kicad/thirdparty/clipper2/Clipper2Lib/src/clipper.engine.cpp

2975 lines
81 KiB
C++

/*******************************************************************************
* Author : Angus Johnson *
* Date : 23 April 2023 *
* Website : http://www.angusj.com *
* Copyright : Angus Johnson 2010-2023 *
* Purpose : This is the main polygon clipping module *
* License : http://www.boost.org/LICENSE_1_0.txt *
*******************************************************************************/
#include <cstdlib>
#include <cmath>
#include <stdexcept>
#include <vector>
#include <numeric>
#include <algorithm>
#include "clipper2/clipper.engine.h"
// https://github.com/AngusJohnson/Clipper2/discussions/334
// #discussioncomment-4248602
#if defined(_MSC_VER) && ( defined(_M_AMD64) || defined(_M_X64) )
#include <xmmintrin.h>
#include <emmintrin.h>
#define fmin(a,b) _mm_cvtsd_f64(_mm_min_sd(_mm_set_sd(a),_mm_set_sd(b)))
#define fmax(a,b) _mm_cvtsd_f64(_mm_max_sd(_mm_set_sd(a),_mm_set_sd(b)))
#define nearbyint(a) _mm_cvtsd_si64(_mm_set_sd(a)) /* Note: expression type is (int64_t) */
#endif
namespace Clipper2Lib {
static const Rect64 invalid_rect = Rect64(false);
// Every closed path (or polygon) is made up of a series of vertices forming
// edges that alternate between going up (relative to the Y-axis) and going
// down. Edges consecutively going up or consecutively going down are called
// 'bounds' (ie sides if they're simple polygons). 'Local Minima' refer to
// vertices where descending bounds become ascending ones.
struct Scanline {
int64_t y = 0;
Scanline* next = nullptr;
explicit Scanline(int64_t y_) : y(y_) {}
};
struct HorzSegSorter {
inline bool operator()(const HorzSegment& hs1, const HorzSegment& hs2)
{
if (!hs1.right_op || !hs2.right_op) return (hs1.right_op);
return hs2.left_op->pt.x > hs1.left_op->pt.x;
}
};
struct LocMinSorter {
inline bool operator()(const LocalMinima_ptr& locMin1,
const LocalMinima_ptr& locMin2)
{
if (locMin2->vertex->pt.y != locMin1->vertex->pt.y)
return locMin2->vertex->pt.y < locMin1->vertex->pt.y;
else
return locMin2->vertex->pt.x > locMin1->vertex->pt.x;
}
};
inline bool IsOdd(int val)
{
return (val & 1) ? true : false;
}
inline bool IsHotEdge(const Active& e)
{
return (e.outrec);
}
inline bool IsOpen(const Active& e)
{
return (e.local_min->is_open);
}
inline bool IsOpenEnd(const Vertex& v)
{
return (v.flags & (VertexFlags::OpenStart | VertexFlags::OpenEnd)) !=
VertexFlags::None;
}
inline bool IsOpenEnd(const Active& ae)
{
return IsOpenEnd(*ae.vertex_top);
}
inline Active* GetPrevHotEdge(const Active& e)
{
Active* prev = e.prev_in_ael;
while (prev && (IsOpen(*prev) || !IsHotEdge(*prev)))
prev = prev->prev_in_ael;
return prev;
}
inline bool IsFront(const Active& e)
{
return (&e == e.outrec->front_edge);
}
inline bool IsInvalidPath(OutPt* op)
{
return (!op || op->next == op);
}
/*******************************************************************************
* Dx: 0(90deg) *
* | *
* +inf (180deg) <--- o ---> -inf (0deg) *
*******************************************************************************/
inline double GetDx(const Point64& pt1, const Point64& pt2)
{
double dy = double(pt2.y - pt1.y);
if (dy != 0)
return double(pt2.x - pt1.x) / dy;
else if (pt2.x > pt1.x)
return -std::numeric_limits<double>::max();
else
return std::numeric_limits<double>::max();
}
inline int64_t TopX(const Active& ae, const int64_t currentY)
{
if ((currentY == ae.top.y) || (ae.top.x == ae.bot.x)) return ae.top.x;
else if (currentY == ae.bot.y) return ae.bot.x;
else return ae.bot.x + static_cast<int64_t>(nearbyint(ae.dx * (currentY - ae.bot.y)));
// nb: std::nearbyint (or std::round) substantially *improves* performance here
// as it greatly improves the likelihood of edge adjacency in ProcessIntersectList().
}
inline bool IsHorizontal(const Active& e)
{
return (e.top.y == e.bot.y);
}
inline bool IsHeadingRightHorz(const Active& e)
{
return e.dx == -std::numeric_limits<double>::max();
}
inline bool IsHeadingLeftHorz(const Active& e)
{
return e.dx == std::numeric_limits<double>::max();
}
inline void SwapActives(Active*& e1, Active*& e2)
{
Active* e = e1;
e1 = e2;
e2 = e;
}
inline PathType GetPolyType(const Active& e)
{
return e.local_min->polytype;
}
inline bool IsSamePolyType(const Active& e1, const Active& e2)
{
return e1.local_min->polytype == e2.local_min->polytype;
}
inline void SetDx(Active& e)
{
e.dx = GetDx(e.bot, e.top);
}
inline Vertex* NextVertex(const Active& e)
{
if (e.wind_dx > 0)
return e.vertex_top->next;
else
return e.vertex_top->prev;
}
//PrevPrevVertex: useful to get the (inverted Y-axis) top of the
//alternate edge (ie left or right bound) during edge insertion.
inline Vertex* PrevPrevVertex(const Active& ae)
{
if (ae.wind_dx > 0)
return ae.vertex_top->prev->prev;
else
return ae.vertex_top->next->next;
}
inline Active* ExtractFromSEL(Active* ae)
{
Active* res = ae->next_in_sel;
if (res)
res->prev_in_sel = ae->prev_in_sel;
ae->prev_in_sel->next_in_sel = res;
return res;
}
inline void Insert1Before2InSEL(Active* ae1, Active* ae2)
{
ae1->prev_in_sel = ae2->prev_in_sel;
if (ae1->prev_in_sel)
ae1->prev_in_sel->next_in_sel = ae1;
ae1->next_in_sel = ae2;
ae2->prev_in_sel = ae1;
}
inline bool IsMaxima(const Vertex& v)
{
return ((v.flags & VertexFlags::LocalMax) != VertexFlags::None);
}
inline bool IsMaxima(const Active& e)
{
return IsMaxima(*e.vertex_top);
}
inline Vertex* GetCurrYMaximaVertex_Open(const Active& e)
{
Vertex* result = e.vertex_top;
if (e.wind_dx > 0)
while ((result->next->pt.y == result->pt.y) &&
((result->flags & (VertexFlags::OpenEnd |
VertexFlags::LocalMax)) == VertexFlags::None))
result = result->next;
else
while (result->prev->pt.y == result->pt.y &&
((result->flags & (VertexFlags::OpenEnd |
VertexFlags::LocalMax)) == VertexFlags::None))
result = result->prev;
if (!IsMaxima(*result)) result = nullptr; // not a maxima
return result;
}
inline Vertex* GetCurrYMaximaVertex(const Active& e)
{
Vertex* result = e.vertex_top;
if (e.wind_dx > 0)
while (result->next->pt.y == result->pt.y) result = result->next;
else
while (result->prev->pt.y == result->pt.y) result = result->prev;
if (!IsMaxima(*result)) result = nullptr; // not a maxima
return result;
}
Active* GetMaximaPair(const Active& e)
{
Active* e2;
e2 = e.next_in_ael;
while (e2)
{
if (e2->vertex_top == e.vertex_top) return e2; // Found!
e2 = e2->next_in_ael;
}
return nullptr;
}
inline int PointCount(OutPt* op)
{
OutPt* op2 = op;
int cnt = 0;
do
{
op2 = op2->next;
++cnt;
} while (op2 != op);
return cnt;
}
inline OutPt* DuplicateOp(OutPt* op, bool insert_after)
{
OutPt* result = new OutPt(op->pt, op->outrec);
if (insert_after)
{
result->next = op->next;
result->next->prev = result;
result->prev = op;
op->next = result;
}
else
{
result->prev = op->prev;
result->prev->next = result;
result->next = op;
op->prev = result;
}
return result;
}
inline OutPt* DisposeOutPt(OutPt* op)
{
OutPt* result = op->next;
op->prev->next = op->next;
op->next->prev = op->prev;
delete op;
return result;
}
inline void DisposeOutPts(OutRec* outrec)
{
OutPt* op = outrec->pts;
op->prev->next = nullptr;
while (op)
{
OutPt* tmp = op;
op = op->next;
delete tmp;
};
outrec->pts = nullptr;
}
bool IntersectListSort(const IntersectNode& a, const IntersectNode& b)
{
//note different inequality tests ...
