876 lines
23 KiB
C++
876 lines
23 KiB
C++
/*
|
|
* This program source code file is part of KICAD, a free EDA CAD application.
|
|
*
|
|
* Copyright (C) 2017 CERN
|
|
* Copyright (C) 2018-2020 KiCad Developers, see AUTHORS.txt for contributors.
|
|
* @author Tomasz Wlostowski <tomasz.wlostowski@cern.ch>
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, you may find one here:
|
|
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
|
|
* or you may search the http://www.gnu.org website for the version 2 license,
|
|
* or you may write to the Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
|
|
*/
|
|
|
|
#ifdef PROFILE
|
|
#include <profile.h>
|
|
#endif
|
|
|
|
#include <thread>
|
|
#include <algorithm>
|
|
#include <future>
|
|
|
|
#include <connectivity/connectivity_data.h>
|
|
#include <connectivity/connectivity_algo.h>
|
|
#include <connectivity/from_to_cache.h>
|
|
|
|
#include <ratsnest/ratsnest_data.h>
|
|
#include <trigo.h>
|
|
|
|
CONNECTIVITY_DATA::CONNECTIVITY_DATA()
|
|
{
|
|
m_connAlgo.reset( new CN_CONNECTIVITY_ALGO );
|
|
m_progressReporter = nullptr;
|
|
m_fromToCache.reset( new FROM_TO_CACHE );
|
|
}
|
|
|
|
|
|
CONNECTIVITY_DATA::CONNECTIVITY_DATA( const std::vector<BOARD_ITEM*>& aItems, bool aSkipRatsnest )
|
|
: m_skipRatsnest( aSkipRatsnest )
|
|
{
|
|
Build( aItems );
|
|
m_progressReporter = nullptr;
|
|
m_fromToCache.reset( new FROM_TO_CACHE );
|
|
}
|
|
|
|
|
|
CONNECTIVITY_DATA::~CONNECTIVITY_DATA()
|
|
{
|
|
Clear();
|
|
}
|
|
|
|
|
|
bool CONNECTIVITY_DATA::Add( BOARD_ITEM* aItem )
|
|
{
|
|
m_connAlgo->Add( aItem );
|
|
return true;
|
|
}
|
|
|
|
|
|
bool CONNECTIVITY_DATA::Remove( BOARD_ITEM* aItem )
|
|
{
|
|
m_connAlgo->Remove( aItem );
|
|
return true;
|
|
}
|
|
|
|
|
|
bool CONNECTIVITY_DATA::Update( BOARD_ITEM* aItem )
|
|
{
|
|
m_connAlgo->Remove( aItem );
|
|
m_connAlgo->Add( aItem );
|
|
return true;
|
|
}
|
|
|
|
|
|
void CONNECTIVITY_DATA::Build( BOARD* aBoard, PROGRESS_REPORTER* aReporter )
|
|
{
|
|
m_connAlgo.reset( new CN_CONNECTIVITY_ALGO );
|
|
m_connAlgo->Build( aBoard, aReporter );
|
|
|
|
m_netclassMap.clear();
|
|
|
|
for( NETINFO_ITEM* net : aBoard->GetNetInfo() )
|
|
if( net->GetNetClass()->GetName() != NETCLASS::Default )
|
|
m_netclassMap[ net->GetNetCode() ] = net->GetNetClass()->GetName();
|
|
|
|
RecalculateRatsnest();
|
|
}
|
|
|
|
|
|
void CONNECTIVITY_DATA::Build( const std::vector<BOARD_ITEM*>& aItems )
|
|
{
|
|
m_connAlgo.reset( new CN_CONNECTIVITY_ALGO );
|
|
