. score += 19
}
else if( aMatcher.Find( m_SearchText, matchers_fired, found_pos ) )
{
// If we have a very short search term (like one or two letters),
// we don't want to accumulate scores if they just happen to be in
// keywords or description as almost any one or two-letter
// combination shows up in there.
if( aMatcher.GetPattern().length() >= 2 )
{
// For longer terms, we add scores 1..18 for positional match
// (higher in the front, where the keywords are).
m_Score += matchPosScore( found_pos, 17 ) + 1;
}
}
else
{
// No match. That's it for this item.
m_Score = 0;
}
// More matchers = better match
m_Score += 2 * matchers_fired;
}
LIB_TREE_NODE_LIB::LIB_TREE_NODE_LIB( LIB_TREE_NODE* aParent, wxString const& aName,
wxString const& aDesc )
{
m_Type = LIB;
m_Name = aName;
m_MatchName = aName.Lower();
m_Desc = aDesc;
m_Parent = aParent;
m_LibId.SetLibNickname( aName );
}
LIB_TREE_NODE_LIB_ID& LIB_TREE_NODE_LIB::AddItem( LIB_TREE_ITEM* aItem )
{
LIB_TREE_NODE_LIB_ID* item = new LIB_TREE_NODE_LIB_ID( this, aItem );
m_Children.push_back( std::unique_ptr<LIB_TREE_NODE>( item ) );
return *item;
}
void LIB_TREE_NODE_LIB::UpdateScore( EDA_COMBINED_MATCHER& aMatcher, const wxString& aLib )
{
m_Score = 0;
// We need to score leaf nodes, which are usually (but not always) children.
if( m_Children.size() )
{
for( std::unique_ptr<LIB_TREE_NODE>& child: m_Children )
{
child->UpdateScore( aMatcher, aLib );
m_Score = std::max( m_Score, child->m_Score );
}
}
else
{
// No children; we are a leaf.
if( !aLib.IsEmpty() )
{
m_Score = m_MatchName == aLib ? 1000 : 0;
return;
}
int found_pos = EDA_PATTERN_NOT_FOUND;
int matchers_fired = 0;
if( aMatcher.GetPattern() == m_MatchName )
{
m_Score += 1000; // exact match. High score :)
}
else if( aMatcher.Find( m_MatchName, matchers_fired, found_pos ) )
{
// Substring match. The earlier in the string the better.
m_Score += matchPosScore( found_pos, 20 ) + 20;
}
// More matchers = better match
m_Score += 2 * matchers_fired;
}
}
LIB_TREE_NODE_ROOT::LIB_TREE_NODE_ROOT()
{
m_Type = ROOT;
}
LIB_TREE_NODE_LIB& LIB_TREE_NODE_ROOT::AddLib( wxString const& aName, wxString const& aDesc )
{
LIB_TREE_NODE_LIB* lib = new LIB_TREE_NODE_LIB( this, aName, aDesc );
m_Children.push_back( std::unique_ptr<LIB_TREE_NODE>( lib ) );
return *lib;
}
void LIB_TREE_NODE_ROOT::UpdateScore( EDA_COMBINED_MATCHER& aMatcher, const wxString& aLib )
{
for( std::unique_ptr<LIB_TREE_NODE>& child: m_Children )
child->UpdateScore( aMatcher, aLib );
}