return (a.pt.y == b.pt.y) ? (a.pt.x < b.pt.x) : (a.pt.y > b.pt.y);
}
inline void SetSides(OutRec& outrec, Active& start_edge, Active& end_edge)
{
outrec.front_edge = &start_edge;
outrec.back_edge = &end_edge;
}
void SwapOutrecs(Active& e1, Active& e2)
{
OutRec* or1 = e1.outrec;
OutRec* or2 = e2.outrec;
if (or1 == or2)
{
Active* e = or1->front_edge;
or1->front_edge = or1->back_edge;
or1->back_edge = e;
return;
}
if (or1)
{
if (&e1 == or1->front_edge)
or1->front_edge = &e2;
else
or1->back_edge = &e2;
}
if (or2)
{
if (&e2 == or2->front_edge)
or2->front_edge = &e1;
else
or2->back_edge = &e1;
}
e1.outrec = or2;
e2.outrec = or1;
}
double Area(OutPt* op)
{
//https://en.wikipedia.org/wiki/Shoelace_formula
double result = 0.0;
OutPt* op2 = op;
do
{
result += static_cast<double>(op2->prev->pt.y + op2->pt.y) *
static_cast<double>(op2->prev->pt.x - op2->pt.x);
op2 = op2->next;
} while (op2 != op);
return result * 0.5;
}
inline double AreaTriangle(const Point64& pt1,
const Point64& pt2, const Point64& pt3)
{
return (static_cast<double>(pt3.y + pt1.y) * static_cast<double>(pt3.x - pt1.x) +
static_cast<double>(pt1.y + pt2.y) * static_cast<double>(pt1.x - pt2.x) +
static_cast<double>(pt2.y + pt3.y) * static_cast<double>(pt2.x - pt3.x));
}
void ReverseOutPts(OutPt* op)
{
if (!op) return;
OutPt* op1 = op;
OutPt* op2;
do
{
op2 = op1->next;
op1->next = op1->prev;
op1->prev = op2;
op1 = op2;
} while (op1 != op);
}
inline void SwapSides(OutRec& outrec)
{
Active* e2 = outrec.front_edge;
outrec.front_edge = outrec.back_edge;
outrec.back_edge = e2;
outrec.pts = outrec.pts->next;
}
inline OutRec* GetRealOutRec(OutRec* outrec)
{
while (outrec && !outrec->pts) outrec = outrec->owner;
return outrec;
}
inline void UncoupleOutRec(Active ae)
{
OutRec* outrec = ae.outrec;
if (!outrec) return;
outrec->front_edge->outrec = nullptr;
outrec->back_edge->outrec = nullptr;
outrec->front_edge = nullptr;
outrec->back_edge = nullptr;
}
inline bool PtsReallyClose(const Point64& pt1, const Point64& pt2)
{
return (std::llabs(pt1.x - pt2.x) < 2) && (std::llabs(pt1.y - pt2.y) < 2);
}
inline bool IsVerySmallTriangle(const OutPt& op)
{
return op.next->next == op.prev &&
(PtsReallyClose(op.prev->pt, op.next->pt) ||
PtsReallyClose(op.pt, op.next->pt) ||
PtsReallyClose(op.pt, op.prev->pt));
}
inline bool IsValidClosedPath(const OutPt* op)
{
return op && (op->next != op) && (op->next != op->prev) &&
!IsVerySmallTriangle(*op);
}
inline bool OutrecIsAscending(const Active* hotEdge)
{
return (hotEdge == hotEdge->outrec->front_edge);
}
inline void SwapFrontBackSides(OutRec& outrec)
{
Active* tmp = outrec.front_edge;
outrec.front_edge = outrec.back_edge;
outrec.back_edge = tmp;
outrec.pts = outrec.pts->next;
}
inline bool EdgesAdjacentInAEL(const IntersectNode& inode)
{
return (inode.edge1->next_in_ael == inode.edge2) || (inode.edge1->prev_in_ael == inode.edge2);
}
inline bool IsJoined(const Active& e)
{
return e.join_with != JoinWith::None;
}
inline void SetOwner(OutRec* outrec, OutRec* new_owner)
{
//precondition1: new_owner is never null
while (new_owner->owner && !new_owner->owner->pts)
new_owner->owner = new_owner->owner->owner;
OutRec* tmp = new_owner;
while (tmp && tmp != outrec) tmp = tmp->owner;
if (tmp) new_owner->owner = outrec->owner;
outrec->owner = new_owner;
}
//------------------------------------------------------------------------------
// ClipperBase methods ...
//------------------------------------------------------------------------------
ClipperBase::~ClipperBase()
{
Clear();
}
void ClipperBase::DeleteEdges(Active*& e)
{
while (e)
{
Active* e2 = e;
e = e->next_in_ael;
delete e2;
}
}
void ClipperBase::CleanUp()
{
DeleteEdges(actives_);
scanline_list_ = std::priority_queue<int64_t>();
intersect_nodes_.clear();
DisposeAllOutRecs();
horz_seg_list_.clear();
horz_join_list_.clear();
}
void ClipperBase::Clear()
{
CleanUp();
DisposeVerticesAndLocalMinima();
current_locmin_iter_ = minima_list_.begin();
minima_list_sorted_ = false;
has_open_paths_ = false;
}
void ClipperBase::Reset()
{
if (!minima_list_sorted_)
{
std::sort(minima_list_.begin(), minima_list_.end(), LocMinSorter());
minima_list_sorted_ = true;
}
LocalMinimaList::const_reverse_iterator i;
for (i = minima_list_.rbegin(); i != minima_list_.rend(); ++i)
InsertScanline((*i)->vertex->pt.y);
current_locmin_iter_ = minima_list_.begin();
actives_ = nullptr;
sel_ = nullptr;
succeeded_ = true;
}
#ifdef USINGZ
void ClipperBase::SetZ(const Active& e1, const Active& e2, Point64& ip)
{
if (!zCallback_) return;
// prioritize subject over clip vertices by passing
// subject vertices before clip vertices in the callback
if (GetPolyType(e1) == PathType::Subject)
{
if (ip == e1.bot) ip.z = e1.bot.z;
else if (ip == e1.top) ip.z = e1.top.z;
else if (ip == e2.bot) ip.z = e2.bot.z;
else if (ip == e2.top) ip.z = e2.top.z;
else ip.z = DefaultZ;
zCallback_(e1.bot, e1.top, e2.bot, e2.top, ip);
}
else
{
if (ip == e2.bot) ip.z = e2.bot.z;
else if (ip == e2.top) ip.z = e2.top.z;
else if (ip == e1.bot) ip.z = e1.bot.z;
else if (ip == e1.top) ip.z = e1.top.z;
else ip.z = DefaultZ;
zCallback_(e2.bot, e2.top, e1.bot, e1.top, ip);
}
}
#endif
void ClipperBase::AddPath(const Path64& path, PathType polytype, bool is_open)
{
Paths64 tmp;
tmp.push_back(path);
AddPaths(tmp, polytype, is_open);
}
void ClipperBase::AddPaths(const Paths64& paths, PathType polytype, bool is_open)
{
if (is_open) has_open_paths_ = true;
minima_list_sorted_ = false;
const auto total_vertex_count =
std::accumulate(paths.begin(), paths.end(), 0,
[](const auto& a, const Path64& path)
{return a + static_cast<unsigned>(path.size());});
if (total_vertex_count == 0) return;
Vertex* vertices = new Vertex[total_vertex_count], * v = vertices;
for (const Path64& path : paths)
{
//for each path create a circular double linked list of vertices
Vertex* v0 = v, * curr_v = v, * prev_v = nullptr;
if (path.empty())
continue;
v->prev = nullptr;
int cnt = 0;
for (const Point64& pt : path)
{
if (prev_v)
{
if (prev_v->pt == pt) continue; // ie skips duplicates
prev_v->next = curr_v;
}
curr_v->prev = prev_v;
curr_v->pt = pt;
curr_v->flags = VertexFlags::None;
prev_v = curr_v++;
cnt++;
}
if (!prev_v || !prev_v->prev) continue;
if (!is_open && prev_v->pt == v0->pt)
prev_v = prev_v->prev;
prev_v->next = v0;
v0->prev = prev_v;
v = curr_v; // ie get ready for next path
if (cnt < 2 || (cnt == 2 && !is_open)) continue;
//now find and assign local minima
bool going_up, going_up0;
if (is_open)
{
curr_v = v0->next;
while (curr_v != v0 && curr_v->pt.y == v0->pt.y)
curr_v = curr_v->next;
going_up = curr_v->pt.y <= v0->pt.y;
if (going_up)
{
v0->flags = VertexFlags::OpenStart;
AddLocMin(*v0, polytype, true);
}
else
v0->flags = VertexFlags::OpenStart | VertexFlags::LocalMax;
}
else // closed path
{
prev_v = v0->prev;
while (prev_v != v0 && prev_v->pt.y == v0->pt.y)
prev_v = prev_v->prev;
if (prev_v == v0)
continue; // only open paths can be completely flat
going_up = prev_v->pt.y > v0->pt.y;
}
going_up0 = going_up;
prev_v = v0;
curr_v = v0->next;
while (curr_v != v0)
{
if (curr_v->pt.y > prev_v->pt.y && going_up)
{
prev_v->flags = (prev_v->flags | VertexFlags::LocalMax);
going_up = false;
}
else if (curr_v->pt.y < prev_v->pt.y && !going_up)
{
going_up = true;
AddLocMin(*prev_v, polytype, is_open);
}
prev_v = curr_v;
curr_v = curr_v->next;
}
if (is_open)
{
prev_v->flags = prev_v->flags | VertexFlags::OpenEnd;
if (going_up)
prev_v->flags = prev_v->flags | VertexFlags::LocalMax;
else
AddLocMin(*prev_v, polytype, is_open);
}
else if (going_up != going_up0)
{
if (going_up0) AddLocMin(*prev_v, polytype, false);
else prev_v->flags = prev_v->flags | VertexFlags::LocalMax;
}
} // end processing current path
vertex_lists_.emplace_back(vertices);
} // end AddPaths
void ClipperBase::InsertScanline(int64_t y)
{
scanline_list_.push(y);
}
bool ClipperBase::PopScanline(int64_t& y)
{
if (scanline_list_.empty()) return false;
y = scanline_list_.top();
scanline_list_.pop();
while (!scanline_list_.empty() && y == scanline_list_.top())
scanline_list_.pop(); // Pop duplicates.
return true;
}
bool ClipperBase::PopLocalMinima(int64_t y, LocalMinima*& local_minima)
{
if (current_locmin_iter_ == minima_list_.end() || (*current_locmin_iter_)->vertex->pt.y != y) return false;
local_minima = (current_locmin_iter_++)->get();
return true;
}
void ClipperBase::DisposeAllOutRecs()
{
for (auto outrec : outrec_list_)
{
if (outrec->pts) DisposeOutPts(outrec);
delete outrec;
}
outrec_list_.resize(0);
}
void ClipperBase::DisposeVerticesAndLocalMinima()
{
minima_list_.clear();
for (auto v : vertex_lists_) delete[] v;
vertex_lists_.clear();
}
void ClipperBase::AddLocMin(Vertex& vert, PathType polytype, bool is_open)
{
//make sure the vertex is added only once ...
if ((VertexFlags::LocalMin & vert.flags) != VertexFlags::None) return;
vert.flags = (vert.flags | VertexFlags::LocalMin);
minima_list_.push_back(std::make_unique <LocalMinima>(&vert, polytype, is_open));
}
bool ClipperBase::IsContributingClosed(const Active& e) const
{
switch (fillrule_)
{
case FillRule::EvenOdd:
break;
case FillRule::NonZero:
if (abs(e.wind_cnt) != 1) return false;
break;
case FillRule::Positive:
if (e.wind_cnt != 1) return false;
break;
case FillRule::Negative:
if (e.wind_cnt != -1) return false;
break;
}
switch (cliptype_)
{
case ClipType::None:
return false;
case ClipType::Intersection:
switch (fillrule_)
{
case FillRule::Positive:
return (e.wind_cnt2 > 0);
case FillRule::Negative:
return (e.wind_cnt2 < 0);
default:
return (e.wind_cnt2 != 0);
}
break;
case ClipType::Union:
switch (fillrule_)
{
case FillRule::Positive:
return (e.wind_cnt2 <= 0);
case FillRule::Negative:
return (e.wind_cnt2 >= 0);
default:
return (e.wind_cnt2 == 0);
}
break;
case ClipType::Difference:
bool result;
switch (fillrule_)
{
case FillRule::Positive:
result = (e.wind_cnt2 <= 0);
break;
case FillRule::Negative:
result = (e.wind_cnt2 >= 0);
break;
default:
result = (e.wind_cnt2 == 0);
}
if (GetPolyType(e) == PathType::Subject)
return result;
else
return !result;
break;
case ClipType::Xor: return true; break;
}
return false; // we should never get here
}
inline bool ClipperBase::IsContributingOpen(const Active& e) const
{
bool is_in_clip, is_in_subj;
switch (fillrule_)
{
case FillRule::Positive:
is_in_clip = e.wind_cnt2 > 0;
is_in_subj = e.wind_cnt > 0;
break;
case FillRule::Negative:
is_in_clip = e.wind_cnt2 < 0;
is_in_subj = e.wind_cnt < 0;
break;
default:
is_in_clip = e.wind_cnt2 != 0;
is_in_subj = e.wind_cnt != 0;
}
switch (cliptype_)
{
case ClipType::Intersection: return is_in_clip;
case ClipType::Union: return (!is_in_subj && !is_in_clip);
default: return !is_in_clip;
}
}
void ClipperBase::SetWindCountForClosedPathEdge(Active& e)
{
//Wind counts refer to polygon regions not edges, so here an edge's WindCnt
//indicates the higher of the wind counts for the two regions touching the
//edge. (NB Adjacent regions can only ever have their wind counts differ by
//one. Also, open paths have no meaningful wind directions or counts.)