m_connAlgo->Build( aItems );
|
|
|
|
RecalculateRatsnest();
|
|
}
|
|
|
|
|
|
void CONNECTIVITY_DATA::Move( const VECTOR2I& aDelta )
|
|
{
|
|
m_connAlgo->ForEachAnchor( [&aDelta]( CN_ANCHOR& anchor )
|
|
{
|
|
anchor.Move( aDelta );
|
|
} );
|
|
}
|
|
|
|
|
|
void CONNECTIVITY_DATA::updateRatsnest()
|
|
{
|
|
#ifdef PROFILE
|
|
PROF_COUNTER rnUpdate( "update-ratsnest" );
|
|
#endif
|
|
std::vector<RN_NET*> dirty_nets;
|
|
|
|
// Start with net 1 as net 0 is reserved for not-connected
|
|
// Nets without nodes are also ignored
|
|
std::copy_if( m_nets.begin() + 1, m_nets.end(), std::back_inserter( dirty_nets ),
|
|
[] ( RN_NET* aNet ) { return aNet->IsDirty() && aNet->GetNodeCount() > 0; } );
|
|
|
|
// We don't want to spin up a new thread for fewer than 8 nets (overhead costs)
|
|
size_t parallelThreadCount = std::min<size_t>( std::thread::hardware_concurrency(),
|
|
( dirty_nets.size() + 7 ) / 8 );
|
|
|
|
std::atomic<size_t> nextNet( 0 );
|
|
std::vector<std::future<size_t>> returns( parallelThreadCount );
|
|
|
|
auto update_lambda = [&nextNet, &dirty_nets]() -> size_t
|
|
{
|
|
for( size_t i = nextNet++; i < dirty_nets.size(); i = nextNet++ )
|
|
dirty_nets[i]->Update();
|
|
|
|
return 1;
|
|
};
|
|
|
|
if( parallelThreadCount == 1 )
|
|
update_lambda();
|
|
else
|
|
{
|
|
for( size_t ii = 0; ii < parallelThreadCount; ++ii )
|
|
returns[ii] = std::async( std::launch::async, update_lambda );
|
|
|
|
// Finalize the ratsnest threads
|
|
for( size_t ii = 0; ii < parallelThreadCount; ++ii )
|
|
returns[ii].wait();
|
|
}
|
|
|
|
#ifdef PROFILE
|
|
rnUpdate.Show();
|
|
#endif /* PROFILE */
|
|
}
|
|
|
|
|
|
void CONNECTIVITY_DATA::addRatsnestCluster( const std::shared_ptr<CN_CLUSTER>& aCluster )
|
|
{
|
|
auto rnNet = m_nets[ aCluster->OriginNet() ];
|
|
|
|
rnNet->AddCluster( aCluster );
|
|
}
|
|
|
|
|
|
void CONNECTIVITY_DATA::RecalculateRatsnest( BOARD_COMMIT* aCommit )
|
|
{
|
|
m_connAlgo->PropagateNets( aCommit );
|
|
|
|
int lastNet = m_connAlgo->NetCount();
|
|
|
|
if( lastNet >= (int) m_nets.size() )
|
|
{
|
|
unsigned int prevSize = m_nets.size();
|
|
m_nets.resize( lastNet + 1 );
|
|
|
|
for( unsigned int i = prevSize; i < m_nets.size(); i++ )
|
|
m_nets[i] = new RN_NET;
|
|
}
|
|
|
|
auto clusters = m_connAlgo->GetClusters();
|
|
|
|
int dirtyNets = 0;
|
|
|
|
for( int net = 0; net < lastNet; net++ )
|
|
{
|
|
if( m_connAlgo->IsNetDirty( net ) )
|
|
{
|
|
m_nets[net]->Clear();
|
|
dirtyNets++;
|
|
}
|
|
}
|
|
|
|