Active* e2 = e.prev_in_ael;
//find the nearest closed path edge of the same PolyType in AEL (heading left)
PathType pt = GetPolyType(e);
while (e2 && (GetPolyType(*e2) != pt || IsOpen(*e2))) e2 = e2->prev_in_ael;
if (!e2)
{
e.wind_cnt = e.wind_dx;
e2 = actives_;
}
else if (fillrule_ == FillRule::EvenOdd)
{
e.wind_cnt = e.wind_dx;
e.wind_cnt2 = e2->wind_cnt2;
e2 = e2->next_in_ael;
}
else
{
//NonZero, positive, or negative filling here ...
//if e's WindCnt is in the SAME direction as its WindDx, then polygon
//filling will be on the right of 'e'.
//NB neither e2.WindCnt nor e2.WindDx should ever be 0.
if (e2->wind_cnt * e2->wind_dx < 0)
{
//opposite directions so 'e' is outside 'e2' ...
if (abs(e2->wind_cnt) > 1)
{
//outside prev poly but still inside another.
if (e2->wind_dx * e.wind_dx < 0)
//reversing direction so use the same WC
e.wind_cnt = e2->wind_cnt;
else
//otherwise keep 'reducing' the WC by 1 (ie towards 0) ...
e.wind_cnt = e2->wind_cnt + e.wind_dx;
}
else
//now outside all polys of same polytype so set own WC ...
e.wind_cnt = (IsOpen(e) ? 1 : e.wind_dx);
}
else
{
//'e' must be inside 'e2'
if (e2->wind_dx * e.wind_dx < 0)
//reversing direction so use the same WC
e.wind_cnt = e2->wind_cnt;
else
//otherwise keep 'increasing' the WC by 1 (ie away from 0) ...
e.wind_cnt = e2->wind_cnt + e.wind_dx;
}
e.wind_cnt2 = e2->wind_cnt2;
e2 = e2->next_in_ael; // ie get ready to calc WindCnt2
}
//update wind_cnt2 ...
if (fillrule_ == FillRule::EvenOdd)
while (e2 != &e)
{
if (GetPolyType(*e2) != pt && !IsOpen(*e2))
e.wind_cnt2 = (e.wind_cnt2 == 0 ? 1 : 0);
e2 = e2->next_in_ael;
}
else
while (e2 != &e)
{
if (GetPolyType(*e2) != pt && !IsOpen(*e2))
e.wind_cnt2 += e2->wind_dx;
e2 = e2->next_in_ael;
}
}
void ClipperBase::SetWindCountForOpenPathEdge(Active& e)
{
Active* e2 = actives_;
if (fillrule_ == FillRule::EvenOdd)
{
int cnt1 = 0, cnt2 = 0;
while (e2 != &e)
{
if (GetPolyType(*e2) == PathType::Clip)
cnt2++;
else if (!IsOpen(*e2))
cnt1++;
e2 = e2->next_in_ael;
}
e.wind_cnt = (IsOdd(cnt1) ? 1 : 0);
e.wind_cnt2 = (IsOdd(cnt2) ? 1 : 0);
}
else
{
while (e2 != &e)
{
if (GetPolyType(*e2) == PathType::Clip)
e.wind_cnt2 += e2->wind_dx;
else if (!IsOpen(*e2))
e.wind_cnt += e2->wind_dx;
e2 = e2->next_in_ael;
}
}
}
bool IsValidAelOrder(const Active& resident, const Active& newcomer)
{
if (newcomer.curr_x != resident.curr_x)
return newcomer.curr_x > resident.curr_x;
//get the turning direction a1.top, a2.bot, a2.top
double d = CrossProduct(resident.top, newcomer.bot, newcomer.top);
if (d != 0) return d < 0;
//edges must be collinear to get here
//for starting open paths, place them according to
//the direction they're about to turn
if (!IsMaxima(resident) && (resident.top.y > newcomer.top.y))
{
return CrossProduct(newcomer.bot,
resident.top, NextVertex(resident)->pt) <= 0;
}
else if (!IsMaxima(newcomer) && (newcomer.top.y > resident.top.y))
{
return CrossProduct(newcomer.bot,
newcomer.top, NextVertex(newcomer)->pt) >= 0;
}
int64_t y = newcomer.bot.y;
bool newcomerIsLeft = newcomer.is_left_bound;
if (resident.bot.y != y || resident.local_min->vertex->pt.y != y)
return newcomer.is_left_bound;
//resident must also have just been inserted
else if (resident.is_left_bound != newcomerIsLeft)
return newcomerIsLeft;
else if (CrossProduct(PrevPrevVertex(resident)->pt,
resident.bot, resident.top) == 0) return true;
else
//compare turning direction of the alternate bound
return (CrossProduct(PrevPrevVertex(resident)->pt,
newcomer.bot, PrevPrevVertex(newcomer)->pt) > 0) == newcomerIsLeft;
}
void ClipperBase::InsertLeftEdge(Active& e)
{
Active* e2;
if (!actives_)
{
e.prev_in_ael = nullptr;
e.next_in_ael = nullptr;
actives_ = &e;
}
else if (!IsValidAelOrder(*actives_, e))
{
e.prev_in_ael = nullptr;
e.next_in_ael = actives_;
actives_->prev_in_ael = &e;
actives_ = &e;
}
else
{
e2 = actives_;
while (e2->next_in_ael && IsValidAelOrder(*e2->next_in_ael, e))
e2 = e2->next_in_ael;
if (e2->join_with == JoinWith::Right)
e2 = e2->next_in_ael;
if (!e2) return; // should never happen and stops compiler warning :)
e.next_in_ael = e2->next_in_ael;
if (e2->next_in_ael) e2->next_in_ael->prev_in_ael = &e;
e.prev_in_ael = e2;
e2->next_in_ael = &e;
}
}
void InsertRightEdge(Active& e, Active& e2)
{
e2.next_in_ael = e.next_in_ael;
if (e.next_in_ael) e.next_in_ael->prev_in_ael = &e2;
e2.prev_in_ael = &e;
e.next_in_ael = &e2;
}
void ClipperBase::InsertLocalMinimaIntoAEL(int64_t bot_y)
{
LocalMinima* local_minima;
Active* left_bound, * right_bound;
//Add any local minima (if any) at BotY ...
//nb: horizontal local minima edges should contain locMin.vertex.prev
while (PopLocalMinima(bot_y, local_minima))
{
if ((local_minima->vertex->flags & VertexFlags::OpenStart) != VertexFlags::None)
{
left_bound = nullptr;
}
else
{
left_bound = new Active();
left_bound->bot = local_minima->vertex->pt;
left_bound->curr_x = left_bound->bot.x;
left_bound->wind_dx = -1;
left_bound->vertex_top = local_minima->vertex->prev; // ie descending
left_bound->top = left_bound->vertex_top->pt;
left_bound->local_min = local_minima;
SetDx(*left_bound);
}
if ((local_minima->vertex->flags & VertexFlags::OpenEnd) != VertexFlags::None)
{
right_bound = nullptr;
}
else
{
right_bound = new Active();
right_bound->bot = local_minima->vertex->pt;
right_bound->curr_x = right_bound->bot.x;
right_bound->wind_dx = 1;
right_bound->vertex_top = local_minima->vertex->next; // ie ascending
right_bound->top = right_bound->vertex_top->pt;
right_bound->local_min = local_minima;
SetDx(*right_bound);
}
//Currently LeftB is just the descending bound and RightB is the ascending.
//Now if the LeftB isn't on the left of RightB then we need swap them.
if (left_bound && right_bound)
{
if (IsHorizontal(*left_bound))
{
if (IsHeadingRightHorz(*left_bound)) SwapActives(left_bound, right_bound);
}
else if (IsHorizontal(*right_bound))
{
if (IsHeadingLeftHorz(*right_bound)) SwapActives(left_bound, right_bound);
}
else if (left_bound->dx < right_bound->dx)
SwapActives(left_bound, right_bound);
}
else if (!left_bound)
{
left_bound = right_bound;
right_bound = nullptr;
}
bool contributing;
left_bound->is_left_bound = true;
InsertLeftEdge(*left_bound);
if (IsOpen(*left_bound))
{
SetWindCountForOpenPathEdge(*left_bound);
contributing = IsContributingOpen(*left_bound);
}
else
{
SetWindCountForClosedPathEdge(*left_bound);
contributing = IsContributingClosed(*left_bound);
}
if (right_bound)
{
right_bound->is_left_bound = false;
right_bound->wind_cnt = left_bound->wind_cnt;
right_bound->wind_cnt2 = left_bound->wind_cnt2;
InsertRightEdge(*left_bound, *right_bound); ///////
if (contributing)
{
AddLocalMinPoly(*left_bound, *right_bound, left_bound->bot, true);
if (!IsHorizontal(*left_bound))
CheckJoinLeft(*left_bound, left_bound->bot);
}
while (right_bound->next_in_ael &&
IsValidAelOrder(*right_bound->next_in_ael, *right_bound))
{
IntersectEdges(*right_bound, *right_bound->next_in_ael, right_bound->bot);
SwapPositionsInAEL(*right_bound, *right_bound->next_in_ael);
}
if (IsHorizontal(*right_bound))
PushHorz(*right_bound);
else
{
CheckJoinRight(*right_bound, right_bound->bot);
InsertScanline(right_bound->top.y);
}
}
else if (contributing)
{
StartOpenPath(*left_bound, left_bound->bot);
}
if (IsHorizontal(*left_bound))
PushHorz(*left_bound);
else
InsertScanline(left_bound->top.y);
} // while (PopLocalMinima())
}
inline void ClipperBase::PushHorz(Active& e)
{
e.next_in_sel = (sel_ ? sel_ : nullptr);
sel_ = &e;
}
inline bool ClipperBase::PopHorz(Active*& e)
{
e = sel_;
if (!e) return false;
sel_ = sel_->next_in_sel;
return true;
}
OutPt* ClipperBase::AddLocalMinPoly(Active& e1, Active& e2,
const Point64& pt, bool is_new)
{
OutRec* outrec = NewOutRec();
e1.outrec = outrec;
e2.outrec = outrec;
if (IsOpen(e1))
{
outrec->owner = nullptr;
outrec->is_open = true;
if (e1.wind_dx > 0)
SetSides(*outrec, e1, e2);
else
SetSides(*outrec, e2, e1);
}
else
{
Active* prevHotEdge = GetPrevHotEdge(e1);
//e.windDx is the winding direction of the **input** paths
//and unrelated to the winding direction of output polygons.
//Output orientation is determined by e.outrec.frontE which is
//the ascending edge (see AddLocalMinPoly).
if (prevHotEdge)
{
if (using_polytree_)
SetOwner(outrec, prevHotEdge->outrec);
if (OutrecIsAscending(prevHotEdge) == is_new)
SetSides(*outrec, e2, e1);
else
SetSides(*outrec, e1, e2);
}
else
{
outrec->owner = nullptr;
if (is_new)
SetSides(*outrec, e1, e2);
else
SetSides(*outrec, e2, e1);
}
}
OutPt* op = new OutPt(pt, outrec);
outrec->pts = op;
return op;
}
OutPt* ClipperBase::AddLocalMaxPoly(Active& e1, Active& e2, const Point64& pt)
{
if (IsJoined(e1)) Split(e1, pt);
if (IsJoined(e2)) Split(e2, pt);
if (IsFront(e1) == IsFront(e2))
{
if (IsOpenEnd(e1))
SwapFrontBackSides(*e1.outrec);
else if (IsOpenEnd(e2))
SwapFrontBackSides(*e2.outrec);
else
{
succeeded_ = false;
return nullptr;
}
}
OutPt* result = AddOutPt(e1, pt);
if (e1.outrec == e2.outrec)
{
OutRec& outrec = *e1.outrec;
outrec.pts = result;
if (using_polytree_)
{
Active* e = GetPrevHotEdge(e1);
if (!e)
outrec.owner = nullptr;
else
SetOwner(&outrec, e->outrec);
// nb: outRec.owner here is likely NOT the real
// owner but this will be checked in DeepCheckOwner()
}
UncoupleOutRec(e1);
result = outrec.pts;
if (outrec.owner && !outrec.owner->front_edge)
outrec.owner = GetRealOutRec(outrec.owner);
}
//and to preserve the winding orientation of outrec ...
else if (IsOpen(e1))
{
if (e1.wind_dx < 0)
JoinOutrecPaths(e1, e2);
else
JoinOutrecPaths(e2, e1);
}
else if (e1.outrec->idx < e2.outrec->idx)
JoinOutrecPaths(e1, e2);
else
JoinOutrecPaths(e2, e1);
return result;
}
void ClipperBase::JoinOutrecPaths(Active& e1, Active& e2)
{
//join e2 outrec path onto e1 outrec path and then delete e2 outrec path
//pointers. (NB Only very rarely do the joining ends share the same coords.)
OutPt* p1_st = e1.outrec->pts;
OutPt* p2_st = e2.outrec->pts;
OutPt* p1_end = p1_st->next;
OutPt* p2_end = p2_st->next;
if (IsFront(e1))
{
p2_end->prev = p1_st;
p1_st->next = p2_end;
p2_st->next = p1_end;
p1_end->prev = p2_st;
e1.outrec->pts = p2_st;
e1.outrec->front_edge = e2.outrec->front_edge;
if (e1.outrec->front_edge)
e1.outrec->front_edge->outrec = e1.outrec;
}
else
{
p1_end->prev = p2_st;
p2_st->next = p1_end;
p1_st->next = p2_end;
p2_end->prev = p1_st;
e1.outrec->back_edge = e2.outrec->back_edge;
if (e1.outrec->back_edge)
e1.outrec->back_edge->outrec = e1.outrec;
}
//after joining, the e2.OutRec must contains no vertices ...
e2.outrec->front_edge = nullptr;
e2.outrec->back_edge = nullptr;
e2.outrec->pts = nullptr;
SetOwner(e2.outrec, e1.outrec);
if (IsOpenEnd(e1))
{
e2.outrec->pts = e1.outrec->pts;
e1.outrec->pts = nullptr;
}
//and e1 and e2 are maxima and are about to be dropped from the Actives list.
e1.outrec = nullptr;
e2.outrec = nullptr;
}
OutRec* ClipperBase::NewOutRec()
{
OutRec* result = new OutRec();
result->idx = outrec_list_.size();
outrec_list_.push_back(result);
result->pts = nullptr;
result->owner = nullptr;
result->polypath = nullptr;
result->is_open = false;
return result;
}
OutPt* ClipperBase::AddOutPt(const Active& e, const Point64& pt)
{
OutPt* new_op = nullptr;
//Outrec.OutPts: a circular doubly-linked-list of POutPt where ...
//op_front[.Prev]* ~~~> op_back & op_back == op_front.Next
OutRec* outrec = e.outrec;
bool to_front = IsFront(e);
OutPt* op_front = outrec->pts;
OutPt* op_back = op_front->next;
if (to_front)
{
if (pt == op_front->pt)
return op_front;
}
else if (pt == op_back->pt)
return op_back;
new_op = new OutPt(pt, outrec);
op_back->prev = new_op;
new_op->prev = op_front;
new_op->next = op_back;
op_front->next = new_op;
if (to_front) outrec->pts = new_op;
return new_op;
}
void ClipperBase::CleanCollinear(OutRec* outrec)
{
outrec = GetRealOutRec(outrec);
if (!outrec || outrec->is_open) return;
if (!IsValidClosedPath(outrec->pts))
{
DisposeOutPts(outrec);
return;
}
OutPt* startOp = outrec->pts, * op2 = startOp;
for (; ; )
{
//NB if preserveCollinear == true, then only remove 180 deg. spikes
if ((CrossProduct(op2->prev->pt, op2->pt, op2->next->pt) == 0) &&
(op2->pt == op2->prev->pt ||
op2->pt == op2->next->pt || !PreserveCollinear ||
DotProduct(op2->prev->pt, op2->pt, op2->next->pt) < 0))
{
if (op2 == outrec->pts) outrec->pts = op2->prev;
op2 = DisposeOutPt(op2);
if (!IsValidClosedPath(op2))
{
DisposeOutPts(outrec);
return;
}
startOp = op2;
continue;
}
op2 = op2->next;
if (op2 == startOp) break;
}
FixSelfIntersects(outrec);
}
void ClipperBase::DoSplitOp(OutRec* outrec, OutPt* splitOp)
{
// splitOp.prev -> splitOp &&
// splitOp.next -> splitOp.next.next are intersecting
OutPt* prevOp = splitOp->prev;
OutPt* nextNextOp = splitOp->next->next;
outrec->pts = prevOp;
Point64 ip;
GetIntersectPoint(prevOp->pt, splitOp->pt,
splitOp->next->pt, nextNextOp->pt, ip);
#ifdef USINGZ
if (zCallback_) zCallback_(prevOp->pt, splitOp->pt,
splitOp->next->pt, nextNextOp->pt, ip);
#endif
double area1 = Area(outrec->pts);
double absArea1 = std::fabs(area1);
if (absArea1 < 2)
{
DisposeOutPts(outrec);
return;
}
// nb: area1 is the path's area *before* splitting, whereas area2 is
// the area of the triangle containing splitOp & splitOp.next.
// So the only way for these areas to have the same sign is if
// the split triangle is larger than the path containing prevOp or
// if there's more than one self=intersection.
double area2 = AreaTriangle(ip, splitOp->pt, splitOp->next->pt);
double absArea2 = std::fabs(area2);
// de-link splitOp and splitOp.next from the path
// while inserting the intersection point
if (ip == prevOp->pt || ip == nextNextOp->pt)
{
nextNextOp->prev = prevOp;
prevOp->next = nextNextOp;
}
else
{
OutPt* newOp2 = new OutPt(ip, prevOp->outrec);
newOp2->prev = prevOp;
newOp2->next = nextNextOp;
nextNextOp->prev = newOp2;
prevOp->next = newOp2;
}
if (absArea2 >= 1 &&
(absArea2 > absArea1 || (area2 > 0) == (area1 > 0)))
{
OutRec* newOr = NewOutRec();
newOr->owner = outrec->owner;
if (using_polytree_)
{
if (!outrec->splits) outrec->splits = new OutRecList();
outrec->splits->push_back(newOr);
}
splitOp->outrec = newOr;
splitOp->next->outrec = newOr;
OutPt* newOp = new OutPt(ip, newOr);
newOp->prev = splitOp->next;
newOp->next = splitOp;
newOr->pts = newOp;
splitOp->prev = newOp;
splitOp->next->next = newOp;
}
else
{
delete splitOp->next;
delete splitOp;
}
}
void ClipperBase::FixSelfIntersects(OutRec* outrec)
{
OutPt* op2 = outrec->pts;
for (; ; )
{
// triangles can't self-intersect
if (op2->prev == op2->next->next) break;
if (SegmentsIntersect(op2->prev->pt,
op2->pt, op2->next->pt, op2->next->next->pt))
{
if (op2 == outrec->pts || op2->next == outrec->pts)
outrec->pts = outrec->pts->prev;
DoSplitOp(outrec, op2);
if (!outrec->pts) break;
op2 = outrec->pts;
continue;
}
else
op2 = op2->next;
if (op2 == outrec->pts) break;
}
}
inline void UpdateOutrecOwner(OutRec* outrec)
{
OutPt* opCurr = outrec->pts;
for (; ; )
{
opCurr->outrec = outrec;
opCurr = opCurr->next;
if (opCurr == outrec->pts) return;
}
}
OutPt* ClipperBase::StartOpenPath(Active& e, const Point64& pt)
{
OutRec* outrec = NewOutRec();
outrec->is_open = true;
if (e.wind_dx > 0)
{
outrec->front_edge = &e;
outrec->back_edge = nullptr;
}
else
{
outrec->front_edge = nullptr;
outrec->back_edge = &e;
}
e.outrec = outrec;
OutPt* op = new OutPt(pt, outrec);
outrec->pts = op;
return op;
}
inline void ClipperBase::UpdateEdgeIntoAEL(Active* e)
{
e->bot = e->top;
e->vertex_top = NextVertex(*e);
e->top = e->vertex_top->pt;
e->curr_x = e->bot.x;
SetDx(*e);
if (IsJoined(*e)) Split(*e, e->bot);
if (IsHorizontal(*e)) return;
InsertScanline(e->top.y);
CheckJoinLeft(*e, e->bot);
CheckJoinRight(*e, e->bot, true); // (#500)
}
Active* FindEdgeWithMatchingLocMin(Active* e)
{
Active* result = e->next_in_ael;
while (result)
{
if (result->local_min == e->local_min) return result;
else if (!IsHorizontal(*result) && e->bot != result->bot) result = nullptr;
else result = result->next_in_ael;
}
result = e->prev_in_ael;
while (result)
{
if (result->local_min == e->local_min) return result;
else if (!IsHorizontal(*result) && e->bot != result->bot) return nullptr;
else result = result->prev_in_ael;
}
return result;
}
OutPt* ClipperBase::IntersectEdges(Active& e1, Active& e2, const Point64& pt)
{
//MANAGE OPEN PATH INTERSECTIONS SEPARATELY ...