for( const auto& c : clusters )
|
|
{
|
|
int net = c->OriginNet();
|
|
|
|
// Don't add intentionally-kept zone islands to the ratsnest
|
|
if( c->IsOrphaned() && c->Size() == 1 )
|
|
{
|
|
if( dynamic_cast<CN_ZONE_LAYER*>( *c->begin() ) )
|
|
continue;
|
|
}
|
|
|
|
if( m_connAlgo->IsNetDirty( net ) )
|
|
{
|
|
addRatsnestCluster( c );
|
|
}
|
|
}
|
|
|
|
m_connAlgo->ClearDirtyFlags();
|
|
|
|
if( !m_skipRatsnest )
|
|
updateRatsnest();
|
|
}
|
|
|
|
|
|
void CONNECTIVITY_DATA::BlockRatsnestItems( const std::vector<BOARD_ITEM*>& aItems )
|
|
{
|
|
std::vector<BOARD_CONNECTED_ITEM*> citems;
|
|
|
|
for( auto item : aItems )
|
|
{
|
|
if( item->Type() == PCB_FOOTPRINT_T )
|
|
{
|
|
for( PAD* pad : static_cast<FOOTPRINT*>(item)->Pads() )
|
|
citems.push_back( pad );
|
|
}
|
|
else
|
|
{
|
|
if( auto citem = dynamic_cast<BOARD_CONNECTED_ITEM*>( item ) )
|
|
citems.push_back( citem );
|
|
}
|
|
}
|
|
|
|
for( const auto& item : citems )
|
|
{
|
|
if ( m_connAlgo->ItemExists( item ) )
|
|
{
|
|
auto& entry = m_connAlgo->ItemEntry( item );
|
|
|
|
for( const auto& cnItem : entry.GetItems() )
|
|
{
|
|
for( auto anchor : cnItem->Anchors() )
|
|
anchor->SetNoLine( true );
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
int CONNECTIVITY_DATA::GetNetCount() const
|
|
{
|
|
return m_connAlgo->NetCount();
|
|
}
|
|
|
|
|
|
void CONNECTIVITY_DATA::FindIsolatedCopperIslands( ZONE* aZone, std::vector<int>& aIslands )
|
|
{
|
|
// TODO(JE) ZONES
|
|
#if 0
|
|
m_connAlgo->FindIsolatedCopperIslands( aZone, aIslands );
|
|
#endif
|
|
}
|
|
|
|
void CONNECTIVITY_DATA::FindIsolatedCopperIslands( std::vector<CN_ZONE_ISOLATED_ISLAND_LIST>& aZones )
|
|
{
|
|
m_connAlgo->FindIsolatedCopperIslands( aZones );
|
|
}
|
|
|
|
|
|
void CONNECTIVITY_DATA::ComputeDynamicRatsnest( const std::vector<BOARD_ITEM*>& aItems,
|
|
const CONNECTIVITY_DATA* aDynamicData )
|
|
{
|
|
if( !aDynamicData )
|
|
return;
|
|
|
|
m_dynamicRatsnest.clear();
|
|
|
|
// This gets connections between the stationary board and the
|
|
// moving selection
|
|
for( unsigned int nc = 1; nc < aDynamicData->m_nets.size(); nc++ )
|
|
{
|
|
auto dynNet = aDynamicData->m_nets[nc];
|
|
|
|
if( dynNet->GetNodeCount() != 0 )
|
|
{
|
|
auto ourNet = m_nets[nc];
|
|
CN_ANCHOR_PTR nodeA, nodeB;
|
|
|
|
if( ourNet->NearestBicoloredPair( *dynNet, nodeA, nodeB ) )
|
|
{
|
|
RN_DYNAMIC_LINE l;
|
|
l.a = nodeA->Pos();
|
|
l.b = nodeB->Pos();
|
|
l.netCode = nc;
|
|
|
|
m_dynamicRatsnest.push_back( l );
|
|
}
|
|
}
|
|
}
|
|
|
|
// This gets the ratsnest for internal connections in the moving set
|
|
const auto& edges = GetRatsnestForItems( aItems );
|
|
|
|
for( const auto& edge : edges )
|
|
{
|
|
const auto& nodeA = edge.GetSourceNode();
|
|
const auto& nodeB = edge.GetTargetNode();
|
|
RN_DYNAMIC_LINE l;
|
|
|
|
// Use the parents' positions
|
|
l.a = nodeA->Parent()->GetPosition();
|
|
l.b = nodeB->Parent()->GetPosition();
|
|
l.netCode = 0;
|
|
m_dynamicRatsnest.push_back( l );
|
|
}
|
|
}
|
|
|
|
|
|
void CONNECTIVITY_DATA::ClearDynamicRatsnest()
|
|
{
|
|
m_connAlgo->ForEachAnchor( []( CN_ANCHOR& anchor )
|
|
{
|
|
anchor.SetNoLine( false );
|
|
} );
|
|
HideDynamicRatsnest();
|
|
}
|
|
|
|
|
|
void CONNECTIVITY_DATA::HideDynamicRatsnest()
|
|
{
|
|
m_dynamicRatsnest.clear();
|
|
}
|
|
|
|
|
|
void CONNECTIVITY_DATA::PropagateNets( BOARD_COMMIT* aCommit, PROPAGATE_MODE aMode )
|
|
{
|
|
m_connAlgo->PropagateNets( aCommit, aMode );
|
|
}
|
|
|
|
|
|
bool CONNECTIVITY_DATA::IsConnectedOnLayer( const BOARD_CONNECTED_ITEM *aItem, int aLayer,
|
|
std::vector<KICAD_T> aTypes ) const
|
|
{
|
|
CN_CONNECTIVITY_ALGO::ITEM_MAP_ENTRY &entry = m_connAlgo->ItemEntry( aItem );
|
|
|
|
auto matchType = [&]( KICAD_T aItemType )
|
|
{
|
|
if( aTypes.empty() )
|
|
return true;
|
|
|
|
return std::count( aTypes.begin(), aTypes.end(), aItemType ) > 0;
|
|
};
|
|
|
|
for( CN_ITEM* citem : entry.GetItems() )
|
|
{
|
|
for( CN_ITEM* connected : citem->ConnectedItems() )
|
|
{
|
|
if( connected->Valid()
|
|
&& connected->Layers().Overlaps( aLayer )
|
|
&& connected->Net() == aItem->GetNetCode()
|
|
&& matchType( connected->Parent()->Type() ) )
|
|
{
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
unsigned int CONNECTIVITY_DATA::GetUnconnectedCount() const
|
|
{
|
|
unsigned int unconnected = 0;
|
|
|
|
for( auto net : m_nets )
|
|
{
|
|
if( !net )
|
|
continue;
|
|
|
|
const auto& edges = net->GetUnconnected();
|
|
|
|
if( edges.empty() )
|
|
continue;
|
|
|
|
unconnected += edges.size();
|
|
}
|
|
|
|
return unconnected;
|
|
}
|
|
|
|
|
|
void CONNECTIVITY_DATA::Clear()
|
|
{
|
|
for( auto net : m_nets )
|
|
delete net;
|
|
|
|
m_nets.clear();
|
|
}
|
|
|
|
|
|
const std::vector<BOARD_CONNECTED_ITEM*> CONNECTIVITY_DATA::GetConnectedItems(
|
|
const BOARD_CONNECTED_ITEM* aItem,
|
|
const KICAD_T aTypes[],
|
|
bool aIgnoreNetcodes ) const
|
|
{
|
|
std::vector<BOARD_CONNECTED_ITEM*> rv;
|
|
const auto clusters = m_connAlgo->SearchClusters(
|
|
aIgnoreNetcodes ?