if (has_open_paths_ && (IsOpen(e1) || IsOpen(e2)))
{
if (IsOpen(e1) && IsOpen(e2)) return nullptr;
Active* edge_o, * edge_c;
if (IsOpen(e1))
{
edge_o = &e1;
edge_c = &e2;
}
else
{
edge_o = &e2;
edge_c = &e1;
}
if (IsJoined(*edge_c)) Split(*edge_c, pt); // needed for safety
if (abs(edge_c->wind_cnt) != 1) return nullptr;
switch (cliptype_)
{
case ClipType::Union:
if (!IsHotEdge(*edge_c)) return nullptr;
break;
default:
if (edge_c->local_min->polytype == PathType::Subject)
return nullptr;
}
switch (fillrule_)
{
case FillRule::Positive: if (edge_c->wind_cnt != 1) return nullptr; break;
case FillRule::Negative: if (edge_c->wind_cnt != -1) return nullptr; break;
default: if (std::abs(edge_c->wind_cnt) != 1) return nullptr; break;
}
//toggle contribution ...
if (IsHotEdge(*edge_o))
{
OutPt* resultOp = AddOutPt(*edge_o, pt);
#ifdef USINGZ
if (zCallback_) SetZ(e1, e2, resultOp->pt);
#endif
if (IsFront(*edge_o)) edge_o->outrec->front_edge = nullptr;
else edge_o->outrec->back_edge = nullptr;
edge_o->outrec = nullptr;
return resultOp;
}
//horizontal edges can pass under open paths at a LocMins
else if (pt == edge_o->local_min->vertex->pt &&
!IsOpenEnd(*edge_o->local_min->vertex))
{
//find the other side of the LocMin and
//if it's 'hot' join up with it ...
Active* e3 = FindEdgeWithMatchingLocMin(edge_o);
if (e3 && IsHotEdge(*e3))
{
edge_o->outrec = e3->outrec;
if (edge_o->wind_dx > 0)
SetSides(*e3->outrec, *edge_o, *e3);
else
SetSides(*e3->outrec, *e3, *edge_o);
return e3->outrec->pts;
}
else
return StartOpenPath(*edge_o, pt);
}
else
return StartOpenPath(*edge_o, pt);
}
//MANAGING CLOSED PATHS FROM HERE ON
if (IsJoined(e1)) Split(e1, pt);
if (IsJoined(e2)) Split(e2, pt);
//UPDATE WINDING COUNTS...
int old_e1_windcnt, old_e2_windcnt;
if (e1.local_min->polytype == e2.local_min->polytype)
{
if (fillrule_ == FillRule::EvenOdd)
{
old_e1_windcnt = e1.wind_cnt;
e1.wind_cnt = e2.wind_cnt;
e2.wind_cnt = old_e1_windcnt;
}
else
{
if (e1.wind_cnt + e2.wind_dx == 0)
e1.wind_cnt = -e1.wind_cnt;
else
e1.wind_cnt += e2.wind_dx;
if (e2.wind_cnt - e1.wind_dx == 0)
e2.wind_cnt = -e2.wind_cnt;
else
e2.wind_cnt -= e1.wind_dx;
}
}
else
{
if (fillrule_ != FillRule::EvenOdd)
{
e1.wind_cnt2 += e2.wind_dx;
e2.wind_cnt2 -= e1.wind_dx;
}
else
{
e1.wind_cnt2 = (e1.wind_cnt2 == 0 ? 1 : 0);
e2.wind_cnt2 = (e2.wind_cnt2 == 0 ? 1 : 0);
}
}
switch (fillrule_)
{
case FillRule::EvenOdd:
case FillRule::NonZero:
old_e1_windcnt = abs(e1.wind_cnt);
old_e2_windcnt = abs(e2.wind_cnt);
break;
default:
if (fillrule_ == fillpos)
{
old_e1_windcnt = e1.wind_cnt;
old_e2_windcnt = e2.wind_cnt;
}
else
{
old_e1_windcnt = -e1.wind_cnt;
old_e2_windcnt = -e2.wind_cnt;
}
break;
}
const bool e1_windcnt_in_01 = old_e1_windcnt == 0 || old_e1_windcnt == 1;
const bool e2_windcnt_in_01 = old_e2_windcnt == 0 || old_e2_windcnt == 1;
if ((!IsHotEdge(e1) && !e1_windcnt_in_01) || (!IsHotEdge(e2) && !e2_windcnt_in_01))
{
return nullptr;
}
//NOW PROCESS THE INTERSECTION ...
OutPt* resultOp = nullptr;
//if both edges are 'hot' ...
if (IsHotEdge(e1) && IsHotEdge(e2))
{
if ((old_e1_windcnt != 0 && old_e1_windcnt != 1) || (old_e2_windcnt != 0 && old_e2_windcnt != 1) ||
(e1.local_min->polytype != e2.local_min->polytype && cliptype_ != ClipType::Xor))
{
resultOp = AddLocalMaxPoly(e1, e2, pt);
#ifdef USINGZ
if (zCallback_ && resultOp) SetZ(e1, e2, resultOp->pt);
#endif
}
else if (IsFront(e1) || (e1.outrec == e2.outrec))
{
//this 'else if' condition isn't strictly needed but
//it's sensible to split polygons that ony touch at
//a common vertex (not at common edges).
resultOp = AddLocalMaxPoly(e1, e2, pt);
#ifdef USINGZ
OutPt* op2 = AddLocalMinPoly(e1, e2, pt);
if (zCallback_ && resultOp) SetZ(e1, e2, resultOp->pt);
if (zCallback_) SetZ(e1, e2, op2->pt);
#else
AddLocalMinPoly(e1, e2, pt);
#endif
}
else
{
resultOp = AddOutPt(e1, pt);
#ifdef USINGZ
OutPt* op2 = AddOutPt(e2, pt);
if (zCallback_)
{
SetZ(e1, e2, resultOp->pt);
SetZ(e1, e2, op2->pt);
}
#else
AddOutPt(e2, pt);
#endif
SwapOutrecs(e1, e2);
}
}
else if (IsHotEdge(e1))
{
resultOp = AddOutPt(e1, pt);
#ifdef USINGZ
if (zCallback_) SetZ(e1, e2, resultOp->pt);
#endif
SwapOutrecs(e1, e2);
}
else if (IsHotEdge(e2))
{
resultOp = AddOutPt(e2, pt);
#ifdef USINGZ
if (zCallback_) SetZ(e1, e2, resultOp->pt);
#endif
SwapOutrecs(e1, e2);
}
else
{
int64_t e1Wc2, e2Wc2;
switch (fillrule_)
{
case FillRule::EvenOdd:
case FillRule::NonZero:
e1Wc2 = abs(e1.wind_cnt2);
e2Wc2 = abs(e2.wind_cnt2);
break;
default:
if (fillrule_ == fillpos)
{
e1Wc2 = e1.wind_cnt2;
e2Wc2 = e2.wind_cnt2;
}
else
{
e1Wc2 = -e1.wind_cnt2;
e2Wc2 = -e2.wind_cnt2;
}
break;
}
if (!IsSamePolyType(e1, e2))
{
resultOp = AddLocalMinPoly(e1, e2, pt, false);
#ifdef USINGZ
if (zCallback_) SetZ(e1, e2, resultOp->pt);
#endif
}
else if (old_e1_windcnt == 1 && old_e2_windcnt == 1)
{
resultOp = nullptr;
switch (cliptype_)
{
case ClipType::Union:
if (e1Wc2 <= 0 && e2Wc2 <= 0)
resultOp = AddLocalMinPoly(e1, e2, pt, false);
break;
case ClipType::Difference:
if (((GetPolyType(e1) == PathType::Clip) && (e1Wc2 > 0) && (e2Wc2 > 0)) ||
((GetPolyType(e1) == PathType::Subject) && (e1Wc2 <= 0) && (e2Wc2 <= 0)))
{
resultOp = AddLocalMinPoly(e1, e2, pt, false);
}
break;
case ClipType::Xor:
resultOp = AddLocalMinPoly(e1, e2, pt, false);
break;
default:
if (e1Wc2 > 0 && e2Wc2 > 0)
resultOp = AddLocalMinPoly(e1, e2, pt, false);
break;
}
#ifdef USINGZ
if (resultOp && zCallback_) SetZ(e1, e2, resultOp->pt);
#endif
}
}
return resultOp;
}
inline void ClipperBase::DeleteFromAEL(Active& e)
{
Active* prev = e.prev_in_ael;
Active* next = e.next_in_ael;
if (!prev && !next && (&e != actives_)) return; // already deleted
if (prev)
prev->next_in_ael = next;
else
actives_ = next;
if (next) next->prev_in_ael = prev;
delete& e;
}
inline void ClipperBase::AdjustCurrXAndCopyToSEL(const int64_t top_y)
{
Active* e = actives_;
sel_ = e;
while (e)
{
e->prev_in_sel = e->prev_in_ael;
e->next_in_sel = e->next_in_ael;
e->jump = e->next_in_sel;
if (e->join_with == JoinWith::Left)
e->curr_x = e->prev_in_ael->curr_x; // also avoids complications
else
e->curr_x = TopX(*e, top_y);
e = e->next_in_ael;
}
}
bool ClipperBase::ExecuteInternal(ClipType ct, FillRule fillrule, bool use_polytrees)
{
cliptype_ = ct;
fillrule_ = fillrule;
using_polytree_ = use_polytrees;
Reset();
int64_t y;
if (ct == ClipType::None || !PopScanline(y)) return true;
while (succeeded_)
{
InsertLocalMinimaIntoAEL(y);
Active* e;
while (PopHorz(e)) DoHorizontal(*e);
if (horz_seg_list_.size() > 0)
{
ConvertHorzSegsToJoins();
horz_seg_list_.clear();
}
bot_y_ = y; // bot_y_ == bottom of scanbeam
if (!PopScanline(y)) break; // y new top of scanbeam
DoIntersections(y);
DoTopOfScanbeam(y);
while (PopHorz(e)) DoHorizontal(*e);
}
if (succeeded_) ProcessHorzJoins();
return succeeded_;
}
inline void FixOutRecPts(OutRec* outrec)
{
OutPt* op = outrec->pts;
do {
op->outrec = outrec;
op = op->next;
} while (op != outrec->pts);
}
inline Rect64 GetBounds(OutPt* op)
{
Rect64 result(op->pt.x, op->pt.y, op->pt.x, op->pt.y);
OutPt* op2 = op->next;
while (op2 != op)
{
if (op2->pt.x < result.left) result.left = op2->pt.x;
else if (op2->pt.x > result.right) result.right = op2->pt.x;
if (op2->pt.y < result.top) result.top = op2->pt.y;
else if (op2->pt.y > result.bottom) result.bottom = op2->pt.y;
op2 = op2->next;
}
return result;
}
static PointInPolygonResult PointInOpPolygon(const Point64& pt, OutPt* op)
{
if (op == op->next || op->prev == op->next)
return PointInPolygonResult::IsOutside;
OutPt* op2 = op;
do
{
if (op->pt.y != pt.y) break;
op = op->next;
} while (op != op2);
if (op->pt.y == pt.y) // not a proper polygon
return PointInPolygonResult::IsOutside;
bool is_above = op->pt.y < pt.y, starting_above = is_above;
int val = 0;
op2 = op->next;
while (op2 != op)
{
if (is_above)
while (op2 != op && op2->pt.y < pt.y) op2 = op2->next;
else
while (op2 != op && op2->pt.y > pt.y) op2 = op2->next;
if (op2 == op) break;
// must have touched or crossed the pt.Y horizonal