|
|
CN_CONNECTIVITY_ALGO::CSM_PROPAGATE :
|
|
CN_CONNECTIVITY_ALGO::CSM_CONNECTIVITY_CHECK, aTypes,
|
|
aIgnoreNetcodes ? -1 : aItem->GetNetCode() );
|
|
|
|
for( auto cl : clusters )
|
|
{
|
|
if( cl->Contains( aItem ) )
|
|
{
|
|
for( const auto item : *cl )
|
|
{
|
|
if( item->Valid() )
|
|
rv.push_back( item->Parent() );
|
|
}
|
|
}
|
|
}
|
|
|
|
return rv;
|
|
}
|
|
|
|
|
|
const std::vector<BOARD_CONNECTED_ITEM*> CONNECTIVITY_DATA::GetNetItems( int aNetCode,
|
|
const KICAD_T aTypes[] ) const
|
|
{
|
|
std::vector<BOARD_CONNECTED_ITEM*> items;
|
|
items.reserve( 32 );
|
|
|
|
std::bitset<MAX_STRUCT_TYPE_ID> type_bits;
|
|
|
|
for( unsigned int i = 0; aTypes[i] != EOT; ++i )
|
|
{
|
|
wxASSERT( aTypes[i] < MAX_STRUCT_TYPE_ID );
|
|
type_bits.set( aTypes[i] );
|
|
}
|
|
|
|
m_connAlgo->ForEachItem( [&]( CN_ITEM& aItem ) {
|
|
if( aItem.Valid() && ( aItem.Net() == aNetCode ) && type_bits[aItem.Parent()->Type()] )
|
|
items.push_back( aItem.Parent() );
|
|
} );
|
|
|
|
std::sort( items.begin(), items.end() );
|
|
items.erase( std::unique( items.begin(), items.end() ), items.end() );
|
|
return items;
|
|
}
|
|
|
|
|
|
bool CONNECTIVITY_DATA::CheckConnectivity( std::vector<CN_DISJOINT_NET_ENTRY>& aReport )
|
|
{
|
|
RecalculateRatsnest();
|
|
|
|
for( auto net : m_nets )
|
|
{
|
|
if( net )
|
|
{
|
|
for( const auto& edge : net->GetEdges() )
|
|
{
|
|
CN_DISJOINT_NET_ENTRY ent;
|
|
ent.net = edge.GetSourceNode()->Parent()->GetNetCode();
|
|
ent.a = edge.GetSourceNode()->Parent();
|
|
ent.b = edge.GetTargetNode()->Parent();
|
|
ent.anchorA = edge.GetSourceNode()->Pos();
|
|
ent.anchorB = edge.GetTargetNode()->Pos();
|
|
aReport.push_back( ent );
|
|
}
|
|
}
|
|
}
|
|
|
|
return aReport.empty();
|
|
}
|
|
|
|
|
|
const std::vector<PCB_TRACK*> CONNECTIVITY_DATA::GetConnectedTracks(
|
|
const BOARD_CONNECTED_ITEM* aItem ) const
|
|
{
|
|
auto& entry = m_connAlgo->ItemEntry( aItem );
|
|
|
|
std::set<PCB_TRACK*> tracks;
|
|
std::vector<PCB_TRACK*> rv;
|
|
|
|
for( CN_ITEM* citem : entry.GetItems() )
|
|
{
|
|
for( CN_ITEM* connected : citem->ConnectedItems() )
|
|
{
|
|
if( connected->Valid() &&
|
|
( connected->Parent()->Type() == PCB_TRACE_T ||
|
|
connected->Parent()->Type() == PCB_VIA_T ||
|
|
connected->Parent()->Type() == PCB_ARC_T ) )
|
|
tracks.insert( static_cast<PCB_TRACK*> ( connected->Parent() ) );
|
|
}
|
|
}
|
|
|
|
std::copy( tracks.begin(), tracks.end(), std::back_inserter( rv ) );
|
|
return rv;
|
|
}
|
|
|
|
|
|
void CONNECTIVITY_DATA::GetConnectedPads( const BOARD_CONNECTED_ITEM* aItem,
|
|
std::set<PAD*>* pads ) const
|
|
{
|
|
for( CN_ITEM* citem : m_connAlgo->ItemEntry( aItem ).GetItems() )
|
|
{
|
|
for( CN_ITEM* connected : citem->ConnectedItems() )
|
|
{
|
|
if( connected->Valid() && connected->Parent()->Type() == PCB_PAD_T )
|
|
pads->insert( static_cast<PAD*> ( connected->Parent() ) );
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
const std::vector<PAD*> CONNECTIVITY_DATA::GetConnectedPads( const BOARD_CONNECTED_ITEM* aItem )
|
|
const
|
|
{
|
|
std::set<PAD*> pads;
|
|
std::vector<PAD*> rv;
|
|
|
|
GetConnectedPads( aItem, &pads );
|
|
|
|
std::copy( pads.begin(), pads.end(), std::back_inserter( rv ) );
|
|
return rv;
|
|
}
|
|
|
|
|
|
unsigned int CONNECTIVITY_DATA::GetNodeCount( int aNet ) const
|
|
{
|
|
int sum = 0;
|
|
|
|
if( aNet < 0 ) // Node count for all nets
|
|
{
|
|
for( const RN_NET* net : m_nets )
|
|
sum += net->GetNodeCount();
|
|
}
|
|
else if( aNet < (int) m_nets.size() )
|
|
{
|
|
sum = m_nets[aNet]->GetNodeCount();
|
|
}
|
|
|
|
return sum;
|
|
}
|
|
|
|
|
|
unsigned int CONNECTIVITY_DATA::GetPadCount( int aNet ) const
|
|
{
|
|
int n = 0;
|
|
|
|
for( CN_ITEM* pad : m_connAlgo->ItemList() )
|
|
{
|
|
if( !pad->Valid() || pad->Parent()->Type() != PCB_PAD_T)
|
|
continue;
|
|
|
|
PAD* dpad = static_cast<PAD*>( pad->Parent() );
|
|
|
|
if( aNet < 0 || aNet == dpad->GetNetCode() )
|
|
n++;
|
|
}
|
|
|
|
return n;
|
|
}
|
|
|
|
|
|
void CONNECTIVITY_DATA::GetUnconnectedEdges( std::vector<CN_EDGE>& aEdges) const
|
|
{
|
|
for( const RN_NET* rnNet : m_nets )
|
|
{
|
|
if( rnNet )
|
|
{
|
|
for( const CN_EDGE& edge : rnNet->GetEdges() )
|
|
aEdges.push_back( edge );
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static int getMinDist( BOARD_CONNECTED_ITEM* aItem, const wxPoint& aPoint )
|
|
{
|
|
switch( aItem->Type() )
|
|
{
|
|
case PCB_TRACE_T:
|
|
case PCB_ARC_T:
|
|
{
|
|
PCB_TRACK* track = static_cast<PCB_TRACK*>( aItem );
|
|
|
|
return std::min( GetLineLength( track->GetStart(), aPoint ),
|
|
GetLineLength( track->GetEnd(), aPoint ) );
|
|
}
|
|
|
|
default:
|
|
return GetLineLength( aItem->GetPosition(), aPoint );
|
|
}
|
|
}
|
|
|
|
|
|
bool CONNECTIVITY_DATA::TestTrackEndpointDangling( PCB_TRACK* aTrack, wxPoint* aPos )
|
|
{
|
|
std::list<CN_ITEM*> items = GetConnectivityAlgo()->ItemEntry( aTrack ).GetItems();
|
|
|
|
// Not in the connectivity system. This is a bug!
|
|
if( items.empty() )
|
|
{
|
|
wxFAIL_MSG( "track not in connectivity system" );
|
|
return false;
|
|
}
|
|
|
|
CN_ITEM* citem = items.front();
|
|
|
|
if( !citem->Valid() )
|
|
return false;
|
|
|
|
if( aTrack->Type() == PCB_TRACE_T || aTrack->Type() == PCB_ARC_T )
|
|
{
|
|
// Test if a segment is connected on each end.
|
|
//
|
|
// NB: be wary of short segments which can be connected to the *same* other item on
|
|
// each end. If that's their only connection then they're still dangling.