// and this must happen an even number of times
if (op2->pt.y == pt.y) // touching the horizontal
{
if (op2->pt.x == pt.x || (op2->pt.y == op2->prev->pt.y &&
(pt.x < op2->prev->pt.x) != (pt.x < op2->pt.x)))
return PointInPolygonResult::IsOn;
op2 = op2->next;
if (op2 == op) break;
continue;
}
if (pt.x < op2->pt.x && pt.x < op2->prev->pt.x);
// do nothing because
// we're only interested in edges crossing on the left
else if ((pt.x > op2->prev->pt.x && pt.x > op2->pt.x))
val = 1 - val; // toggle val
else
{
double d = CrossProduct(op2->prev->pt, op2->pt, pt);
if (d == 0) return PointInPolygonResult::IsOn;
if ((d < 0) == is_above) val = 1 - val;
}
is_above = !is_above;
op2 = op2->next;
}
if (is_above != starting_above)
{
double d = CrossProduct(op2->prev->pt, op2->pt, pt);
if (d == 0) return PointInPolygonResult::IsOn;
if ((d < 0) == is_above) val = 1 - val;
}
if (val == 0) return PointInPolygonResult::IsOutside;
else return PointInPolygonResult::IsInside;
}
inline bool Path1InsidePath2(OutPt* op1, OutPt* op2)
{
// we need to make some accommodation for rounding errors
// so we won't jump if the first vertex is found outside
int outside_cnt = 0;
OutPt* op = op1;
do
{
PointInPolygonResult result = PointInOpPolygon(op->pt, op2);
if (result == PointInPolygonResult::IsOutside) ++outside_cnt;
else if (result == PointInPolygonResult::IsInside) --outside_cnt;
op = op->next;
} while (op != op1 && std::abs(outside_cnt) < 2);
if (std::abs(outside_cnt) > 1) return (outside_cnt < 0);
// since path1's location is still equivocal, check its midpoint
Point64 mp = GetBounds(op).MidPoint();
return PointInOpPolygon(mp, op2) == PointInPolygonResult::IsInside;
}
inline bool SetHorzSegHeadingForward(HorzSegment& hs, OutPt* opP, OutPt* opN)
{
if (opP->pt.x == opN->pt.x) return false;
if (opP->pt.x < opN->pt.x)
{
hs.left_op = opP;
hs.right_op = opN;
hs.left_to_right = true;
}
else
{
hs.left_op = opN;
hs.right_op = opP;
hs.left_to_right = false;
}
return true;
}
inline bool UpdateHorzSegment(HorzSegment& hs)
{
OutPt* op = hs.left_op;
OutRec* outrec = GetRealOutRec(op->outrec);
bool outrecHasEdges = outrec->front_edge;
int64_t curr_y = op->pt.y;
OutPt* opP = op, * opN = op;
if (outrecHasEdges)
{
OutPt* opA = outrec->pts, * opZ = opA->next;
while (opP != opZ && opP->prev->pt.y == curr_y)
opP = opP->prev;
while (opN != opA && opN->next->pt.y == curr_y)
opN = opN->next;
}
else
{
while (opP->prev != opN && opP->prev->pt.y == curr_y)
opP = opP->prev;
while (opN->next != opP && opN->next->pt.y == curr_y)
opN = opN->next;
}
bool result =
SetHorzSegHeadingForward(hs, opP, opN) &&
!hs.left_op->horz;
if (result)
hs.left_op->horz = &hs;
else
hs.right_op = nullptr; // (for sorting)
return result;
}
void ClipperBase::ConvertHorzSegsToJoins()
{
auto j = std::count_if(horz_seg_list_.begin(),
horz_seg_list_.end(),
[](HorzSegment& hs) { return UpdateHorzSegment(hs); });
if (j < 2) return;
std::sort(horz_seg_list_.begin(), horz_seg_list_.end(), HorzSegSorter());
HorzSegmentList::iterator hs1 = horz_seg_list_.begin(), hs2;
HorzSegmentList::iterator hs_end = hs1 +j;
HorzSegmentList::iterator hs_end1 = hs_end - 1;
for (; hs1 != hs_end1; ++hs1)
{
for (hs2 = hs1 + 1; hs2 != hs_end; ++hs2)
{
if (hs2->left_op->pt.x >= hs1->right_op->pt.x) break;
if (hs2->left_to_right == hs1->left_to_right ||
(hs2->right_op->pt.x <= hs1->left_op->pt.x)) continue;
int64_t curr_y = hs1->left_op->pt.y;
if (hs1->left_to_right)
{
while (hs1->left_op->next->pt.y == curr_y &&
hs1->left_op->next->pt.x <= hs2->left_op->pt.x)
hs1->left_op = hs1->left_op->next;
while (hs2->left_op->prev->pt.y == curr_y &&
hs2->left_op->prev->pt.x <= hs1->left_op->pt.x)
hs2->left_op = hs2->left_op->prev;
HorzJoin join = HorzJoin(
DuplicateOp(hs1->left_op, true),
DuplicateOp(hs2->left_op, false));
horz_join_list_.push_back(join);
}
else
{
while (hs1->left_op->prev->pt.y == curr_y &&
hs1->left_op->prev->pt.x <= hs2->left_op->pt.x)
hs1->left_op = hs1->left_op->prev;
while (hs2->left_op->next->pt.y == curr_y &&
hs2->left_op->next->pt.x <= hs1->left_op->pt.x)
hs2->left_op = hs2->left_op->next;
HorzJoin join = HorzJoin(
DuplicateOp(hs2->left_op, true),
DuplicateOp(hs1->left_op, false));
horz_join_list_.push_back(join);
}
}
}
}
void ClipperBase::ProcessHorzJoins()
{
for (const HorzJoin& j : horz_join_list_)
{
OutRec* or1 = GetRealOutRec(j.op1->outrec);
OutRec* or2 = GetRealOutRec(j.op2->outrec);
OutPt* op1b = j.op1->next;
OutPt* op2b = j.op2->prev;
j.op1->next = j.op2;
j.op2->prev = j.op1;
op1b->prev = op2b;
op2b->next = op1b;
if (or1 == or2)
{
or2 = new OutRec();
or2->pts = op1b;
FixOutRecPts(or2);
if (or1->pts->outrec == or2)
{
or1->pts = j.op1;
or1->pts->outrec = or1;
}
if (using_polytree_)
{
if (Path1InsidePath2(or2->pts, or1->pts))
SetOwner(or2, or1);
else if (Path1InsidePath2(or1->pts, or2->pts))
SetOwner(or1, or2);
else
{
if (!or1->splits) or1->splits = new OutRecList();
or1->splits->push_back(or2); //(#498)
or2->owner = or1;
}
}
else
or2->owner = or1;
outrec_list_.push_back(or2);
}
else
{
or2->pts = nullptr;
if (using_polytree_)
SetOwner(or2, or1);
else
or2->owner = or1;
}
}
}
void ClipperBase::DoIntersections(const int64_t top_y)
{
if (BuildIntersectList(top_y))
{
ProcessIntersectList();
intersect_nodes_.clear();
}
}
void ClipperBase::AddNewIntersectNode(Active& e1, Active& e2, int64_t top_y)
{
Point64 ip;
if (!GetIntersectPoint(e1.bot, e1.top, e2.bot, e2.top, ip))
ip = Point64(e1.curr_x, top_y); //parallel edges
//rounding errors can occasionally place the calculated intersection
//point either below or above the scanbeam, so check and correct ...
if (ip.y > bot_y_ || ip.y < top_y)
{
double abs_dx1 = std::fabs(e1.dx);
double abs_dx2 = std::fabs(e2.dx);
if (abs_dx1 > 100 && abs_dx2 > 100)
{
if (abs_dx1 > abs_dx2)
ip = GetClosestPointOnSegment(ip, e1.bot, e1.top);
else
ip = GetClosestPointOnSegment(ip, e2.bot, e2.top);
}
else if (abs_dx1 > 100)
ip = GetClosestPointOnSegment(ip, e1.bot, e1.top);
else if (abs_dx2 > 100)
ip = GetClosestPointOnSegment(ip, e2.bot, e2.top);
else
{
if (ip.y < top_y) ip.y = top_y;
else ip.y = bot_y_;
if (abs_dx1 < abs_dx2) ip.x = TopX(e1, ip.y);
else ip.x = TopX(e2, ip.y);
}
}
intersect_nodes_.push_back(IntersectNode(&e1, &e2, ip));
}
bool ClipperBase::BuildIntersectList(const int64_t top_y)
{
if (!actives_ || !actives_->next_in_ael) return false;
//Calculate edge positions at the top of the current scanbeam, and from this
//we will determine the intersections required to reach these new positions.
AdjustCurrXAndCopyToSEL(top_y);
//Find all edge intersections in the current scanbeam using a stable merge
//sort that ensures only adjacent edges are intersecting. Intersect info is
//stored in FIntersectList ready to be processed in ProcessIntersectList.
//Re merge sorts see https://stackoverflow.com/a/46319131/359538
Active* left = sel_, * right, * l_end, * r_end, * curr_base, * tmp;
while (left && left->jump)
{
Active* prev_base = nullptr;
while (left && left->jump)
{
curr_base = left;
right = left->jump;
l_end = right;
r_end = right->jump;
left->jump = r_end;
while (left != l_end && right != r_end)
{
if (right->curr_x < left->curr_x)
{
tmp = right->prev_in_sel;
for (; ; )
{
AddNewIntersectNode(*tmp, *right, top_y);
if (tmp == left) break;
tmp = tmp->prev_in_sel;
}
tmp = right;
right = ExtractFromSEL(tmp);
l_end = right;
Insert1Before2InSEL(tmp, left);
if (left == curr_base)
{
curr_base = tmp;
curr_base->jump = r_end;
if (!prev_base) sel_ = curr_base;
else prev_base->jump = curr_base;
}
}
else left = left->next_in_sel;
}
prev_base = curr_base;
left = r_end;
}
left = sel_;
}
return intersect_nodes_.size() > 0;
}
void ClipperBase::ProcessIntersectList()
{
//We now have a list of intersections required so that edges will be
//correctly positioned at the top of the scanbeam. However, it's important
//that edge intersections are processed from the bottom up, but it's also
//crucial that intersections only occur between adjacent edges.