|
|
|
|
PCB_LAYER_ID layer = aTrack->GetLayer();
|
|
int accuracy = KiROUND( aTrack->GetWidth() / 2 );
|
|
int start_count = 0;
|
|
int end_count = 0;
|
|
|
|
for( CN_ITEM* connected : citem->ConnectedItems() )
|
|
{
|
|
BOARD_CONNECTED_ITEM* item = connected->Parent();
|
|
|
|
if( item->GetFlags() & IS_DELETED )
|
|
continue;
|
|
|
|
std::shared_ptr<SHAPE> shape = item->GetEffectiveShape( layer );
|
|
|
|
bool hitStart = shape->Collide( aTrack->GetStart(), accuracy );
|
|
bool hitEnd = shape->Collide( aTrack->GetEnd(), accuracy );
|
|
|
|
if( hitStart && hitEnd )
|
|
{
|
|
if( getMinDist( item, aTrack->GetStart() ) < getMinDist( item, aTrack->GetEnd() ) )
|
|
start_count++;
|
|
else
|
|
end_count++;
|
|
}
|
|
else if( hitStart )
|
|
{
|
|
start_count++;
|
|
}
|
|
else if( hitEnd )
|
|
{
|
|
end_count++;
|
|
}
|
|
|
|
if( start_count > 0 && end_count > 0 )
|
|
return false;
|
|
}
|
|
|
|
if( aPos )
|
|
*aPos = (start_count == 0 ) ? aTrack->GetStart() : aTrack->GetEnd();
|
|
|
|
return true;
|
|
}
|
|
else if( aTrack->Type() == PCB_VIA_T )
|
|
{
|
|
// Test if a via is only connected on one layer
|
|
|
|
const std::vector<CN_ITEM*>& connected = citem->ConnectedItems();
|
|
|
|
if( connected.empty() )
|
|
{
|
|
if( aPos )
|
|
*aPos = aTrack->GetPosition();
|
|
|
|
return true;
|
|
}
|
|
|
|
// Here, we check if the via is connected only to items on a single layer
|
|
int first_layer = UNDEFINED_LAYER;
|
|
|
|
for( CN_ITEM* item : connected )
|
|
{
|
|
if( item->Parent()->GetFlags() & IS_DELETED )
|
|
continue;
|
|
|
|
if( first_layer == UNDEFINED_LAYER )
|
|
first_layer = item->Layer();
|
|
else if( item->Layer() != first_layer )
|
|
return false;
|
|
}
|
|
|
|
if( aPos )
|
|
*aPos = aTrack->GetPosition();
|
|
|
|
return true;
|
|
}
|
|
else
|
|
{
|
|
wxFAIL_MSG( "CONNECTIVITY_DATA::TestTrackEndpointDangling: unknown track type" );
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
const std::vector<BOARD_CONNECTED_ITEM*> CONNECTIVITY_DATA::GetConnectedItemsAtAnchor(
|
|
const BOARD_CONNECTED_ITEM* aItem,
|
|
const VECTOR2I& aAnchor,
|
|
const KICAD_T aTypes[],
|
|
const int& aMaxError ) const
|
|
{
|
|
auto& entry = m_connAlgo->ItemEntry( aItem );
|
|
std::vector<BOARD_CONNECTED_ITEM*> rv;
|
|
SEG::ecoord maxErrorSq = (SEG::ecoord) aMaxError * aMaxError;
|
|
|
|
for( auto cnItem : entry.GetItems() )
|
|
{
|
|
for( auto connected : cnItem->ConnectedItems() )
|
|
{
|
|
for( auto anchor : connected->Anchors() )
|
|
{
|
|
if( ( anchor->Pos() - aAnchor ).SquaredEuclideanNorm() <= maxErrorSq )
|
|
{
|
|
for( int i = 0; aTypes[i] > 0; i++ )
|
|
{
|
|
if( connected->Valid() && connected->Parent()->Type() == aTypes[i] )
|
|
{
|
|
rv.push_back( connected->Parent() );
|
|
break;
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return rv;
|
|
}
|
|
|
|
|
|
RN_NET* CONNECTIVITY_DATA::GetRatsnestForNet( int aNet )
|
|
{
|
|
if ( aNet < 0 || aNet >= (int) m_nets.size() )
|
|
{
|
|
return nullptr;
|
|
}
|
|