//First we do a quicksort so intersections proceed in a bottom up order ...
std::sort(intersect_nodes_.begin(), intersect_nodes_.end(), IntersectListSort);
//Now as we process these intersections, we must sometimes adjust the order
//to ensure that intersecting edges are always adjacent ...
IntersectNodeList::iterator node_iter, node_iter2;
for (node_iter = intersect_nodes_.begin();
node_iter != intersect_nodes_.end(); ++node_iter)
{
if (!EdgesAdjacentInAEL(*node_iter))
{
node_iter2 = node_iter + 1;
while (!EdgesAdjacentInAEL(*node_iter2)) ++node_iter2;
std::swap(*node_iter, *node_iter2);
}
IntersectNode& node = *node_iter;
IntersectEdges(*node.edge1, *node.edge2, node.pt);
SwapPositionsInAEL(*node.edge1, *node.edge2);
node.edge1->curr_x = node.pt.x;
node.edge2->curr_x = node.pt.x;
CheckJoinLeft(*node.edge2, node.pt, true);
CheckJoinRight(*node.edge1, node.pt, true);
}
}
void ClipperBase::SwapPositionsInAEL(Active& e1, Active& e2)
{
//preconditon: e1 must be immediately to the left of e2
Active* next = e2.next_in_ael;
if (next) next->prev_in_ael = &e1;
Active* prev = e1.prev_in_ael;
if (prev) prev->next_in_ael = &e2;
e2.prev_in_ael = prev;
e2.next_in_ael = &e1;
e1.prev_in_ael = &e2;
e1.next_in_ael = next;
if (!e2.prev_in_ael) actives_ = &e2;
}
inline OutPt* GetLastOp(const Active& hot_edge)
{
OutRec* outrec = hot_edge.outrec;
OutPt* result = outrec->pts;
if (&hot_edge != outrec->front_edge)
result = result->next;
return result;
}
void ClipperBase::AddTrialHorzJoin(OutPt* op)
{
if (op->outrec->is_open) return;
horz_seg_list_.push_back(HorzSegment(op));
}
bool ClipperBase::ResetHorzDirection(const Active& horz,
const Vertex* max_vertex, int64_t& horz_left, int64_t& horz_right)
{
if (horz.bot.x == horz.top.x)
{
//the horizontal edge is going nowhere ...
horz_left = horz.curr_x;
horz_right = horz.curr_x;
Active* e = horz.next_in_ael;
while (e && e->vertex_top != max_vertex) e = e->next_in_ael;
return e != nullptr;
}
else if (horz.curr_x < horz.top.x)
{
horz_left = horz.curr_x;
horz_right = horz.top.x;
return true;
}
else
{
horz_left = horz.top.x;
horz_right = horz.curr_x;
return false; // right to left
}
}
inline bool HorzIsSpike(const Active& horzEdge)
{
Point64 nextPt = NextVertex(horzEdge)->pt;
return (nextPt.y == horzEdge.bot.y) &&
(horzEdge.bot.x < horzEdge.top.x) != (horzEdge.top.x < nextPt.x);
}
inline void TrimHorz(Active& horzEdge, bool preserveCollinear)
{
bool wasTrimmed = false;
Point64 pt = NextVertex(horzEdge)->pt;
while (pt.y == horzEdge.top.y)
{
//always trim 180 deg. spikes (in closed paths)
//but otherwise break if preserveCollinear = true
if (preserveCollinear &&
((pt.x < horzEdge.top.x) != (horzEdge.bot.x < horzEdge.top.x)))
break;
horzEdge.vertex_top = NextVertex(horzEdge);
horzEdge.top = pt;
wasTrimmed = true;
if (IsMaxima(horzEdge)) break;
pt = NextVertex(horzEdge)->pt;
}
if (wasTrimmed) SetDx(horzEdge); // +/-infinity
}
void ClipperBase::DoHorizontal(Active& horz)
/*******************************************************************************
* Notes: Horizontal edges (HEs) at scanline intersections (ie at the top or *
* bottom of a scanbeam) are processed as if layered.The order in which HEs *
* are processed doesn't matter. HEs intersect with the bottom vertices of *
* other HEs[#] and with non-horizontal edges [*]. Once these intersections *
* are completed, intermediate HEs are 'promoted' to the next edge in their *
* bounds, and they in turn may be intersected[%] by other HEs. *
* *
* eg: 3 horizontals at a scanline: / | / / *
* | / | (HE3)o ========%========== o *
* o ======= o(HE2) / | / / *
* o ============#=========*======*========#=========o (HE1) *
* / | / | / *
*******************************************************************************/
{
Point64 pt;
bool horzIsOpen = IsOpen(horz);
int64_t y = horz.bot.y;
Vertex* vertex_max;
if (horzIsOpen)
vertex_max = GetCurrYMaximaVertex_Open(horz);
else
vertex_max = GetCurrYMaximaVertex(horz);
// remove 180 deg.spikes and also simplify
// consecutive horizontals when PreserveCollinear = true
if (vertex_max && !horzIsOpen && vertex_max != horz.vertex_top)
TrimHorz(horz, PreserveCollinear);
int64_t horz_left, horz_right;
bool is_left_to_right =
ResetHorzDirection(horz, vertex_max, horz_left, horz_right);
if (IsHotEdge(horz))
{
#ifdef USINGZ
OutPt* op = AddOutPt(horz, Point64(horz.curr_x, y, horz.bot.z));
#else
OutPt* op = AddOutPt(horz, Point64(horz.curr_x, y));
#endif
AddTrialHorzJoin(op);
}
OutRec* currHorzOutrec = horz.outrec;
while (true) // loop through consec. horizontal edges
{
Active* e;
if (is_left_to_right) e = horz.next_in_ael;
else e = horz.prev_in_ael;
while (e)
{
if (e->vertex_top == vertex_max)
{
if (IsHotEdge(horz) && IsJoined(*e))
Split(*e, e->top);
if (IsHotEdge(horz))
{
while (horz.vertex_top != vertex_max)
{
AddOutPt(horz, horz.top);
UpdateEdgeIntoAEL(&horz);
}
if (is_left_to_right)
AddLocalMaxPoly(horz, *e, horz.top);
else
AddLocalMaxPoly(*e, horz, horz.top);
}
DeleteFromAEL(*e);
DeleteFromAEL(horz);
return;
}
//if horzEdge is a maxima, keep going until we reach
//its maxima pair, otherwise check for break conditions
if (vertex_max != horz.vertex_top || IsOpenEnd(horz))
{
//otherwise stop when 'ae' is beyond the end of the horizontal line
if ((is_left_to_right && e->curr_x > horz_right) ||
(!is_left_to_right && e->curr_x < horz_left)) break;
if (e->curr_x == horz.top.x && !IsHorizontal(*e))
{
pt = NextVertex(horz)->pt;
if (is_left_to_right)
{
//with open paths we'll only break once past horz's end
if (IsOpen(*e) && !IsSamePolyType(*e, horz) && !IsHotEdge(*e))
{
if (TopX(*e, pt.y) > pt.x) break;
}
//otherwise we'll only break when horz's outslope is greater than e's
else if (TopX(*e, pt.y) >= pt.x) break;
}
else
{
if (IsOpen(*e) && !IsSamePolyType(*e, horz) && !IsHotEdge(*e))
{
if (TopX(*e, pt.y) < pt.x) break;
}
else if (TopX(*e, pt.y) <= pt.x) break;
}
}
}
pt = Point64(e->curr_x, horz.bot.y);
if (is_left_to_right)
{
IntersectEdges(horz, *e, pt);
SwapPositionsInAEL(horz, *e);
horz.curr_x = e->curr_x;
e = horz.next_in_ael;
}
else
{
IntersectEdges(*e, horz, pt);
SwapPositionsInAEL(*e, horz);
horz.curr_x = e->curr_x;
e = horz.prev_in_ael;
}
if (horz.outrec && horz.outrec != currHorzOutrec)
{
currHorzOutrec = horz.outrec;
//nb: The outrec containining the op returned by IntersectEdges
//above may no longer be associated with horzEdge.
AddTrialHorzJoin(GetLastOp(horz));
}
}
//check if we've finished with (consecutive) horizontals ...
if (horzIsOpen && IsOpenEnd(horz)) // ie open at top
{
if (IsHotEdge(horz))
{
AddOutPt(horz, horz.top);
if (IsFront(horz))
horz.outrec->front_edge = nullptr;
else
horz.outrec->back_edge = nullptr;
horz.outrec = nullptr;
}
DeleteFromAEL(horz);
return;
}
else if (NextVertex(horz)->pt.y != horz.top.y)
break;
//still more horizontals in bound to process ...
if (IsHotEdge(horz))
AddOutPt(horz, horz.top);
UpdateEdgeIntoAEL(&horz);
if (PreserveCollinear && !horzIsOpen && HorzIsSpike(horz))
TrimHorz(horz, true);
is_left_to_right =
ResetHorzDirection(horz, vertex_max, horz_left, horz_right);
}
if (IsHotEdge(horz)) AddOutPt(horz, horz.top);
UpdateEdgeIntoAEL(&horz); // end of an intermediate horiz.
}
void ClipperBase::DoTopOfScanbeam(const int64_t y)
{
sel_ = nullptr; // sel_ is reused to flag horizontals (see PushHorz below)
Active* e = actives_;
while (e)
{
//nb: 'e' will never be horizontal here
if (e->top.y == y)
{
e->curr_x = e->top.x;
if (IsMaxima(*e))
{
e = DoMaxima(*e); // TOP OF BOUND (MAXIMA)
continue;
}
else
{
//INTERMEDIATE VERTEX ...
if (IsHotEdge(*e)) AddOutPt(*e, e->top);
UpdateEdgeIntoAEL(e);
if (IsHorizontal(*e))
PushHorz(*e); // horizontals are processed later
}
}
else // i.e. not the top of the edge
e->curr_x = TopX(*e, y);
e = e->next_in_ael;
}
}
Active* ClipperBase::DoMaxima(Active& e)
{
Active* next_e, * prev_e, * max_pair;
prev_e = e.prev_in_ael;
next_e = e.next_in_ael;
if (IsOpenEnd(e))
{
if (IsHotEdge(e)) AddOutPt(e, e.top);
if (!IsHorizontal(e))
{
if (IsHotEdge(e))
{
if (IsFront(e))
e.outrec->front_edge = nullptr;
else
e.outrec->back_edge = nullptr;
e.outrec = nullptr;
}
DeleteFromAEL(e);
}
return next_e;
}
max_pair = GetMaximaPair(e);
if (!max_pair) return next_e; // eMaxPair is horizontal
if (IsJoined(e)) Split(e, e.top);
if (IsJoined(*max_pair)) Split(*max_pair, max_pair->top);
//only non-horizontal maxima here.
//process any edges between maxima pair ...
while (next_e != max_pair)
{
IntersectEdges(e, *next_e, e.top);
SwapPositionsInAEL(e, *next_e);
next_e = e.next_in_ael;
}
if (IsOpen(e))
{
if (IsHotEdge(e))
AddLocalMaxPoly(e, *max_pair, e.top);
DeleteFromAEL(*max_pair);
DeleteFromAEL(e);
return (prev_e ? prev_e->next_in_ael : actives_);
}
// e.next_in_ael== max_pair ...
if (IsHotEdge(e))
AddLocalMaxPoly(e, *max_pair, e.top);
DeleteFromAEL(e);
DeleteFromAEL(*max_pair);
return (prev_e ? prev_e->next_in_ael : actives_);
}
void ClipperBase::Split(Active& e, const Point64& pt)
{
if (e.join_with == JoinWith::Right)
{
e.join_with = JoinWith::None;
e.next_in_ael->join_with = JoinWith::None;
AddLocalMinPoly(e, *e.next_in_ael, pt, true);
}
else
{
e.join_with = JoinWith::None;
e.prev_in_ael->join_with = JoinWith::None;
AddLocalMinPoly(*e.prev_in_ael, e, pt, true);
}
}
void ClipperBase::CheckJoinLeft(Active& e,
const Point64& pt, bool check_curr_x)
{
Active* prev = e.prev_in_ael;
if (IsOpen(e) || !IsHotEdge(e) || !prev ||
IsOpen(*prev) || !IsHotEdge(*prev)) return;
if ((pt.y < e.top.y + 2 || pt.y < prev->top.y + 2) &&
((e.bot.y > pt.y) || (prev->bot.y > pt.y))) return; // avoid trivial joins
if (check_curr_x)
{
if (DistanceFromLineSqrd(pt, prev->bot, prev->top) > 0.25) return;
}
else if (e.curr_x != prev->curr_x) return;
if (CrossProduct(e.top, pt, prev->top)) return;
if (e.outrec->idx == prev->outrec->idx)
AddLocalMaxPoly(*prev, e, pt);
else if (e.outrec->idx < prev->outrec->idx)
JoinOutrecPaths(e, *prev);
else
JoinOutrecPaths(*prev, e);
prev->join_with = JoinWith::Right;
e.join_with = JoinWith::Left;
}
void ClipperBase::CheckJoinRight(Active& e,
const Point64& pt, bool check_curr_x)
{
Active* next = e.next_in_ael;
if (IsOpen(e) || !IsHotEdge(e) ||
!next || IsOpen(*next) || !IsHotEdge(*next)) return;
if ((pt.y < e.top.y +2 || pt.y < next->top.y +2) &&
((e.bot.y > pt.y) || (next->bot.y > pt.y))) return; // avoid trivial joins
if (check_curr_x)
{
if (DistanceFromLineSqrd(pt, next->bot, next->top) > 0.35) return;
}
else if (e.curr_x != next->curr_x) return;
if (CrossProduct(e.top, pt, next->top)) return;
if (e.outrec->idx == next->outrec->idx)
AddLocalMaxPoly(e, *next, pt);
else if (e.outrec->idx < next->outrec->idx)
JoinOutrecPaths(e, *next);
else
JoinOutrecPaths(*next, e);
e.join_with = JoinWith::Right;
next->join_with = JoinWith::Left;
}
inline bool GetHorzExtendedHorzSeg(OutPt*& op, OutPt*& op2)
{
OutRec* outrec = GetRealOutRec(op->outrec);
op2 = op;
if (outrec->front_edge)
{
while (op->prev != outrec->pts &&
op->prev->pt.y == op->pt.y) op = op->prev;
while (op2 != outrec->pts &&
op2->next->pt.y == op2->pt.y) op2 = op2->next;
return op2 != op;
}
else
{
while (op->prev != op2 && op->prev->pt.y == op->pt.y)
op = op->prev;
while (op2->next != op && op2->next->pt.y == op2->pt.y)
op2 = op2->next;
return op2 != op && op2->next != op;
}
}
bool BuildPath64(OutPt* op, bool reverse, bool isOpen, Path64& path)
{
if (!op || op->next == op || (!isOpen && op->next == op->prev))
return false;
path.resize(0);
Point64 lastPt;
OutPt* op2;
if (reverse)
{
lastPt = op->pt;
op2 = op->prev;
}
else
{
op = op->next;
lastPt = op->pt;
op2 = op->next;
}
path.push_back(lastPt);
while (op2 != op)
{
if (op2->pt != lastPt)
{
lastPt = op2->pt;
path.push_back(lastPt);
}
if (reverse)
op2 = op2->prev;
else
op2 = op2->next;
}
if (path.size() == 3 && IsVerySmallTriangle(*op2)) return false;
else return true;
}
bool ClipperBase::CheckBounds(OutRec* outrec)
{
if (!outrec->pts) return false;
if (!outrec->bounds.IsEmpty()) return true;
CleanCollinear(outrec);
if (!outrec->pts ||
!BuildPath64(outrec->pts, ReverseSolution, false, outrec->path))
return false;
outrec->bounds = GetBounds(outrec->path);
return true;
}
bool ClipperBase::CheckSplitOwner(OutRec* outrec)
{
for (auto s : *outrec->owner->splits)
{
OutRec* split = GetRealOutRec(s);
if (split && split != outrec &&
split != outrec->owner && CheckBounds(split) &&
split->bounds.Contains(outrec->bounds) &&
Path1InsidePath2(outrec->pts, split->pts))
{
outrec->owner = split; //found in split
return true;
}
}
return false;
}
void ClipperBase::RecursiveCheckOwners(OutRec* outrec, PolyPath* polypath)
{
// pre-condition: outrec will have valid bounds
// post-condition: if a valid path, outrec will have a polypath
if (outrec->polypath || outrec->bounds.IsEmpty()) return;
while (outrec->owner)
{
if (outrec->owner->splits && CheckSplitOwner(outrec)) break;
if (outrec->owner->pts && CheckBounds(outrec->owner) &&
outrec->owner->bounds.Contains(outrec->bounds) &&
Path1InsidePath2(outrec->pts, outrec->owner->pts)) break;
outrec->owner = outrec->owner->owner;
}
if (outrec->owner)
{
if (!outrec->owner->polypath)
RecursiveCheckOwners(outrec->owner, polypath);
outrec->polypath = outrec->owner->polypath->AddChild(outrec->path);
}
else
outrec->polypath = polypath->AddChild(outrec->path);
}
void Clipper64::BuildPaths64(Paths64& solutionClosed, Paths64* solutionOpen)
{
solutionClosed.resize(0);
solutionClosed.reserve(outrec_list_.size());
if (solutionOpen)
{
solutionOpen->resize(0);
solutionOpen->reserve(outrec_list_.size());
}
// nb: outrec_list_.size() may change in the following
// while loop because polygons may be split during
// calls to CleanCollinear which calls FixSelfIntersects
for (size_t i = 0; i < outrec_list_.size(); ++i)
{
OutRec* outrec = outrec_list_[i];
if (outrec->pts == nullptr) continue;
Path64 path;
if (solutionOpen && outrec->is_open)
{
if (BuildPath64(outrec->pts, ReverseSolution, true, path))
solutionOpen->emplace_back(std::move(path));
}
else
{
// nb: CleanCollinear can add to outrec_list_
CleanCollinear(outrec);
//closed paths should always return a Positive orientation
if (BuildPath64(outrec->pts, ReverseSolution, false, path))
solutionClosed.emplace_back(std::move(path));
}
}
}
void Clipper64::BuildTree64(PolyPath64& polytree, Paths64& open_paths)
{
polytree.Clear();
open_paths.resize(0);
if (has_open_paths_)
open_paths.reserve(outrec_list_.size());
// outrec_list_.size() is not static here because
// CheckBounds below can indirectly add additional
// OutRec (via FixOutRecPts & CleanCollinear)
for (size_t i = 0; i < outrec_list_.size(); ++i)
{
OutRec* outrec = outrec_list_[i];
if (!outrec || !outrec->pts) continue;
if (outrec->is_open)
{
Path64 path;
if (BuildPath64(outrec->pts, ReverseSolution, true, path))
open_paths.push_back(path);
continue;
}
if (CheckBounds(outrec))
RecursiveCheckOwners(outrec, &polytree);
}
}
bool BuildPathD(OutPt* op, bool reverse, bool isOpen, PathD& path, double inv_scale)
{
if (!op || op->next == op || (!isOpen && op->next == op->prev))
return false;
path.resize(0);
Point64 lastPt;
OutPt* op2;
if (reverse)
{
lastPt = op->pt;
op2 = op->prev;
}
else
{
op = op->next;
lastPt = op->pt;
op2 = op->next;
}
#ifdef USINGZ
path.push_back(PointD(lastPt.x * inv_scale, lastPt.y * inv_scale, lastPt.z));
#else
path.push_back(PointD(lastPt.x * inv_scale, lastPt.y * inv_scale));
#endif
while (op2 != op)
{
if (op2->pt != lastPt)
{
lastPt = op2->pt;
#ifdef USINGZ
path.push_back(PointD(lastPt.x * inv_scale, lastPt.y * inv_scale, lastPt.z));
#else
path.push_back(PointD(lastPt.x * inv_scale, lastPt.y * inv_scale));
#endif
}
if (reverse)
op2 = op2->prev;
else
op2 = op2->next;
}
if (path.size() == 3 && IsVerySmallTriangle(*op2)) return false;
return true;
}
void ClipperD::BuildPathsD(PathsD& solutionClosed, PathsD* solutionOpen)
{
solutionClosed.resize(0);
solutionClosed.reserve(outrec_list_.size());
if (solutionOpen)
{
solutionOpen->resize(0);
solutionOpen->reserve(outrec_list_.size());
}
// outrec_list_.size() is not static here because
// CleanCollinear below can indirectly add additional
// OutRec (via FixOutRecPts)
for (std::size_t i = 0; i < outrec_list_.size(); ++i)
{
OutRec* outrec = outrec_list_[i];
if (outrec->pts == nullptr) continue;
PathD path;
if (solutionOpen && outrec->is_open)
{
if (BuildPathD(outrec->pts, ReverseSolution, true, path, invScale_))
solutionOpen->emplace_back(std::move(path));
}
else
{
CleanCollinear(outrec);
//closed paths should always return a Positive orientation
if (BuildPathD(outrec->pts, ReverseSolution, false, path, invScale_))
solutionClosed.emplace_back(std::move(path));
}
}
}
void ClipperD::BuildTreeD(PolyPathD& polytree, PathsD& open_paths)
{
polytree.Clear();
open_paths.resize(0);
if (has_open_paths_)
open_paths.reserve(outrec_list_.size());
for (OutRec* outrec : outrec_list_)
{
if (!outrec || !outrec->pts) continue;
if (outrec->is_open)
{
PathD path;
if (BuildPathD(outrec->pts, ReverseSolution, true, path, invScale_))
open_paths.push_back(path);
continue;
}
if (CheckBounds(outrec))
RecursiveCheckOwners(outrec, &polytree);
}
}
} // namespace clipper2lib