|
|
return m_nets[ aNet ];
|
|
}
|
|
|
|
|
|
void CONNECTIVITY_DATA::MarkItemNetAsDirty( BOARD_ITEM *aItem )
|
|
{
|
|
if ( aItem->Type() == PCB_FOOTPRINT_T)
|
|
{
|
|
for( PAD* pad : static_cast<FOOTPRINT*>( aItem )->Pads() )
|
|
m_connAlgo->MarkNetAsDirty( pad->GetNetCode() );
|
|
}
|
|
if (aItem->IsConnected() )
|
|
{
|
|
m_connAlgo->MarkNetAsDirty( static_cast<BOARD_CONNECTED_ITEM*>( aItem )->GetNetCode() );
|
|
}
|
|
}
|
|
|
|
|
|
void CONNECTIVITY_DATA::SetProgressReporter( PROGRESS_REPORTER* aReporter )
|
|
{
|
|
m_progressReporter = aReporter;
|
|
m_connAlgo->SetProgressReporter( m_progressReporter );
|
|
}
|
|
|
|
|
|
const std::vector<CN_EDGE> CONNECTIVITY_DATA::GetRatsnestForItems( std::vector<BOARD_ITEM*> aItems )
|
|
{
|
|
std::set<int> nets;
|
|
std::vector<CN_EDGE> edges;
|
|
std::set<BOARD_CONNECTED_ITEM*> item_set;
|
|
|
|
for( auto item : aItems )
|
|
{
|
|
if( item->Type() == PCB_FOOTPRINT_T )
|
|
{
|
|
FOOTPRINT* footprint = static_cast<FOOTPRINT*>( item );
|
|
|
|
for( PAD* pad : footprint->Pads() )
|
|
{
|
|
nets.insert( pad->GetNetCode() );
|
|
item_set.insert( pad );
|
|
}
|
|
}
|
|
else if( auto conn_item = dyn_cast<BOARD_CONNECTED_ITEM*>( item ) )
|
|
{
|
|
item_set.insert( conn_item );
|
|
nets.insert( conn_item->GetNetCode() );
|
|
}
|
|
}
|
|
|
|
for( const auto& netcode : nets )
|
|
{
|
|
const auto& net = GetRatsnestForNet( netcode );
|
|
|
|
for( const auto& edge : net->GetEdges() )
|
|
{
|
|
auto srcNode = edge.GetSourceNode();
|
|
auto dstNode = edge.GetTargetNode();
|
|
|
|
auto srcParent = srcNode->Parent();
|
|
auto dstParent = dstNode->Parent();
|
|
|
|
bool srcFound = ( item_set.find(srcParent) != item_set.end() );
|
|
bool dstFound = ( item_set.find(dstParent) != item_set.end() );
|
|
|
|
if ( srcFound && dstFound )
|
|
edges.push_back( edge );
|
|
}
|
|
}
|
|
|
|
return edges;
|
|
}
|
|
|
|
|
|
const std::vector<CN_EDGE> CONNECTIVITY_DATA::GetRatsnestForComponent( FOOTPRINT* aComponent, bool aSkipInternalConnections )
|
|
{
|
|
std::set<int> nets;
|
|
std::set<const PAD*> pads;
|
|
std::vector<CN_EDGE> edges;
|
|
|
|
for( auto pad : aComponent->Pads() )
|
|
{
|
|
nets.insert( pad->GetNetCode() );
|
|
pads.insert( pad );
|
|
}
|
|
|
|
for( const auto& netcode : nets )
|
|
{
|
|
const auto& net = GetRatsnestForNet( netcode );
|
|
|
|
for( const auto& edge : net->GetEdges() )
|
|
{
|
|
auto srcNode = edge.GetSourceNode();
|
|
auto dstNode = edge.GetTargetNode();
|
|
|
|
const PAD* srcParent = static_cast<const PAD*>( srcNode->Parent() );
|
|
const PAD* dstParent = static_cast<const PAD*>( dstNode->Parent() );
|
|
|
|
bool srcFound = ( pads.find(srcParent) != pads.end() );
|
|
bool dstFound = ( pads.find(dstParent) != pads.end() );
|
|
|
|
if ( srcFound && dstFound && !aSkipInternalConnections )
|
|
{
|
|
edges.push_back( edge );
|
|
}
|
|
else if ( srcFound || dstFound )
|
|
{
|
|
edges.push_back( edge );
|
|
}
|
|
}
|
|
}
|
|
|
|
return edges;
|
|
}
|
|
|
|
|